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Abstract

Consider the problem of visually finding an object in a mostly unknown space with

a mobile robot. It is clear that all possible views and images cannot be examined

in a practical system. Visual attention is a complex phenomenon; we view it as

a mechanism that optimizes the search processes inherent in vision. Here, we de-

scribe a particular example of a practical robotic vision system that employs some

of these attentive processes. We cast this as an optimization problem, i.e., optimiz-

ing the probability of finding the target given a fixed cost limit in terms of total

number of robotic actions required to find the visual target. Due to the inherent

intractability of this problem, we present an approximate solution and investigate

its performance and properties. We conclude that our approach, named the SYT

algorithm, is sufficient to solve this problem and has additional desirable empirical

characteristics.
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1 Introduction

Attention is one of those visual phenomena that has been very easy to ig-

nore in computer vision and robotics but seems to now be emerging as an

important issue. Visual attention is a phenomenon that has been of interest

to many disciplines for over a hundred years, with an enormous literature

and thousands upon thousands of experiments investigating the vast range of

its manifestations. Theoretical and computational models have been proposed

since the 1950s in an attempt to explain how this phenomenon comes about

and how it contributes to our perception of the real world (for a review see

[1]). The first formal proof for the necessity of attentive processes appeared

in [2] (see also [3, 4, 5, 6]). There, the problem of visual matching - the task

of determining whether or not an instance of a particular model exists in a

given image without the use of any knowledge whatsoever - was shown to be

NP-Complete. It has exponential time complexity, in the size of the image,

and further, the result is independent of implementation. In addition to other

mechanisms, attention contributes to changing this problem into one with

linear time complexity in both worst case and median case analyses [2, 7].

The breadth and variety of attentive phenomena as they relate to computer

vision was described in [5]. There, a spectrum of problems requiring attention

was laid out including: selection of objects, events or tasks relevant for a do-

main; selection of world model; selection of visual field; selection of detailed

sub-regions for analysis; selection of spatial and feature dimensions of inter-

est; and the selection of operating parameters for low level operations. Most

computer vision research makes assumptions that reduce the combinatorial

problems inherent in the above tasks, or better yet, eliminate the need for

attention, using strategies such as:
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• fixed camera systems negate the need for selection of visual field or selection

of best viewpoints ;

• pre-segmentation eliminates the need to select a region of interest;

• ‘clean’ backgrounds ameliorate the segmentation problem;

• assumptions about relevant features and their values reduce their search

ranges;

• knowledge of task domain negates the need to search a stored set of all

domains;

• knowledge of objects appearing in scenes eliminates search of a stored set

of objects;

• knowledge of which events are of interest eliminates search of a stored set

of events.

In this way, the extent of the search space is seriously reduced before the visual

processing takes place, and often even before the algorithms for solution are

designed. However, it is clear that in everyday vision, and certainly in order

to understand vision, these assumptions cannot be made. Real vision require-

ments, for humans as well as robots, are not so cooperative and attentive

processes need to play a central role in all visual processes.

The example robotic system described in this paper looks at the viewpoint and

selection of visual field issues in the context of search for a given, known object

in an unknown 3D world. As such, it is an instance of the active vision approach

[8]. Bajcsy argued that rather than simply analyzing a set of prerecorded

images, the observer should actively control its image acquisition process so

that the acquired images are relevant and useful for the task at hand. In

the case of region segmentation problems, the camera could be moved to a

viewpoint in which, for example, the projection of an object in the image

3



plane leads to a higher contrast region, or an object’s edge projects to a

stronger gradient in the image. If a particular view of an object (or one of its

parts) is ambiguous, the camera can be moved to disambiguate the object.

For example, Wilkes et al. [9] proposed a system that drives a camera to a

standard viewpoint with respect to an unknown object. From such a viewpoint,

the object recognition task is reduced to a two-dimensional pattern recognition

problem. The authors choose to define a standard view as a position at which

the lengths of two non-parallel object line segments are maximized, and the

longer line has a specified length in the image. The standard view is achieved

by moving the camera on the end of a robot arm. From a standard viewing

position, the extracted line segments are used to index into the database to

find a matching, stored object. In a different strategy for the same problem,

Dickinson et al. [10] combine an attention mechanism and a viewpoint control

strategy to perform active object recognition. Their representation scheme is

called the aspect prediction graph. Given an ambiguous view of an object this

representation can inform the algorithm if there is a more discriminating view

of the object. If there is, the representation will indicate, in which direction

the camera should be moved to capture that view. Finally, it specifies what

visual events (appearance or disappearance of object features) one should

encounter while moving the camera to the new viewpoint. In both cases, the

image interpretation process is tightly coupled to the viewpoint selection and

data acquisition process, as Bajcsy suggested. The success of these works lies

in the fact that no assumptions about viewpoint were needed and attentive

processes - selection processes - provided the reduction in the combinatorics

of search that would cripple a brute-force, blind, search.

This paper focuses on the problem of visual search for an object in a 3D envi-

ronment using a mobile robot, providing a description of the solution strategy
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and an example of the robot’s performance and an empirical performance

evaluation.

2 A robot that searches: previous work

Suppose one wishes a robot to search for and locate a particular object in a

3D world. A direct search certainly suffices for the solution. Assuming that

the target may lie with equal probability at any location, the viewpoint selec-

tion problem is resolved by moving a camera to take images of the previously

not viewed portions of the full 3D space. This kind of exhaustive, brute force

approach can suffice for a solution; however, it is both computationally and

mechanically prohibitive. As an alternative, Garvey [11] proposed the idea of

indirect search for a target: first a sensor is directed to search for an inter-

mediate object that commonly participates in a spatial relationship with the

target. For example, if one wants to find a telephone in an image of an office,

it is easier to first locate flat surfaces, e.g. table tops, on which the phone

is most likely to rest. Then the sensor is directed to examine the restricted

region specified by the relationship, i.e. the search for the phone is limited to

the table tops. Indirect searches reduce the computationally expensive prob-

lem to a two-stage problem. In the first stage, one locates an intermediate

object that typically participates in some spatial relationship with the target

and which can be found with a lower resolution, i.e. with a wider field of view.

In the second stage, the high-resolution search for the target is performed in

the much smaller volume specified by the spatial relationship.

Wixson et al. [12] have elaborated the indirect search idea and have shown

efficiency gains both theoretically and empirically, Other demonstrations of the
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idea have also shown good performance (for example, [13]). The problem with

indirect search is that the spatial relation between the target and intermediate

object may not always exist. In addition, the detection of the intermediate

object may not be easier than the detection of the target. In fact, search for

an arbitrary object in a 3D space is provably NP-hard [14].

Searching for an object in a cluttered environment is often complicated by

the fact that portions of the area are hidden from view. A different viewpoint

is necessary to observe the target. This requirement is also characteristic for

the task of scene reconstruction where multiple viewpoints must be selected

to acquire a model or a map of the environment. As a consequence, viewpoint

selection for search tasks seems similar to viewpoint selection for data acqui-

sition of an unknown scene: new viewpoints are determined by yet unseen

areas, e.g. [15], [16]. Kim et al. [17] have studied the problem of determining

camera viewpoints for successive views looking for distinguishing features of

an object. The distance of the camera to the object is determined by the size

of the object and the size of the feature. Within this distance, the shape of

the feature and presence of occluding objects determine the direction. An as-

pect graph with nodes assigned values representing the goodness of the view

is suggested to guide the motion of the camera on the sphere. Cowan et al.

[18] explicitly specify configurations of the camera’s state parameters in order

to perform a certain task. In these methods, the effectiveness of the system

can largely be determined by the locations, types and configurations of the

sensor used.

Wixson [19] argues that the two tasks of visual search and scene modeling

are not that similar. The viewpoint selection problem for search tasks involves

not only a choice of position and direction of the sensor, but also a solid angle
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relative to the viewpoint. The author suggests that the difficult task of scene

modeling that usually accompanies visual search is not necessary since the

only requirement is that it brings otherwise hidden areas into view. Wixson

proposes a model-free algorithm that first identifies an occluding edge and

then rotates the sensor to a position where this edge becomes non-occluding.

Yet it is unclear what is the criterion to abort the search and what is the

strategy to decide on the next sensor position.

In recent literature, the majority of the search robots are intended for search

and rescue applications. For the most part, they lack autonomy and are re-

motely controlled by humans. At the present time, most of the rescue teams

only require teleoperated robots; exceptions are applications that claim au-

tonomous robots for map building or exploration of environment [20].

Some researchers redefine the search task as one of exploration. The robot is

given a set of locations that completely cover the environment and its task

is to find the shortest path that visits all of these points [21]. While the

robot moves along the path, it looks for objects. Tovar et al. [22] look for an

optimal path in an unknown environment. Their robot uses lasers to construct

a visibility tree that represents simply-connected planar environments. This

tree is then dynamically updated to specify the optimal path. They try to

avoid traditional problems such as complete map building and localization

by constructing this minimal representation that is based entirely on critical

events, such as crossing lines, in sensor measurements made by the robot.

Sarmiento et al. [23] specifies an optimal search path in such a way that the

expected time to find the object is minimized. Later Sarmiento et al. [24] in-

troduce a sampling scheme that generates the initial set of sensing locations

for the robot. They propose a convex cover algorithm based on this sampling.
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They use the resulting convex covering to generate a graph that captures the

connectivity of the workspace. Then they search this graph to generate tra-

jectories that minimize the expected time to find the object. The environment

structure is known in advance. The probability of finding the target in the

region is proportional to the size of the region. They do not propose any spe-

cific object recognition algorithm rather assume that the robot has one. Only

simulation results are presented.

Lau [25]’s robot searches for multiple targets in a known building environment.

The environment is divided into a set of distinct regions and an adjacency

matrix is used to describe the connections between them. Travel and search

costs of individual regions are specified. The algorithm uses the available target

information: expected number of targets in a given region is set proportional to

its size. This information is updated after each search operation performed by

the robot. The task is to find the sequence of actions that minimizes expected

time to find the target. The search strategy is then derived using dynamic

programming. The problem becomes intractable for more than 14 regions.

Only simulation results are presented.

Bourgault et al. [26] employed a Bayesian approach where the target probabil-

ity density function is used as prior information. The target PDF is updated

using the model of the sensor and expected target motion. The optimal search

trajectory is defined as the one that maximizes the cumulative detection prob-

ability over a limited time period. The key assumptions in their strategy are

that the PDF of the target locations is smooth and the search space is free

from obstacles constraining the searcher’s motion, e.g. for rescue air vehicles.

Most of the above planning algorithms for search robots assume that the envi-

ronment is known in advance. Based on this knowledge they derive the target
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probability distribution: the probability of finding the target in the region is

usually set proportional to the size of the region. The systems described above

concentrate on generating the motion strategy through the environment. None

of them describe recognition or detection methods used during the search pro-

cess within specific regions. For the most part, only simulation results are

presented.

Frintrop’s VOCUS system (Visual Object detection with a CompUtational

attention System, [27]) uses an attentional component to guide search. First,

she finds salient image regions by using image contrasts and uniqueness of

a feature generating a hypothesis for possible locations of the target. Then a

classifier is applied to the regions to verify the hypothesis. The system demon-

strates good detection results in still images. However, no attention is given

to viewpoint control.

What we seek is a functional search robot that can find an arbitrary object in

an unknown 3D environment. To date, this particular problem seems to have

not received much attention as the above survey shows.

3 The object search problem

Ye & Tsotsos define object search as a problem of maximizing the probability

of detecting the target within a given cost constraint [28, 29]. Their formulation

combines the influence of a search agent’s initial knowledge and the influence

of the performance of available recognition algorithms. For a practical search

strategy, the search region is characterized by a probability distribution of the

presence of the target. The control of the sensing parameters depends on the

current state of the search region and the detection abilities of recognition
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algorithms. In order to efficiently determine sensing actions over time, the

huge space of possible actions is reduced to a finite set of actions that must be

considered. The result of each sensing operation is used to update the status

of the search space. In the following subsection, we introduce some of the key

concepts (This material has been presented previously in [29] and the reader

is referred there for further detail).

3.1 Some concepts

A search region Ω is a 3D space to be searched. We assume that boundaries

of Ω are known exactly, but its internal configuration is not. The region Ω is

tessellated into a 3D grid of non-overlapping cubic elements ci, i = 1...n.

An operation f on Ω is an action of the search agent within the specified

region. It consists of taking an image according to the camera configuration

S(τ) and analyzing it to find out whether the target is present. The camera

configuration S(τ) specifies its position (xc, yc, zc), direction of its viewing

axis (p, t) and the width and height of its solid viewing angle (w, h) at time

τ . Actions are represented as f = f(S(τ), a), where a is an algorithm used to

analyze the image.

The cost function t(f) for an operation f gives the time required for its execu-

tion. It includes moving a sensor from one configuration to another, acquiring

an image, running a recognition algorithm and updating the agent’s knowledge

about the environment.

The target distribution is specified by the probability density function p. This

distribution is updated after each operation, therefore, p is a function of both

position and time. p((x, y, z), τ) gives the probability that the target is at
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(x, y, z) at time τ . p(cout, τ) gives the probability that the target is outside

the search region Ω at time τ .

The detection function on Ω is a function b((x, y, z), f) that gives the condi-

tional probability of detecting the target by applying action f given that the

target’s center is at (x, y, z) - i.e., the target is centred at cube ci whose centre

is x, y, z.

If the center of a given cube ci falls outside the current image, b(ci, f) = 0

for any operation f . Similarly, b(cout, f) = 0 for any operation f , because the

target is outside the search region Ω. If it is inside the image, the value of

b(ci, f) is determined by various factors [28].

The influence range Ψf of the action f consists of those parts of Ω that are

“visible” to the search agent with the current camera’s setting S(τ). Using the

notation introduced above, the probability of detecting the target by operation

f = f(S(τ), a) becomes

PΨf
(f) =

∑
ci∈Ψf

p(ci, τf )b(ci, f) (1)

where τf is the time just before f is applied.

Let OΩ be the set of all possible operations that can be applied on region Ω.

Then the effort allocation F is an ordered set of operations over time applied

during the search, F = {f1, ...., fk}, where fi ∈ OΩ.

3.2 Problem statement

Ye & Tsotsos define the problem of object search as follows. Let K be the

total time available for search. Then for any effort allocation F = {f1, ...., fk},
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the probability of detecting the target by this allocation is:

P [F] =
n∑

i=1

p(ci, τf1)b(ci, f1) + [1−
n∑

i=1

p(ci, τf1)b(ci, f1)] ∗ [
n∑

i=1

p(ci, τf2)b(ci, f2)]

+....

+{
k−1∏
j=1

[1−
n∑

i=1

p(ci, τfj)b(ci, fj)]} ∗ [
n∑

i=1

p(ci, τfk)b(ci, fk)]

and the total time for applying this allocation is:

T [F] =
∑
f∈F

t(f) (2)

The task of object search is to find an allocation F ⊂ OΩ which satisfies

T (F) ≤ K and maximizes P[F].

Ye shows that this problem is NP-hard and concludes that a “greedy” algo-

rithm is sufficient to obtain a good approximation to the solution [28].

3.3 The search strategy

Due to the inherent intractability, we take an approximation solution ap-

proach. We decompose the search space as well as the action space into man-

ageable chunks as will be described. It is important to note that other decom-

positions or approximations may also provide a solution to the problem; ours

is a satisficing solution but not a necessary one. The greedy algorithm works

in stages considering one input image at a time. At each stage, considering

the cost and effect of different actions, the next best action is selected and

included into the partial solution developed so far. Ye simplifies the object

search task further by dividing the problem in two subproblems: “where to

look next” and “where to move next”. During the first stage the search agent’s
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position is fixed and its task is to optimally select viewing configurations that

give large probability of detecting the target. During the second stage the

search agent determines the next optimal position.

There are two characteristics of the approach. The first is decomposition of

the huge number of camera’s parameters settings allowed by the hardware into

a limited set of settings that must be considered. The spatial decomposition

greatly reduces the complexity of the “where to look next” task.

The second is the emphasis on guidance using a priori knowledge. The ad-

vantage of this is that when initial knowledge is relatively good, the most

promising actions tend to be selected first. On the other hand, as the quality

of a priori knowledge degrades, so does the performance of the algorithm but

only with respect to amount of time or number of actions required. Section

3.4 describes different kinds of a priori knowledge that can be used.

3.3.1 Representing the world and the actions

In order to represent the surrounding environment of the camera and to ef-

ficiently determine the sensing parameters over time, Ye [28] introduces a

concept called the sensed sphere. A sensed sphere discretizes space around the

camera by dividing it into a series of solid angles. Each solid angle is spec-

ified as follows. Any line emitting from the center of the camera will hit a

solid object in the environment and hence, can be described by its direction

(pan, tilt) and length. Each solid angle is represented by the direction of the

emitting line: its central axis - and length of the emitting line: its radius. A

sensed sphere is a union of these angles. The sensed sphere can be constructed

using any depth sensor.
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The successful detection of the target depends on its appearance in the image.

If the object is so close that it does not fit in the image or so far away that

it appears only as a few pixels, most detection methods will fail. For each

achievable camera zoom setting, the effective range of the algorithm can be

specified that gives distances from which the target can be detected. This

range depends on the size and appearance characteristics of the object. Thus,

the sensed sphere can be divided in layers, each with an inner and outer radius,

with each layer corresponding to an achievable camera zoom setting.

Our robot is equipped with the BumbleBee camera that does not have zoom

capabilities. Therefore, the size of the target as it appears in the image depends

on its distance from the camera. If there are no occluders within a solid angle,

its outer radius is set equal to the largest distance from which the object can

be detected using the available detection algorithm. The inner radius is set to

the closest smallest distance from which the object can be detected.

Since the radius of any solid angle is set by detected occluders, a sensed sphere

not only discretizes the space into viewing directions, but also allows us to

take occluding situations into consideration when choosing the next optimal

viewing direction or robot’s position.

3.3.2 “Where to look next”

A ‘best-first’ strategy is used to examine all discretized camera’s configurations

one by one. However, when the number of settings is large or image analysis

takes too much time, this strategy becomes inefficient. By applying the most

promising settings first, the probability of detecting the target at an early

stage increases and the time and effort spent on the search decreases.
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Here, the knowledge about the potential target locations is encoded as a

target probability distribution p(ci, τ). By combining the target distribution

and detection function, the probability of detecting the target by operation

f = f(p, t, w, h, a) can be calculated by Equation 1. Then, the utility of an

operation f is given by

EΨf
(f) =

∑
ci∈Ψf

p(ci, τf )b(ci, f)

t(f)
(3)

where Ψf is the influence range of operation f and t(f) is the time action f

takes.

The goal is to select an operation with the highest utility value. Since the cost

of each action is approximately the same if the robot is stationary, the next

action is selected in such a way that it maximizes the numerator of Equation

3. This is the utility function that Ye [28] used in his experiments. In this

paper, we explore several additional functions for the selection of the next

action. These are detailed in Section 5.2.1.

After each action, target probabilities are updated using

p(ci, τf+) =
p(ci, τf )(1− b(ci, f))

p(cout, τf ) +
∑n

j=1 p(cj, τf )(1− b(cj, f))
, i = 1, ....., n, out (4)

where τf+ is the time after f is applied and p(cout, τf+) is the probability that

the target is outside the search region Ω at time τf+. In general, if action

f fails, the probability of any cube that is outside the influence range of f

increases and the probability of any cube that is inside the influence range of

f decreases. The next action is selected based on this updated information. In

this way, the search process is guided by the target probability distribution.

The probability of the target being present within the sensed sphere of the cur-
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rent position j is called the “covering probability” and is defined as ProbΨj
=∑

ci∈Ψj

p(ci), where Ψj is the region within the sensed sphere at position j. This

probability decreases every time an operation is applied with a negative result.

When this probability decreases below some threshold Θmove, the robot moves

to a different position where the probability of detecting the target is higher.

3.3.3 “Where to move next”

The best next position must satisfy two requirements: it must be reachable

and have a high probability of detecting the target. The strategy here also is

a ‘best-first’ one.

As we have mentioned before, the search space Ω is tessellated into a 3D grid.

This tessellation divides the horizontal plane of the search region into a 2D

grid. Since the robot moves only horizontally and the height of its camera

does not change in our implementation, only the vertices of the 2D grid are

considered as the possible robot positions. There is no loss of generality here

and the formulation extends to the third dimension (height) in the obvious

manner, if the robot is so equipped.

For each possible position j, an expected sensed sphere Ψj is estimated. If the

configuration of the environment is not known, the sensed sphere is calculated

based on the knowledge obtained so far. ProbΨj
=

∑
ci∈Ψj

p(ci) is the covering

probability of position j. The robot then moves to an accessible position with

the largest ProbΨj
. If such position does not exist or the time constraint is

exceeded, the algorithm fails.
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3.4 A priori search knowledge

Initial probabilities can be set in a number of ways. Among the possibilities,

individually or in combination, are:

• Type 1 No knowledge

• Type 2 Indirect search knowledge

• Type 3 Hints

• Type 4 Saliency knowledge

• Type 5 Predictive knowledge

Basically, the initial PDF highlights order of regions to try first. No knowledge

leads to a uniform initial PDF distribution. Indirect Search Knowledge [11,

12] involves intermediate target objects in spatial proximity to target. Hints

lead to higher probability values in specific regions and may include such

information as past knowledge of the object’s location. Saliency knowledge

[30, 27] takes into account distinctive target features in the search region. The

PDF may be modified by saliency computation on each acquired image for

use in determining the next viewpoint. Predictive Knowledge [31, 32] provides

location possibilities due to pre-processing or spatiotemporal constraints. In

this paper, Types 1 and 3 are explored and the remainder are left for future

work.

4 Implementation

Basic requirements for the successful implementation of a search agent include

having a method for determining depth, a method for detecting the target,

and means to control sensor parameters and mobility.
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The first implementation of the search algorithm [28] was based on the ARK

robot [33], which is a mobile platform where depth was determined via laser

ranger-finder. The laser is mounted on a robotic head with pan and tilt capa-

bilities. It consists of a camera with a controllable focal length, a laser-range

finder and a mirror. The mirror is used to ensure collinearity of effective op-

tical axes of the camera lenses and range finder. With this mirror, the laser

finder can measure the distance from the center of the camera to the object

along the camera-viewing axis. The robot had a method for detection of a

baseball by identifying a white round blob in the image.

Our search agent is implemented on a Pioneer 3 robot, a mobile four-wheel

differentially steered drive ActiveMedia Robotics platform. The platform is

equipped with a Point Grey Research Bumblebee camera mounted on a Di-

rected Perception pan-tilt unit. It is a two lens stereo vision camera that is

used for both target detection and environment data acquisition. To obtain

depth information, the Bumblebee camera uses Triclops Stereo Vision Soft-

ware Development Kit [34] that provides stereo processing capabilities. This

library does stereo processing on the images obtained from the cameras. It

establishes correspondence using the Sum of Absolute Differences correlation

method. The TangentBug algorithm [35, 36] is used for navigation. Sections

4.1 and 4.2 describe the search robot’s navigation using the stereo camera in

more detail.

In general, the search agent may have several recognition algorithms available

(a of Section 3.1). The planning module would identify which algorithm should

be applied to what region of the environment in order to yield the best results.

The examples shown in this paper employed two different detection methods,

one based on normalized gray-scale correlation [37] and the other based on the
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SIFT feature detection algorithm that is detailed in [38]. We use Rob Hess’s

implementation [39] of the SIFT feature detector. The full search example

in Section 5.1 uses the correlation-based detection algorithm. The rest of the

examples and experiments use the SIFT method. The current implementation

does not have the planning module that chooses which algorithm to use. Future

implementations will include it.

4.1 Sensed sphere from stereo

A sensed sphere can be constructed using any depth sensor. Our robot uses

PointGrey BumbleBee stereo camera for the task. First, sparse depth sampling

of the environment is obtained and then it is converted into a sensed sphere

representation.

The camera comes with the Triclops SDK. Its stereo processing module uses

the Sum of Absolute Difference algorithm. In addition, the SDK provides a

number of validation techniques to reduce errors in stereo data, e.g. back and

forth, texture, surface validation, etc. We use the texture validation technique

[40] to reduce the number of errors that result from incorrect correspondence.

We combine the stereo data using the conventional inverse sensor model occu-

pancy grid approach. The update equation is based on a Bayes filter. We use

its logarithmic form, which is computationally advantageous and also avoids

numerical instabilities that arise when probabilities are closer to zero:

log
p(mi|zt)

1− p(mi|zt)
= log

p(mi|zt)

1− p(mi|zt)
+ log

1− p(mi)

p(mi)
+ log

p(mi|zt−1)

1− p(mi|zt−1)
(5)

where p(mi|zt) gives probability that cell ci is occupied given information

accumulated up to time t. The inverse sensor model p(mi|zt) specifies the
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probability that a grid cell i is occupied based on a single sensor measurement

zt. p(mi) gives the initial probability that cube ci is occupied. In our current

experiments, we do not include any prior knowledge about the solidity of cells,

therefore, p(mi) = p(¬mi) = 0.5. This makes log 1−p(mi)
p(mi)

= log 1 = 0.

Our inverse sensor model is largely based on the one proposed by [40]. For

each 3D point derived from stereo data, an uncertainty region is defined as:



x

y

z


=



B(u±0.5)
d±0.5

B(v±0.5)
d±0.5

fB
d±0.5


(6)

where (x, y, z) is 3D coordinates of a point as derived from the disparity image,

v, u, d are row, column and disparity value in the disparity image. B is the

baseline and f is the focal length of the system.

Let U be an uncertainty region of a point (x, y, z)T as defined in Equation 6.

Let C be a union of cubes ci that overlap with the uncertainty region U , i.e.

C = (∪n
i=1ci) ∩ U . We define

log
p(mi|zt)

1− p(mi|zt)
=

1

|C|
(7)

where p(mi|zt) gives the probability that a grid cell i is occupied based on the

single sensor measurement zt.

If a grid element (x, y, z)T is between the uncertainty region of the sensed

obstacle and the robot, it is likely to be unoccupied and therefore we reduce
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its probability:

log
p(mi|zt)

1− p(mi|zt)
= s (8)

where s is a number that makes p(mi|zi) << p(¬mi|zi).

The following equation summarizes our inverse sensor model:

log
p(mi|zt)

1− p(mi|zt)
=


1/|C|+ log p(mi|zt−1)

1−p(mi|zt−1)
if ci ∈ C

s + log p(mi|zt−1)
1−p(mi|zt−1)

if ci /∈ C

4.2 Navigation

The search agent requires basic navigational skills to move around the room.

We have adopted the TangentBug algorithm for this purpose [35] [36]. It uses

range data to compute a locally shortest path, based on the structure termed

the local tangent graph. The algorithm uses a graph for choosing the locally

optimal direction while moving toward the target, and for making local short-

cuts and testing a leaving condition while moving along an obstacle boundary.

The transition between these two modes of motion is governed by a globally

convergent criterion, which is based on the distance of the target from the

robot. The authors of the algorithm showed using simulations that Tangent-

Bug produces paths that in simple environments approach the globally optimal

path, as the sensor’s maximal detection-range increases.

In its original formulation, TangentBug assumes that a robot is equipped with

a ring of range sensors that have a combined field of view of 360 degrees. These

sensors provide distances to obstacles around the robot. Our search robot has

only one stereo camera. A straightforward extension would be to require it to
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pan around and collect range samples from all directions before each move.

Our experiments have shown that such a strategy is not necessary. As the

robot searches for the target object, it acquires information about the solidity

of the environment. It uses this information to approximate the distances to

obstacles around it. Thus, we require the robot to take range measurements

only in the direction of its movement during navigation.

5 Experimental results

5.1 A Typical Full Search

Figure 1 shows the search region that is part of our laboratory. The region’s

dimensions are 9m x 5m x 2.5m (width x length x height). We divide the floor

plane into 1x1 m2 grid. Each vertex of the grid is a potential robot’s location.

The search region is also divided into 53cm3 voxels that hold target probability

and solidity values of the environment. Figure 2 shows the target object used

in this experiment. Its size is 23 cm in diameter. The robot does not have

any prior knowledge about the target’s location, i.e. the target’s probability

distribution is uniform. The detection algorithm used in this experiment is

not viewpoint-independent. Therefore, we assume that the target faces the

camera. The tilt range of the camera is (−42◦, 30◦). The only tilt angles used

in this example are 0◦ and 30◦. Each time the search agent chooses from the

total number of 17 (pan, tilt) angles. This example was summarized in [41]

and is now described in full here.

Each stage of the robot’s performance is qualitatively detailed in Table 1. The
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Fig. 1. The search region used in our experiments. It is a typical laboratory envi-
ronment.

Fig. 2. The target object used in the full search example.

two columns of the Table are:

Description provides brief description of each action.

One of two possible Map types is shown in the second column:

Graphical Map (GM) shows the progress of the search process schemat-

ically. The robot is represented by the orange rectangle. The path of the

robot is shown with bold arrows. At each position, small arrows show the

viewpoints inspected. The visual field for each viewpoint is shown as a

colored region, with the depth of field for which recognition was possible

delimiting the extent of the region. Elevation of the camera is 0◦ or 30◦ and

is marked on each view. The target object is on the table, marked by a red

rectangle in the lower left corner.

Probability Map shows probability maps of two kinds: “position probabil-

ity” and “target probability”. “Target probability” maps (TPM) show how

the agent’s knowledge of the environment changes as the search progresses.
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Red lines show the configuration of the room (it is not known to the search

agent). The color of each pixel (x, y) corresponds to the sum of probabil-

ities in the vertical column of the 3D environment with floor coordinates

(x, y). Lighter color corresponds to larger probability. Green crosses indi-

cate locations of obstacles discovered so far. As mentioned above, the floor

plane is divided into 1m x 1m squares, vertices of which are considered by

the search agent as possible positions. “Position probability” maps (PPM)

show the probability of detecting the target from each position. Each square

corresponds to a possible position j, and its color - to the detection prob-

ability ProbΨj
(as described in Section 3.3.3). Lighter color means higher

probability.

Table 1: A typical full search example.

Description Maps

Position 1. “Position probability” map before
the search starts. Since nothing is known about
the environment yet, the largest probabilities are
near the centre of the room: larger volume of
the environment can be explored from these po-
sitions. PPM

Position 1, view 1. As the robot knows noth-
ing about solidity of the environment or target’s
location, the first action is directed into the cen-
tre of the room. This viewing direction allows
the robot to explore the largest volume “avail-
able” from its current position, and hence max-
imizes the probability of detecting the target.

GM

TPM
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Position 1, view 2. During each action, the
robot updates its solidity map of the environ-
ment based on stereo reading. The green indi-
cates the obstacles discovered so far.

GM

TPM

Position 1, view 3. As the search progresses,
the color of still unexplored regions becomes
lighter while the color of already “seen” regions
becomes darker. This color change corresponds
to the update of the target probability.

GM

TPM

Position 1, view 4. The last viewing direction
explored at the current position. Probability of
detecting the target at the current position de-
creases below some threshold Θmove, the search
agent looks for the next best position.

GM
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TPM

Choosing position 2. “Position probability”
map before the first move of the robot. In this
example, the robot considers only the positions
that are reachable by moving along a straight
line. The crosses mark unreachable positions.
The color of each square indicates the detection
probability at that position. PPM

Position 2, view 1. The robot moves to its
next position and takes the next view (marked
in blue). The move is showed by the black arrow. GM

TPM

Position 2, view 2. The number of degrees
within each colored area gives the tilt of the
camera during each action. In this action, the
camera is tilted up 30 degrees, because the hori-
zontal view was already performed and the next
best viewing direction was above the horizontal.

GM
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TPM

Position 2, view 3. The last viewing action
at this position. The detection probability falls
below Θmove. GM

TPM

Choosing Position 3. “Position probability”
map before the second move. Although the best
spot is on the left, it is not reachable, so a rela-
tively low probability location is chosen. PPM

Position 3, view 1. The robot moves to the
third position and takes the next view (in green). GM
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TPM

Position 3, view 2.
GM

TPM

Position 3, view 3. In this action, the camera
is tilted up 30 degrees. GM

TPM
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Choosing position 4.“Position probability”
map before the third move. PPM

Position 4, view 1. The robot moves to the
fourth position and takes the next view(in ma-
genta). Because of a drawing quantization ar-
tifact, it may seem that the robot moves into a
sensed obstacle. In reality, the robot is just close
to it. GM

PPM

Position 4, view 2.The target is found. GM

PPM

Table 1: A typical full search example.
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5.2 Testing different search utility functions

In this section, we present several additional example runs of the search robot

as well as some quantitative results. These examples demonstrate the search

process as well as the influence on it of such factors as a priori knowledge and

action cost. In these experiments, we used the target object in Figure 3. The

goal of this work and the experimental verification is not to study recognition

methods per se; rather it is to study the viewpoint control strategy and to

understand its properties and thus only a single object is employed in order

to permit proper comparisons among the experimental setups and results.

Naturally, in the real world the robot must be able to search for many different

kinds of objects under the full variability of lighting conditions, for example;

this is left for another experiment.

Fig. 3. The target object used in experiments of Section 5.2.

5.2.1 Cost

During the quantitative evaluation of the search algorithm, we look at the

following cases:

(1) Choose the action fτf+ with the largest detection probability:

fτf+ = arg max
f

∑
ci∈Ψf

p(ci, τf ) (9)

where Ψf specifies the influence range of f as defined in Section 3.1. Action

f is an arbitrary action that is specified by (x, y) location of the robot
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and (pan, tilt) direction of the camera.

(2) Explore the current position first. Choose the next position posτf+ that

maximizes the detection probability:

posτf+ = arg max
pos

∑
ci∈Ψpos

p(ci, τf ) (10)

where Ψpos specifies the influence range of pos that consists of those parts

of the search region that are “visible” to the search agent when it is at

position pos.

(3) Explore the current position first. Choose the next position posτf+ that

maximizes the detection probability while minimizing the distance to the

position:

posτ+ = arg max
pos

∑
ci∈Ψpos

p(ci, τf )

dist(pos)
(11)

where dist(pos) is the distance from the robot’s current position to

pos.

(4) Explore the current position first. The utility function for choosing the

next position posτf+ combines the utility functions in cases (2) and (3):

posτ+ = arg max
pos

∑
ci∈Ψpos

p(ci, τf )(1 +
A

dist(pos)
) (12)

Cost (1) is different from Ye [28]’s approach. It always chooses the action with

the highest detection probability no matter how far the robot has to travel

to reach the configuration required for the action. Costs (2)-(4) follow Ye’s

two-stage (“where to look next” -“where to move next”) approach. First, the

current position is inspected until some threshold Θmove is reached. Then the

new position is selected based on one of the criteria described by Equations

10-12. In Cost (2), the next best position is the position that maximizes the

detection probability. In Cost (3), the next best position should maximize the
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detection probability while minimizing the distance travelled. Cost (4) is a

combination of (2) and (3): it relaxes the requirement of distance minimization

using the control A. In the experiments A = 1.

5.2.2 Search examples

Figure 4 shows the sequences of viewpoints that were inspected by the robot

during 3 runs of the experiment. The brown rectangle represents the search

robot. Its path is shown with bold arrows. At each position, small arrows

show the viewpoints inspected. The visual field for each viewpoint is shown

as a colored region, with the depth of field for which recognition was possible

delimiting the extent of the region. The target object is on the table in the

centre of the room. Its location is marked by the black cross.

No prior knowledge about the target’s location is available during the first

two runs (Figure 4 (a) and (b)): the target probability distribution is uniform

at the beginning of both runs. During the first run in Figure 4 (a), we use

the utility function defined in Cost (2) in Section 5.2.1: the next position is

the position with the largest detection probability. During the second run in

Figure 4 (b), the utility function defined in Cost (3) in Section 5.2.1 is used: the

next position is the position that maximizes the detection probability while

minimizing the distance. One can see that in the second run the robot prefers

to examine locations that are nearby before moving to the other side of the

room.

In Section 3.4, we described different types of prior knowledge that can be

used to speed up the search process. Figure 4 (c) shows an example run where

the robot knows that the target object is on one the tables in the room and

where these tables are located. The utility function defined in Cost (3) is used.
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h
a b

c

Fig. 4. Search process examples. Each image shows the sequence viewpoints exam-
ined during the search. The brown rectangle represents the search robot. Its path
is shown with bold arrows. At each position, small arrows show the viewpoints in-
spected. The visual field for each viewpoint is shown as a colored region, with the
depth of field for which recognition was possible delimiting the extent of the region.
The target object is on the table in the centre of the room. Its location is marked
by the black cross. (a). The robot chooses the next position to be the position that
maximizes the detection probability (Cost (2), Section 5.2.1). (b). The robot chooses
the next position to be the position that maximizes the detection probability while
minimizing the distance traveled (Cost (3), Section 5.2.1). (c). The search agent
knows the location of the tables in the room and that the target object is on one of
the tables.

The examples show that by using the cost function that minimizes distance

travelled, the robot can avoid unnecessary movements back and forth. It is very

important, considering that even if the the planning and detection algorithms

can be optimized to run in minimum time, it will always take the robot a

certain amount of time to physically move. The examples show that providing
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a b

Fig. 5. Experimental setup. To test the influence of various action costs and a priori
knowledge on the search process, we ran 20 experiments for each case. The robot
was placed in one of the five locations denoted by brown rectangles in (a). The
target was placed in one of the four locations denoted by red stars in (b).

the robot with some prior knowledge of the target’s location greatly improves

the search process: minimizing the number of viewing actions and number of

explored positions, and hence the time to find the object. These conclusions

are supported by the quantitative results presented in Section 5.2.3.

5.2.3 Quantitative results

For each cost type of Section 5.2.1, we did two types of experiments:

(1) No prior knowledge

(2) The search agent knows that the target object is on one of the tables and

knows the location of the tables in the room.

For each combination of prior knowledge and cost options, we ran 20 experi-

ments. We varied the robot’s starting position by one of the locations denoted

by brown rectangle in Figure 5 (a). For each robot’s starting position, we put

the target object in one of the four locations marked by red stars in Figure

5 (b). Thus, we performed 160 experiments in total. 91% of these runs were
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successful. The causes for failures include: lack of a localization algorithm and

unreliability of the stereo depth sensor. The robot relies on dead reckoning for

localization and therefore, gets lost with respect to the map if it moves a lot.

The depth estimates from the stereo camera is not 100% reliable, and as a re-

sult the robot sometimes sees imaginary obstacles it cannot avoid. The search

performance is measured in terms of total number of actions, total time of the

search and the total distance travelled by the robot. Tables 2 and 3 show the

influence of prior knowledge and various cost functions on the results.

Performance of the search system

Average Cost (1) Cost (2) Cost (3) Cost (4)

per run + + + +

No knowledge No knowledge No knowledge No knowledge

Number of actions 9.4375 8.722 8.45 8.733

Total time (min.) 16.1875 8.111 6.8 7.533

Distance traveled (m.) 22.385 8.77 3.85 8.0273

Table 2
Performance of the search system based on the experiments set described in Section
5.2.3. The search agent does not have any prior knowledge about the location of the
target.

Performance of the search system

Average Cost (1) Cost (2) Cost (3) Cost (4)

per run + + + +

Knowledge Knowledge Knowledge Knowledge

Number of actions 5 5.5 4.9 4.933

Total time (min.) 10.4375 5.9 3.8 4.333

Distance traveled (m.) 13.4675 5.9815 3.4095 4.14133

Table 3
Performance of the search system based on the experiments set described in Section
5.2.3. The search agent knows that the target object is on one of the tables and
knows the location of the tables in the room.

35



Several conclusions can be drawn:

• Prior knowledge about the target’s location can drastically accelerate the

search process in terms of total time, total number of actions and distance

travelled.

• Various cost functions of selecting the next best action do not have any

significant effect on the total number of actions.

• The division of the search process in two stage: “where to look next” and

“where to move next” -reduces distance travelled and, hence, the total time

of the search significantly (any of Costs (2), (3) and (4)).

• To further reduce the distance travelled and the total time, the cost function

that minimizes the distance to the next best position should be used (Costs

(3) and (4)).

• The best results are achieved by the search agent possessing some prior

knowledge and using the cost function with the strongest distance mini-

mization(Cost (3)).

• The number of actions is best minimized by any of Costs (1), (3) and (4).

5.3 Why not use a POMDP?

At first glance, Partially Observable Markov Decision Processes (POMDP)

seem to be an obvious strategy to approach our search problem. POMDP were

introduced by Kaelbling, Littman and Cassandra [42] as a general procedure

for solving the problem of choosing optimal actions in partially observable

stochastic domains. Yet the standard value function approaches to finding

polices are generally considered intractable for large modes. In [43], Roy et al.

use dimensionality reduction approach to overcome this limitation. They argue

that optimal polices are not always needed, and therefore, their approximation
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algorithm suffices. They demonstrated the use of the algorithm on a robot

localization problem with 20,230 states (238x85 grid cells).

We argue that the search problem cannot be easily solved using POMDP.

First of all, our problem is much larger. In our experimental setup described

in Section 5.1, there are 32 possible robot positions and 17 possible camera

directions at any position. Thus, the total size of the robot’s action set is

544. There is no restriction on the target’s location in the room. Thus, it can

occupy any of the 451, 200 occupancy grid positions, each of which codes two

values: target and solidity probability. In addition, the initial target probability

distribution is not necessarily uniform and can be assigned based on the initial

knowledge as described in Section 3.4. Lastly, our approximation algorithm is

not intended for a generic problem solution, and therefore is more intuitive

for the task.

5.3.1 System performance

The search module runs on Dual 2GHz PowerPC G5 with 1GB RAM and sends

requests to the robot, such as move, take an image, etc., through the wireless

network. The code has not been optimized. Each action takes about 15 seconds

and includes taking a stereo and raw images, sending them to the off-board

computer, stereo analysis and application of the detection algorithm, update

of the world representation with the stereo and detection results, choosing the

next best action, sending request to the robot to setup and execute actions

to prepare for the next search image. The run in Figure 4 (a) takes about 12

minutes, in Figure 4 (b) - 6 minutes, in Figure 4 (c) - 4 minutes.
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6 Extending the Viewpoint Planning Method

6.1 Object-Centred Viewpoint-Dependent Detectability Function

Whether or not a camera system plus detection function can actually be in

a position where detection is possible depends on a variety of interacting fac-

tors. Detectability depends on viewpoint, image size, distance, scale, rotation

in 3D occlusion, let alone lighting conditions or surface reflectance. Here, the

only dimensions of this problem that we address is those dependent of view-

point selection and object pose. A target object may be at any pose in the

environment; it may even be hidden. It is out of the scope of this work to deal

with the more difficult situations. However, some progress can be made if one

considers the performance of the chosen detection algorithm(s) with respect

to object pose or degree of occlusion. Some of this empirical work can be seen

in [44]. A detection accuracy function can be obtained by testing detection

as pose changes, for example, or as the degree of occlusion increases. The use

of an object-centred viewpoint-dependent detectability function can set the

boundaries on detectability so that not all possible viewpoints need to be con-

sidered. In other words, this determines positions/viewpoints from where the

target can be recognized. For example, if detection performance degrades to

85% with 20◦ object rotation in the image plane, and if this level of perfor-

mance is acceptable for the task, then it means that viewpoint positions need

be quantized only in 20◦ intervals in the image plane to deal with this rota-

tion (see Figure 6). Similar constraints an be obtained for the other relevant

dimensions described above.
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Fig. 6. Each fixation on a location at most tests a subset of viewpoint/pose rela-
tionships for the target. A location is not fully ruled until the full viewing sphere is
inspected (up to detectability function constraints for the target).

6.2 Location-Centred Viewpoint-Dependent Visibility Function

Each fixation on a location at most tests a subset of viewpoint/pose relation-

ships for the target. A location is not fully ruled until the full viewing sphere

is inspected (up to detectability constraints for the target that are set by the

object-centred viewpoint dependent detectability function). Future implemen-

tations will include these extensions.

7 Conclusions

The search for an object in a 3D space benefits greatly from attentive mech-

anisms that limit the search space in a principled manner. We presented a

solution to this problem with an effective implementation using a robotic

agent.
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Our solution performs search for a target object in an unknown 3D environ-

ment. No assumptions are made about the configuration of the environment

other than the locations of the exterior boundary nor the position of the target

object. Since our search agent generates its path based on its current knowl-

edge of the targets location encoded by the probability distribution computed

during the search process, it can minimize the expected time to find the object,

and does not simply determine a path that covers the entire environment.

The current implementation does not have the planning module that chooses

between available detection and recognition algorithms. The detection algo-

rithm used is viewpoint-dependent, however, our implementation assumes it is

not. Therefore, the target object is assumed to face the camera. The viewpoint

planning method discussed in the previous section is needed. Future work will

include these enhancements. We also plan to explore the influence of the prior

knowledge of Types 2, 4 and 3 on the search process.

We performed an extensive empirical evaluation of our implementation of the

search algorithm. Several action cost functions were derived and their influence

on the search process was analyzed. Although the cost functions that minimize

the distance travelled significantly reduces the total search time, the best

improvement in the number of actions and positions and the total search time

comes with the use of prior knowledge.
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