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Abstract

Spatiotemporal stereo is concerned with recovery of the 3D structure of a
dynamically changing scene from a sequence of stereo images. This paper
aims at computing temporally coherent disparity maps without explicit re-
covery of motion. We make use of a spatiotemporal volume paradigm and
consider extracted features we called stequels as basic matching primitives.
The stequel matching principle is developed. Extensive algorithmic evalu-
ation with ground truth data incorporated in both local and global corre-
spondence paradigms shows the great benefit of considering stequels as a
matching primitive that naturally incorporates local spatial and temporal
structure and its advantages in comparison to alternative ways of enforcing
temporal coherence in the stereo estimation procedure.
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Chapter 1

Introduction

1.1 Motivation

In a 3D dynamic environment a visual system must process image data that
derives from both the temporal and spatial scene dimensions. Correspond-
ingly, stereo and motion are two of the most widely researched areas in com-
puter vision. Within this body of research, integrated investigation of stereo
and motion has received relatively little attention. Ultimately, however, re-
covery of 3D scene structure must respect dynamic information to ensure that
estimates are temporally consistent. Further, in situations where instanta-
neous multiview matching is ambiguous (e.g., weakly textured surfaces or
epipolar aligned pattern structure), dynamic information has the potential
to resolve correspondence by further constraining possible matches.

In response to the above observations, this paper describes a novel ap-
proach to recovering temporally coherent disparity estimates from a sequence
of binocular images. The key idea is to base stereo correspondence on match-
ing primitives that inherently encompass both the spatial and temporal di-
mensions of image spacetime. In particular, each temporal stream of imagery
is locally represented in terms of its orientation structure, as captured by the
spatiotemporal quadric (also variously referred to as the orientation tensor
and covariance matrix, see, e.g., [1, 2]). By representing orientation structure
uniformly across image space and time, both instantaneously defined (e.g.,
spatial texture) and dynamically defined (e.g., motion) information can be
brought to bear on stereo correspondence in an integrated fashion. It will
be shown that by basing matching on this representation, it is possible to
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recover temporally coherent disparity estimates, without the need to make
optical or 3D flow explicit. Although, extension of this work to allow for
simultaneous estimates of disparity and flow is an interesting direction for
future research. Further, this representation allows spatial and temporal im-
age structure to resolve otherwise ambiguous matches in a fashion consistent
with both sources of information. Significantly, applicability of this repre-
sentation to stereo correspondence is quite general and will be demonstrated
in both local and global matchers.

1.2 Previous work

Early work combining stereo and motion concentrated on punctate features
(e.g., edges, corners). One of the earliest attempts made use of heuristics
for assigning spatial and temporal matches based on model-based reasoning
[3]. A rather different early approach exploited constraints on the temporal
derivative of disparity [4]. Other work matched binocular features to recover
3D estimates for temporal tracking [5, 6]. More recent research that relies
on loose coupling of stereo and motion has emphasized the recovery of 3D
motion using optical flow in conjunction with multiple hypothesis binocular
disparity maps [7]. The proposed research differs from such early work in be-
ing focused on a more integrated approach to spatiotemporal processing and
in its emphasis on dense reconstruction (while [7] considered dense estimates,
the stereo-motion coupling is loose).

More recent stereo research has seen increased interest in scene recovery
from multi-camera (especially binocular) video as constrained by 3D mod-
els. Some work has concentrated on the recovery of surface mesh models
between individual stereo pairs with tracking across time instances serving
to yield temporally consistent models [8]. Other research considers multiple
cameras, employs voxel carving for initial estimation and uses intensity-based
matching over spatiotemporal volumes without consideration of image mo-
tion differences between different views [9]. Still other work casts stereo and
motion estimation as a generic image matching problem solved variationally
after backprojecting the input images onto a suitable surface [10]. Again,
the proposed approach differs from these lines of research in its emphasis on
a more integrated approach to stereo and motion and in eschewing explicit
surface models, which can become problematic when dealing with multiple
objects and complex scenes.
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Other lines of recent research have emphasized more integrated approaches
to stereo and motion processing. Some of this work has concentrated on static
scenes with variable lighting [11]. Others have focused on defining appropri-
ate temporal integration windows, e.g., as part of the correspondence process
[12] or simply reinforce disparity estimates from the previous frame using
optical flow [13]. Further, combined stereo and motion estimation has been
formulated in terms of both PDEs [14, 15] as well as MRFs [16, 17, 18, 19, 20].
Still other work has used direct methods for integrated recovery of structure
and egomotion [21, 22, 23]. The proposed research shares with these efforts
an emphasis on tight integration of binocular imagery with time. It is novel
in basing its matching on the representation of image spacetime in terms
of local spatiotemporal orientation, which provides richer image descriptions
than employed in previous methods, as they typically worked with raw image
intensities.

A major tool that is employed in the proposed approach is the representa-
tion of spacetime imagery in terms of oriented spatiotemporal structure. Var-
ious research has documented optical flow recovery [24, 25], tracking [26] and
grouping [27] on the basis of filters tuned for local spatiotemporal orientation.
More specifically, previous research has considered the use of the spatiotem-
poral quadric to capture orientation in image spacetime, with application
to motion estimation, restoration, enhancement [1, 2] and flow comparison
[28]. However, it appears none has exploited spatiotemporal orientation, in
general, or the spatiotemporal quadric, specifically, for stereo disparity es-
timation. Previous stereo work has defined binocular correspondence based
on a bank of spatial filters [29]. The proposed approach also extracts its
measures of orientation via application of a filter bank; however, it is signifi-
cantly different in employing filters that span both the spatial and temporal
domains, thereby basing matching on a fundamentally richer representation.

1.3 Contributions

In the light of previous research, the main contributions of this work are as
follows. (i) The spatiotemporal quadric is proposed as a matching primitive
for spacetime stereo. This primitive captures both local spatial and temporal
structure and thereby enables matching to account for both sources of data
without need to estimate optical flow or 3D motion. (ii) The geometric re-
lationships between corresponding spatiotemporal quadrics across binocular
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views are derived and used to motivate a match cost. The spatiotemporal
match primitives and cost are incorporated in local and global matchers.
(iii) Extensive empirical evaluation of these matchers is presented. Testing
encompasses quantitative evaluation on laboratory acquired binocular video
with ground truth and qualitative evaluation on more naturalistic imagery.
The laboratory imagery and associated ground truth are available for down-
load at http://www.cse.yorku.ca/vision/research/ststereo.shtml.
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Chapter 2

Technical Approach

2.1 Spatiotemporal matching primitive

In dealing with temporal sequences of binocular images, it is possible to con-
ceptualize of stereo correspondence in terms of image spacetime, which nat-
urally encompasses both spatial and temporal characteristics of local pattern
structure, see Fig. 2.1a. While image spacetime can be operated on directly,
using pixel intensities, consideration of local spatiotemporal orientation pro-
vides access to a richer representation. Local orientation has visual signifi-
cance as orientations parallel to the image plane capture the spatial pattern
of observed surfaces (e.g., spatial texture); whereas, orientations that extend
into the temporal dimension capture dynamic aspects (e.g., motion). By inte-
grating the temporal dimension into the primitive, subsequent matching will
be inherently constrained to observe temporal coherence. Further, through
combination of both temporal and spatial structure in the descriptor, match
ambiguities that might exist through consideration of only one data source
have potential to be resolved.

2.1.1 3D steerable filters

To extract a representation of orientation from imagery, one can filter the
data with oriented filters. In the current work, 3D Gaussian, second-derivative
filters, G2, and their Hilbert transforms, H2 [30], are applied to the data with
responses pointwise rectified (squared) and summed. Filtering is executed
across a set of 3D orientations given by unit column vectors, ŵi. Hence a
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(a) (b) (c)

Figure 2.1: Image Spacetime. (a) Spacetime can be conceptualized as a
spatiotemporal volume xyt. An instantaneous motion trajectory, v (shown
in red), traces an orientation in this volume. (b) An exemplar xt slice of the
spatiotemporal volume for the left view (c) The corresponding xt slice in the
right view. ṽl

xt and ṽr
xt are the projections of the vl and vr onto the xt slice;

wl and wr are arbitrary vectors (shown in green) in correspondence in xyt
space and δr = w̃r − ṽr, δl = w̃l − ṽl (shown in blue); δr = Aδl as explained
in text.

measure of local energy, E, is computed according to

E(x; ŵi) = [G2(ŵi) ∗ I(x)]2 + [H2(ŵi) ∗ I(x)]2, (2.1)

where x = (x, y, t) are spatiotemporal image coordinates, I is the image
sequence and ∗ denotes convolution [30].

Figure 2.2 visualizes G2 along a particular direction and its 90◦-phase
counterpart H2 filter. The composed response as in (2.1) will be phase-
invariant and specific to the chosen direction, which in practice results in
better performance than typical spatiotemporal derivatives. Furthermore,
even very oblique orientations which correspond to large motions can be
sampled with G2-H2 pairs, which is less reliable with simple local derivatives.

Filtering is applied separately to left and right image sequence. Here, fil-
ters are oriented along normals to icosahedron faces with antipodal directions
identified, as this uniformly sample the sphere and spans 3D orientation for
the employed filters. Mathematically, these directions are defined by vectors

(±1,±1,±1) , (0,±1/φ,±φ) , (±1/φ,±φ, 0) , (±φ, 0,±1/φ) ,

where φ =
√

5+1
2

, subject to normalization of each vector to unit length.
After filtering, every point in spacetime has an associated set of values that
indicate how strongly oriented the local structure is along each considered
direction in spacetime.
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G2 H2

Figure 2.2: Surfaces plots of 3D steerable filter pair G2 and H2 oriented along

the x-axis in the spacetime volume, i.e. ŵ =
[

1 0 0
]>

. Red and black
colours represent positive and negative contributions, respectively.

2.1.2 Building the match primitive

To proceed, the individual energy measures are recast in terms of the spa-
tiotemporal quadric. This particular representation captures local orienta-
tion as well as the variance of spacetime about that orientation. This con-
struct captures the local shape of spacetime (e.g., point- vs. line- vs. plane-
like) in addition to direction for a local descriptor that is richer than if (dom-
inant) orientation alone is considered [1]. Furthermore, the quadric casts
structure in terms of spacetime coordinates, x = (x, y, t), where it is conve-
nient to formulate binocular match constraints. In the context of binocular
matching, this quadric will be referred to as the stequel, spatio-temporal
quadric element, Q. In particular,

Q =
∑

i

Êiŵiŵ
>
i , (2.2)

where summation is across the set of filter orientations, ŵi, and Êi is the
corresponding local energy response (2.1), but now normalized such that∑

i Êi(x) = 1 (see Sec. 2.2, esp. footnote 1 for normalization rationale).
In constructing Q, the dyadic product, ŵiŵ

>
i , establishes the local frame

implied by orientation ŵi weighted by its corresponding response, Êi, [1].
For a binocular sequence, the stequel, Q, is computed pointwise in space-

time and separately for the left and right image sequences to provide match-
ing primitives; thus, it is parametrized as Ql(x) and Qr(x), in reference to the
left and right views, resp. Significantly, the implied calculations are modest.
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The calculation of local energy is realized through steerable filters requiring
nothing more than 3D separable convolution and pointwise nonlinearities and
is thereby amenable to compact, efficient implementation [31]. Construction
of Q from the filter responses requires only matrix summation, as specified
in (2.2). Nevertheless, depending on the observed efficacy of this particular
filtering approach, alternatives may also be considered: As examples, Gabor
and lognormal filters may be considered.

2.1.3 Spatiotemporal derivatives – Grammian

A simpler and computationally more efficient alternative to extract stequels
is to construct quadric matching primitives based on spatiotemporal deriva-
tives aggregated over some local region, also known as the Gram matrix, or
Grammian, e.g., as used in [32] in a different context. In this case,

QG =
1

k

∑
i∈W

∇Ii (∇Ii)
> =

1

k

∑
i∈W




∂Ii

∂x
∂Ii

∂y
∂Ii

∂t




[
∂Ii

∂x
∂Ii

∂y
∂Ii

∂t

]
, (2.3)

where W is the local aggregation region and k =
∑

i∈W (∇Ii)
>∇Ii is the

normalization factor.
Although our subsequent development and experiments are based on

steerable filters, stequels constructed from spatiotemporal derivatives (Gram-
mians) may be very useful in practice, as they are easier and faster to com-
pute. On the other hand, empirical comparisons in Sec. 3.2.1 show that
stequels yield superior performance in application to spatiotemporal stereo
matching.

2.2 Spatiotemporal epipolar correspondence

constraint

In establishing correspondence between binocular sequences, it is incorrect
simply to seek the most similar stequels, as local spatiotemporal orientation
is expected to change between views due to the geometry of the situation.
In this section, constraint is derived between corresponding stequels subject
to rectified and otherwise calibrated binocular viewing. This constraint is
derived in two steps. First, the relationship between local spatiotemporal
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Figure 2.3: Stereo Geometry. A reference Euclidean coordinate system is
centred at the midpoint of the stereo baseline, O. Cameras are rectified with
a half-baseline vector b = [b, 0, 0]> and focal lengths f . Left and right optical
centres are at Ol = −b and Or = b, resp. Point P undergoes an arbitrary
displacement V from instance 0 to 1.

orientations in left and right image spacetime is derived as a 3D scene point
P suffers an arbitrary (infinitesimal) 3D displacement, V, relative to the
imaging system. Here, displacement can come about through movement of
the point, the imaging system or a combination thereof. Further, since the
analysis is point-based, no scene rigidity is assumed.

While the relationship between left- and right-based flow has been in-
vestigated previously (e.g., [4]), the present derivation sets it in the light of
left/right spatiotemporal orientation differences with application to disparity
estimation; whereas, previous work assumed disparity estimation and was fo-
cused on subsequent 3D inferences. Further, the left/right flow relationships
are generalized to capture the relationship between arbitrary orientations in
left and right spacetimes. These results lead directly to the desired relation-
ship between binocular stequels in correspondence.

In the following, bold and regular fonts denote vectors and scalars (resp.),
uppercase denotes points relative to the world, lowercase denotes points
relative to an image, superscripts l and r denote left and right cameras
(resp.), subscripts x, y, z, t specify coordinate components, and vectors in
image spacetime taken from time t = 0 to t = 1 will be distinguished further

with tilde. As examples: Pl
t =

[
P l

x P l
y P l

z

]>
is the left camera represen-

tation of P at time t; pl
t =

[
pl

x pl
y

]>
is the left image coordinate of Pl

t;

w̃ =
[

wx wy 1
]>

is a vector in image spacetime xyt from t = 0 to t = 1.
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2.2.1 Left-Right Flow Relationship

Consider how a 3D point, P, is observed by the cameras as a function of
time, t, while it is displaced along 3D direction, V. The geometry of the
situation is shown in Fig. 2.3. Cameras share a common intrinsic matrix

K =

[
f 0 0
0 f 0
0 0 1

]
,

where other components of the matrix are accounted for by calibration and
neglected. At time t, the projections of P to the left and right views are
given by

Pl
t = K ((Pt=0 −B) + tV) = Pl

t=0 + tKV (2.4)

Pr
t = K ((Pt=0 + B) + tV) = Pr

t=0 + tKV.

Note that both moving and stationary points are encompassed in this for-
mulation, as V is arbitrary. The corresponding image coordinates are found
in the usual way, e.g., for the left view

pl =

[
pl

x

pl
y

]
=

[
P l

x/P
l
z

P l
y/P

l
z

]
=

1

P l
z

[
P l

x

P l
y

]
= Z−1Pl

2×1, (2.5)

where P l
z = Z is the distance along the Z-axis to the point of regard, P,

and P2×1 is the upper 2 × 1 component of P. Analogously for right view,
pr = Z−1Pr

2×1.
In the image spacetime coordinate system, xyt, without loss of generality,

consider flows ṽl and ṽr in the left and right views from temporal instance
0 to 1:

ṽl =

[
pl

t=1 − pl
t=0

vl
t

]
=

[
pl

t=1 − pl
t=0

1

]
, (2.6)

where vl
t = 1 by definition, as time has been taken from t = 0 to t = 1.

Analogously for the right view

ṽr =

[
pr

t=1 − pr
t=0

1

]
. (2.7)

To relate the left and right spatiotemporal orientations, it is useful to
cast the left-camera flow vectors (2.6) and their right camera counterparts in
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terms of temporally varying position (2.4) and (2.5). Left camera-based flow
is given by (2.6) and substitution from (2.5) yields

ṽl
2×1 = Z−1

t=1P
l
2×1,t=1 − Z−1

t=0P
l
2×1,t=0.

Further substitution for Pl according to (2.4) and letting all subscripts per-
tain to time (i.e, 0 and 1 denote t = 0 and t = 1, resp.) yields

ṽl
2×1 =

Z0 − Z1

Z0Z1

KP0 +
1

Z1

KV − Z0 − Z1

Z0Z1

KB, (2.8)

where K = K2×3 is the top two rows of K. Similarly, for the right camera-
based flow

ṽr
2×1 =

Z0 − Z1

Z0Z1

KP0 +
1

Z1

KV +
Z0 − Z1

Z0Z1

KB. (2.9)

Finally, the relationship between the left (2.8) and right (2.9) flows is revealed
by taking their difference

ṽr − ṽl =

[
2 (Z0 − Z1) KB/ (Z0Z1)

0

]
=

[
∆
0
0

]
, (2.10)

where ∆ = 2Bf (Z0 − Z1) / (Z0Z1) captures the instantaneous change in
disparity.

2.2.2 General Left/Right Orientation Relationship

The relationship (2.10) was derived only for dominant motion orientation;
whereas, stequels capture information from all directions w̃ in (x, y, t), which
now are considered.

Consider directions w̃r and w̃l in the left and right views, resp., that are
in binocular correspondence, but otherwise arbitrary in (x, y, t). Discounting
the effects of right and left flows, ṽr and ṽl, yields vectors

δr = w̃r − ṽr =
[

δr
x δr

y 0
]>

, (2.11)

δl = w̃l − ṽl =
[

δl
x δl

y 0
]>

(2.12)

that capture the purely spatial orientation of corresponding elements (see
Fig. 2.1b,c). For the special case of fronto-parallel surfaces δr = δl, i.e. dis-
regarding motion, oriented texture appears the same across binocular views.
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For the more general case where surfaces are slanted with respect to the imag-
ing system, the imaged orientation of corresponding elements changes across
views, even in the absence of motion. For present matters, this change can
be modeled by a linear transformation δr = Aδl. Considering that the third
element of the δ vectors is always zero by construction, and δr

y = δl
y due to

conventional stereo epipolar constraints for rectified setups, this relationship
takes the form

δr = Aδl, where A =

[
a1 a2 0
0 1 0
0 0 1

]
. (2.13)

Substituting (2.11), (2.12) into (2.13) and rearranging yields,

w̃r = Aw̃l − Aṽl + ṽr. (2.14)

Further substitution of (2.10) results in

w̃r = Aw̃l +
(
−Aṽl + ṽl +

[
∆ 0 0

]>)
(2.15)

=

[
a1 a2 0
0 1 0
0 0 1

]
w̃l +

[
1− a1 −a2 ∆

0 0 0
0 0 0

]
ṽl

=

[
a1 a2

(
(1− a1)ṽl

x − a2ṽ
l
y + ∆

)
0 1 0
0 0 1

]
w̃l

Finally, letting h1 = a1− 1, h2 = a2 and h3 =
(
(1− a1)ṽ

l
x − a2ṽ

l
y + ∆

)
yields

the desired transformation between arbitrary corresponding vectors w̃l and
w̃r

w̃r = Hw̃l, where H =

[
1 + h1 h2 h3

0 1 0
0 0 1

]
(2.16)

It is interesting to outline a special case associated with (2.16). The situa-
tion of h1 = h2 = 0 means that δr = δl in (2.13), which essentially implies the
fronto-parallel assumption, that is still widely used in contemporary stereo
matching. This case is quite important from a practical point of view, be-
cause it yields reasonable results and is faster as well as more numerically
stable in estimation owing to its simpler form.

With (2.16) in place, it is possible to relate corresponding stequels. By
design, (2.2), stequel Q reveals the amount of intensity variation along all
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directions in spacetime, and the response φ to unit direction ŵ = w/
√

wTw
is

φ = ŵ>Qŵ, (2.17)

see, e.g., [1]. Assuming that spatiotemporal correspondences vary in orien-
tation pattern, but not in the intensity per se1, the responses, φl, φr, of cor-
responding stequels, Ql, Qr, must be the same for related directions, ŵl, ŵr,
i.e.

ŵl>Qlŵl = ŵr>Qrŵr.

Expanding the normalizations of ŵl and ŵr and substituting from (2.16)
produces

w̃l>Qlw̃l

w̃l>w̃l
=

w̃l>H>QrHw̃l

w̃l>H>Hw̃l
,

while noticing that w̃l = ‖w̃l‖ŵl yields

ŵl>Qlŵl

ŵl>ŵl
=

ŵl>H>QrHŵl

ŵl>H>Hŵl
. (2.18)

Since (2.18) holds for arbitrary orientations ŵl when Ql and Qr are stequels
in correspondence, it provides the sought for general constraint on binocular
stequels. It will be referred to as the stequel correspondence constraint and
used to derive an approach to stereo matching.

2.3 Stequel match cost

To determine whether two stequels Ql(x, y, t) and Qr(x+d, y, t) are in corre-
spondence with disparity d, a match cost must be defined. In this section, this
cost is derived based on the stequel correspondence constraint, (2.18), and is

taken as the error residual that results from solving for h =
[

h1 h2 h3

]>
given two candidate stequels.

For a given direction vector ŵl
m at some particular orientation m and

matching stequels, Ql and Qr, the stequel correspondence constraint, (2.18),
yields a quadratic equation in the unknowns of h of the form

fm(h) =
(
ŵl>

m Qlŵl
m

) (
ŵl>

m H>Hŵl
m

)
(2.19)

− (
ŵl>

m ŵl
m

) (
ŵl>

m H>QrHŵl
m

)
= 0.

1This is a weak form of brightness constancy as any additive and multiplicative intensity
offsets between correspondences are compensated for by the bandpass and normalized
filters used in stequel construction (2.2).
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Taking a set of M directions, reasonably selected along the same spanning
set of directions used to construct Ql, yields a set of M equations in the three
unknowns of h. Thus, h can be estimated by minimizing a sum of squared
errors

E4 =
M∑

m=1

fm(h)2, (2.20)

which is quartic in the entries of h. While such a solution could be sought
through analytic or numerical means, it has potential to be expensive to
compute and noise sensitive owing to its order. Therefore, it is useful to
linearize each error Eqn. (2.19) through expansion as a Taylor series in h
and retention of terms only through first-order to get

gm(h) = fm(0) +∇f>m(0)h, (2.21)

with 0 being the M × 1 zero vector. Using (2.21), the final function to be
minimized with respect to h becomes

E2 =
M∑

m=1

(
fm(0) +∇f>m(0)h

)2
, (2.22)

which is simply quadratic in the elements of h, and thereby can be solved
for via standard linear least-squares. More specifically, letting

G = [∇f>1 (0),∇f>2 (0), . . . ,∇f>M(0)]>

and
c = −[f1(0), f2(0), . . . , fM(0)]>

yields

h =
(
G>G

)−1
G>c; (2.23)

E2 = ‖Gh− c‖2
2 = c>c− (

G>c
)> (

G>G
)−1

G>c.

For two stequels under consideration for stereo correspondence this residual,
E2, will serve as the local match cost.

Significantly, preliminary experiments showed that match cost based on
the linearized error, (2.22), yielded slightly superior results to considering the
original nonlinear error, (2.20), which lends further support to pursuing the
advocated (linearized) approach. This could be partially explained by the
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fact that interest is in a discriminative error measure that reliably penalizes
bad matches, and not in the precise error value per se. Furthermore, lin-
earized solution, along with being straightforward to compute, is also more
robust in practice, as solutions to the higher-order equations are inherently
more sensitive to noise. Here, noise arises via standard image corruptions in
the input left and right image datastreams. Since the stequels are derived
from the left and right image streams, they also are corrupted; thereby, the
match cost computation that operates over the stequels will be subject to
noise. Finally, since matching must be done for every point, it must be suf-
ficiently simple to be practical - solution (2.23) requires the inverse of a 3x3
matrix, but it can be coded in closed form; indeed, the whole matching proce-
dure is comparable to normalized cross correlation in terms of computational
complexity and runtime.

2.3.1 Subpixel matching

We have previously described the matching constraint between left and right
stequels separated by a particular integer disparity value. To get subpixel
disparity we adapt the standard Lucas-Kanade technique [33, 34] to stequel-
based stereo. As before, the objective is to minimize the mean-squared error
ρ over subpixel displacement, −→τ , in the form

ρ(−→τ ) =
∑
m,i

[
ŵ>

mQl
iŵmŵ>

mH>Hŵm − ŵ>
mH>Qr

i [W(−→τ )] Hŵm

]2
(2.24)

where m is the index over the spanning set of 3D directions, i is the index
over spatial aggregation (if such exists), which we suppress in the following
derivations for convenience, and W(τ) is the warping function.

We approximate Qr [W(−→τ )] via the first order Taylor expansion as

Q [W(τ)] = Q(0) +∇Q−→τ . (2.25)

Since the stereo frames were captured at the same time and rectified imagery

is assumed, we can safely use the restriction −→τ =
[

τ 0 0
]>

, which results
in

∇Q−→τ = τ
∂Q

∂τ
= τ




∂q11

∂x
∂q12

∂x
∂q13

∂x
∂q12

∂x
∂q22

∂x
∂q23

∂x
∂q13

∂x
∂q23

∂x
∂q33

∂x


 = τQx (2.26)
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Thus, our objective is to find τ0 such that

τ0 = arg min
τ

∑ [
ŵ>Qlŵŵ>H>Hŵ − ŵ>H>Qr [W(τ)] Hŵ

]2

= arg min
τ

∑ [
ŵ>Qlŵŵ>H>Hŵ − ŵ>H> (Qr + τQx

r) Hŵ
]2

(2.27)

Since (2.27) is quadratic in terms of τ , the minimum is readily calculated
analytically:

τ0 =

∑ [(
ŵ>Qlŵŵ>H>Hŵ − ŵ>H>QrHŵ

)
ŵ>H>Qx

rHŵ
]

∑
(ŵ>H>Qx

rHŵ)2 (2.28)

ρ(τ0) =
∑(

ŵ>Qlŵŵ>H>Hŵ − ŵ>H>QrHŵ
)2 − (2.29)

(∑ [(
ŵ>Qlŵŵ>H>Hŵ − ŵ>H>QrHŵ

)
ŵ>H>Qx

rHŵ
])2

∑
(ŵ>H>Qx

rHŵ)2

The expression (2.29) can be used as the (subpixel) matching error, but

first we must find the best H of the form




1 + h1 h2 h3

0 1 0
0 0 1


 (as in (2.16))

that yields a minimum. So, to proceed, we find the h =
[

h1 h2 h3

]>
that minimizes (2.29), which happens when the first derivatives with respect
to hj, j ∈ {1, 2, 3} equal to zero, i.e. the gradient with respect to h must be
the zero vector. In particular,

ξj =
∂ρ(τ0)

∂hj

=
∂

∑ (
ŵ>Qlŵŵ>H>Hŵ − ŵ>H>QrHŵ

)2

∂hj

(2.30)

−
∂

∑
[(ŵ>Qlŵŵ>H>Hŵ−ŵ>H>QrHŵ)ŵ>H>Qx

rHŵ]
∂hj

∑(
ŵ>H>Qx

rHŵ
)2

[∑
(ŵ>H>Qx

rHŵ)2
]2

+

∂
∑

(ŵ>H>Qx
rHŵ)

2

∂hj

∑ [(
ŵ>Qlŵŵ>H>Hŵ − ŵ>H>QrHŵ

)
ŵ>H>Qx

rHŵ
]

[∑
(ŵ>H>Qx

rHŵ)2
]2

= 0

Since ξj = 0 is a polynomial of high order, we solve the first-order ap-
proximation to this system of equations, i.e.

ξ(h) = ξ(0) +∇ξ(0)>h (2.31)
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Once h0 that satisfies ξ(h) = 0 has been found by solving the correspond-
ing linear equations (similar to (2.23)), this value is used directly in (2.28)
and (2.29) to get the subpixel disparity and corresponding error measure,
respectively. This procedure is subject to repetition several times for better
convergence to the final and more precise result.
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Chapter 3

Empirical Evaluation

3.1 Algorithmic instantiations

A software implementation has been developed that inputs a binocular video,
computes stequels Ql(x, y, t) and Qr(x, y, t) for both sequences according to
formula (2.2) and calculates the local match cost, (2.23), for any given dis-
parity d, i.e., for stequels related as Ql(x, y, t) and Qr(x+d, y, t). To show the
applicability of this approach to disparity estimation, the local match cost,
(2.23), has been embedded in a coarse-to-fine local block-matching algorithm
with shiftable windows [35] working over a Gaussian pyramid and also in a
global graph-cuts with occlusions matcher [36] operating at the finest scale
only; these matchers will be denoted ST-local and ST-global. Pixel-based
disparity estimates are brought to subpixel precision via a Lucas-Kanade
type refinement for stequels, as explained in Sec. 2.3.1.

To compare with non-stequel matching, versions of the local and global
matchers that work simply on single left/right frame pixel comparisons are
considered; these matchers will be denoted noST-local and noST-global,
resp. Here, the normalized cross-correlation was used as the data cost term
for local and global matching. Finally, to compare to an alternative method
for enforcing temporal coherence, optical flow is estimated and used to define
a spatiotemporal direction for match cost aggregation that operates over an
equivalent number of frames as does the oriented filtering used in stequel con-
struction (2.1). Here, optical flow is recovered from the stequel representation
itself (see Appendix A and [1] for discussion) to make the comparison fair.
The optical flow-based temporal aggregation is used only in conjunction with

18



Lab 1 Left frame 12 Lab 1 Right frame 12 GT disparity

noST-local disparity flowAg-local disparity ST-local disparity

noST-local error flowAg-local error ST-local error

noST-global disparity ST-global disparity

noST-global error ST-global error

Figure 3.1: Lab1 Tests. Example left and right frame 12 (out of 28 frames)
with ground truth disparity (top row). Labeled boxes (beneath) show re-
covered disparity maps for compared algorithms and disparity-ground truth
absolute differences. A few regions of particular interest in comparing results
are highlighted with red rectangles, best seen in color. See accompanying
videos at http://www.cse.yorku.ca/vision/research/ststereo.shtml
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Lab 2 Left frame 10 Lab 2 Right frame 10 GT disparity

noST-local disparity flowAg-local disparity ST-local disparity

noST-local error flowAg-local error ST-local error

noST-global disparity ST-global disparity

noST-global error ST-global error

Figure 3.2: Lab2 Tests. Example left and right frame 10 (out of 40 frames)
with ground truth disparity (top row). Labeled boxes (beneath) show re-
covered disparity maps for compared algorithms and disparity-ground truth
absolute differences. A few regions of particular interest in comparing results
are highlighted with red rectangles, best seen in color. See accompanying
videos at http://www.cse.yorku.ca/vision/research/ststereo.shtml
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Figure 3.3: Error statistics for the Lab1 and Lab2 Tests. An error is taken
as greater than 1 pixel discrepancy between estimated and groundtruth dis-
parity. Bar plots show average error across entire sequences: White bars are
for points within 5 pixels of a surface discontinuity; black bars show overall
error. Error by frame plots show percentage of points in error overall for
each frame separately

.
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Left frame 29 noST-local frame 29 ST-local frame 29

Right frame 29 noST-global frame 29 ST-global frame 29

Left frame 53 noST-local frame 53 ST-local frame 53

Right frame 53 noST-global frame 53 ST-global frame 53

Figure 3.4: Office Tests. Right column shows left and right im-
ages for frames 29 and 53. Remaining boxes are labeled with recov-
ered disparity by algorithm and frame. See accompanying videos at
http://www.cse.yorku.ca/vision/research/ststereo.shtml

the local matcher, as incorporation into the global matcher by constructing
a spatiotemporal MRF graph [37] is beyond the scope of this paper. The
local flow-based aggregation matcher will be denoted flowAg-local.

In general, the comparison of local methods is important, as their results
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Left frame 11 Left frame 28 Left frame 53

flowAg-local frame 11 flowAg-local frame 28 flowAg-local frame 53

ST-local frame 11 ST-local frame 28 ST-local frame 53

Figure 3.5: Rover Tests. Top row shows left view at frames
88, 105 and 130. Recovered disparity maps at corresponding times
are shown below for two algorithms. See accompanying videos at
http://www.cse.yorku.ca/vision/research/ststereo.shtml

depend the most on the quality of matching primitives and, thus, would
allow us to access the performance of stequel matching in the absence of other
cues. The comparison of global methods is crucial, as they provide inherently
superior results and stequels must be able to show additional benefits in order
to be useful in practice.

3.2 Lab sequences

Two laboratory data sets are considered. The first is a sequence (Lab1)
captured with BumbleBee stereo camera [38] with (framewise) ground truth
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disparity and discontinuity maps recovered according to a well-known struc-
tured light approach [39], see Fig. 3.1. This scene includes planes slanted
in depth with texture oriented along epipolar lines (upper-central part of
the scene), various bar-plane arrangement with identical repetitive textures
(lower-central part of the scene) and complicated objects with non-trivial
3D boundaries and non-Lambertian materials (e.g., the teddy bear and gar-
goyle). For this sequence the stereo camera makes a complicated motion that
translates along horizontal and depth axes, while part of the scene moves up
and down; both camera and scene are on motorized stages.

Visual inspection of the image results (Fig. 3.1) shows that noST-local
performs relatively poorly. Planar regions with epipolar aligned texture are
generally difficult. Simple temporal aggregation provided by flowAg-local
is seen to improve on these difficulties; however, performance degrades near
3D boundaries due to unreliable recovery of flow estimates in such areas.
ST-local does the best of the three local matchers as its ability to include
temporal information allows it to resolve match ambiguities without explicit
flow recovery. As particular improvements of ST-local over noST-local
and flowAg-local, consider the lower right and left regions marked with red
rectangles in Fig. 3.1, which highlight the complex outline of the gargoyle
wings and the vertical bar in front of plane both having identical textures
(camouflage). ST-local is quite accurate in these challenging regions, while
the other local methods perform relatively poorly. Objects located at differ-
ent depths in space give rise to different image motions, even if they undergo
the same world motion – and this difference is captured with stequels not
allowing for improper matches.

For the global matchers, it is seen even with noST-global that it is pos-
sible to recover more precisely the complicated 3D boundaries and to achieve
good disparity estimates in low texture regions via propagation from better
defined boundary matches. However, noST-global performs poorly in the
regions with epipolar aligned texture and camouflage, as initially incorrect
estimates are not subsequently corrected. While increasing the smoothness
improves on epipolar-aligned textures, it comes at the expense of camou-
flage resolution and vice versa. In comparison, ST-global is able to recover
disparity reliably in these regions, as once again the stequel representation
supports proper resolution of situations that are ambiguous from the purely
spatial information. Another apparent advantage of the ST-global is more
temporally consistent results – occasional mismatches in noST-global can
be significantly amplified by propagating into nearby regions.
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A second lab sequence, Lab2, is constructed in the same controlled en-
vironment as Lab1, but acquired with significant depth motion and out-of-
plane rotation. This particular motion configuration is the most difficult for
spatiotemporal stereo, as it results in significantly different left and right spa-
tiotemporal volumes due to slanted surfaces and depth motion. Furthermore,
large image motions are present in the individual left and right sequences.
Figure 3.2 presents sample frame results for all five algorithmic instantiations
considered above. Here, the conclusions reached from the analysis of Lab1 are
reinforced. With respect to the local methods, ST-local provides the most
benefit both in weakly textured regions and near 3D boundaries. The per-
formance of flowAg-local is hampered by large image motions, which are
problematic to recover explicitly in this case; whereas, direct stequel-based
matching is still able to capitalize on temporal information without resolving
flow and thereby operates well in the presence of nontrivial motions. With
respect to the global methods, the stequel-based matching ST-global signif-
icantly outperforms its pixel-based counterpart noST-global, especially for
weakly-textured highly slanted foreground surfaces.

Error plots for both Lab1 and Lab2 quantify the improvements of stequel-
based matching in comparison to rivals noST and flowAg (Fig. 3.3). Av-
erage errors across the sequences show the benefit of stequels near disconti-
nuities and overall for both local and global matchers. Plots of error/frame
reinforce the average improvements, but also document improved temporal
coherence, as the stequel-based plots vary relatively little across frames, espe-
cially in comparison to purely spatial matching provided by noST. Incorpo-
ration of the temporal dimension also benefits flowAg, as its frame-by-frame
statistics are relatively stable (albeit overall inferior to stequels); however,
the more naturalistic imagery of the following examples further emphasizes
the superior temporal coherence offered by stequels, even in comparison to
flowAg.

3.2.1 Stequel vs. Grammian

In this section, two versions of ST-local have been compared on the Lab1
and Lab2 test sets. One version made use of stequel matching primitives, as
described in Sec. 2.1, and the other made use of Grammian matching primi-
tives (Sec. 2.1.3, as an alternative (denoted here as Gram). For the latter,
spatiotemporal gradients were computed using optimized gradient filters [40].

Figure 3.6 shows quantitative results of 3Dfilt and Gram on Lab1 and
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Figure 3.6: Error statistics for the Lab1 and Lab2. Tests for the instantiations
of ST-local operating on stequels constructed from spatiotemporal energies
(3Dfilt) and Gram matrix constructed from the first-order spatiotemporal
derivatives (Gram). An error is taken as greater than 1 pixel discrepancy
between estimated and groundtruth disparity. Bar plots show average error
across entire sequences: White bars are for points within 5 pixels of a sur-
face discontinuity; black bars show overall error. Error by frame plots show
percentage of points in error overall for each frame separately.
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Lab2. The results document the superior performance realized by the match-
ing primitives based on Gaussian derivative energy filters, 3Dfilt, in com-
parison to matching primitives based on simpler spatiotemporal derivatives,
Gram. Specifically, stequels exhibit more stable behaviour and yield consis-
tently lower errors. The differences are particularly pronounced in the results
for Lab2, where the image motions are relatively large and Gram yields oc-
casional gross errors. These differences in performance may be accounted for
by the finer orientational tuning that is offered by the energy filters, as well
as their phase invariant responses.

3.3 Office sequence

The third data set, Office, depicts a more naturalistic (albeit without ground
truth) cluttered indoor office scene where the camera pans while a person en-
ters and subsequently moves about in a nonrigid fashion, see Fig. 3.4. Here,
the superior ability of stequel matching to produce temporally coherent dis-
parity maps is illustrated, as both ST-local and ST-global best their non-
stequel-based counterparts. While temporal coherence is appreciated most
by viewing the corresponding videos, observations can be made with respect
to Fig. 3.4. For example, notice the more consistent disparity estimates re-
covered for the low texture walls and the chair via stequel matching, the lack
of sudden, high variation, seen both with noST-local and noST-global,
and the more accurate outlines of the teddy bear, the head and the hat
suspended above.

3.4 Rover sequence

The fourth data set, Rover, is an outdoor sequence acquired from a robot
rover traversing rugged terrain, including a receding foreground plane, a cen-
tral diagonal rock outcropping, left side cliff, various boulders and bushes.

For this case, prior to processing with the stereo algorithms, the sequence
was stabilized in software to compensate for the extremely jerky camera
motion: Stabilization operated by warping neighboring frames to reference
frames throughout the video according to affine transformations recovered
via a parametric motion estimator [41]. For presentation, however, results
are shown with respect to the original (unstabilized) video.
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Here the comparison focuses on the improvements to temporal coherence
offered by ST-local over the rival method for consideration of temporal in-
formation, flowAg-local. As results of depicted frames show, flow-based
aggregation, while providing mostly temporally coherent estimates is infe-
rior at recovery of 3D boundaries (boulders’ outlines) and still susceptible
to occasional gross errors (e.g., on the ground plane) due to errors in the
recovered flow. In comparison, stequel-based matching, ST-local, does not
exhibit such problems, as it uses spatiotemporal information in a more direct
and complete way.
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Chapter 4

Discussion

This paper described a novel approach to recovering temporally coherent
disparity estimates using stequels as a spatiotemporal matching primitive.
Temporal coherence arises naturally, as the primitives and the match cost
inherently involve the temporal dimension. Further, matches that are am-
biguous when considering only spatial pattern are resolved through the inclu-
sion of temporal information. The stequel matching machinery is simple and
involves linear computations only, (2.23). Thorough experimental evaluation
on various datasets shows the benefit of stequel matching as incorporated
both in local and global algorithms. Stereo sequences with ground truth
have been introduced and are available online for comparison with other
algorithms.

A particularly notable benefit of stequel matching is the ability to incor-
porate temporal information without image motion recovery. Optical flow
estimation is challenging near 3D boundaries, weakly-textured regions and
susceptible to an aperture problem – importantly, this paper demonstrated
that stequels are powerful in exactly these situations and provide truly tem-
porally coherent estimates with fewer isolated gross errors. Apparently, ste-
quels allow stereo matching to capitalize on available spatiotemporal struc-
ture, even when optical flow recovery is difficult. By necessarily committing
to local flow vectors, especially when data is insufficient for such interpreta-
tion, optical flow yields unreliable temporal aggregation; in contrast, stequels
more completely characterize whatever spatiotemporal structure is present
and make it available for appropriate matching. Further, note that it is non-
trivial to model continuity in time with, e.g., an MRF prior model as, strictly
speaking, temporal graph links have to be defined by flow (as in [20]). Ste-
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quels, on the other hand, are directly applicably to standard 2D MRF graphs
and their successful performance has been documented in this paper.

In conclusion, a computationally tractable and simple solution to spa-
tiotemporal stereo has been presented, which proved to be very reliable, ver-
satile and robust in practice. Significantly, this is the first attempt at stequel-
based matching and various extension can be considered, e.g., exploiting the
spatiotemporal profile for explicit non-Lambertian and multi-layer matching.
Also, extensions to 3D motion recovery can to be considered using stequels
in correspondence, which is anticipated to be beneficial, as stequels allow for
simultaneous analysis of the temporal pattern in both views in addition to
3D structure estimation.
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Appendix A

Flow recovery from stequel

The recovery of optical flow from stequels is outlined briefly in this appendix.
Details can be found in [1].

Let Q be a stequel at x = (x, y, t). Then, the dominant spatiotemporal
orientation at x is specified by the eigenvector, ês, corresponding to the
smallest eigenvalue of Q, provided the region contains adequate structure.
To interpret ês, in terms of optical flow, v, the eigenvector must be projected
onto the image plane: Let ξ̂x and ξ̂y be unit vectors defining the image plane,
while t̂ is the unit vector along the temporal direction. Optical flow is then
recovered as

v =
(
exξ̂x + ey ξ̂y

)
/et,

where ex, ey and et are the projections of ês on ξ̂x, ξ̂y and t̂, respectively, i.e.,

ex = ês · ξ̂x

ey = ês · ξ̂y

et = ês · t̂.
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