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Abstract

This paper investigates whether the assumption of unique identifiers is essential for
wait-free distributed computing using shared objects of various types. Algorithms where
all processes are programmed identically and do not use unique identifiers are called
anonymous. A variety of results are given about the anonymous solvability of two key
problems, consensus and naming, in systems of various sizes. These problems are used
to define measures of a type T ’s power to solve problems anonymously. These measures
provide a significant amount of information about whether anonymous implementations
of one type from another are possible. We compare these measures with one other and
with the consensus numbers defined by Herlihy [14].
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1 Introduction

It is routinely assumed, in the literature on distributed computing, that processes are equipped
with unique identifiers or, equivalently, that each process can be given a different programme
to follow. Such a system is called eponymous [23]. In contrast, in an anonymous system,
processes do not have unique identifiers and are programmed identically. This paper studies the
differences between anonymous and eponymous systems in the context of wait-free computation
using shared memory. Thus, we take up Juliet’s question: “What’s in a name?” [28].

Unique identifiers are used for a variety of purposes in shared-memory systems. A process
can announce or update information in a register that it alone is allowed to write, and that in-
formation will never be overwritten by another process. Process identifiers can be incorporated
into timestamps to ensure that no two timestamps are identical, thereby avoiding the ABA
problem. A compare&swap object (for example) can be accessed with two different arguments
by two processes with different identifiers to allow the processes to determine which process
accessed the object first. These techniques and many others that use unique identifiers are
useful tools in solving problems. But are they truly essential? This paper studies how the
answer to this question depends on the types of objects that are being used.

The primary motivation for this work is foundational: it is important to understand the
significance of each assumption that is made when defining a model of distributed computing. In
the widely-studied model of asynchronous, shared-memory computing where algorithms should
be designed to tolerate failures, the ubiquitous assumption of unique identifiers has received
scant attention.

Part of the reason that the assumption of unique names is so ingrained is the fact that they
are available in most real systems (although this presupposes some architecture in which those
names were handed out at some point, a task that may be quite difficult in systems where
nodes frequently arrive and leave). It is worth knowing whether anonymous algorithms exist,
even when identifiers are available, because the anonymous model of computation has its own
advantages: simplicity and privacy. All other things being equal, an anonymous algorithm
where every process runs its algorithm in the same way will be simpler to understand than
an eponymous algorithm where all processes may execute entirely different sequences of steps,
depending on their names. Privacy can be enhanced if processes running an anonymous algo-
rithm access the shared memory carefully through a trusted proxy server that conceals their
identities: the server containing the shared memory need not know who is accessing objects in
the shared memory, or even whether two different accesses were performed by the same process.

This paper focusses on asynchronous shared-memory systems, where a collection of n pro-
cesses communicate with one another using shared data structures (called objects) of various
types. A type can be defined by a sequential specification, which describes how the object
behaves when accessed by operations one at a time. In general, this specification may be non-
deterministic: there may be several legal behaviours in response to a particular operation. The
object’s behaviour when accessed concurrently is constrained by the condition of linearizabil-
ity [16]: each operation must appear to take place atomically some time during the interval of
time between its invocation and its response. In keeping with the anonymous theme of this
paper, we consider only oblivious object types, where the behaviour of the object in response
to an operation cannot depend on the identity of the process that invoked the operation. The
failure model allows any number of processes to experience crash failures; algorithms that work
correctly in such an environment are called wait-free [14].
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Herlihy identified the consensus problem as a key to understanding the ability of different
types of shared objects to solve problems in the eponymous version of this model [14]. In
the consensus problem, each process begins with an input value, and each non-faulty process
produces an output value after a finite number of steps. The output values must be the same
and the common output value must be the input value of some process. Herlihy defined the
consensus number of a type T , denoted cons(T ), to be the maximum number of processes that
can solve wait-free consensus using objects of type T and registers. If no such maximum exists,
then cons(T ) = ∞. This classifies objects into the consensus hierarchy: a type T is said to
be at level k of the hierarchy if cons(T ) = k. The consensus number of a type is an effective
measure of its power in eponymous systems for two reasons. Firstly, consensus is universal:
if cons(T ) ≥ k then there is a wait-free eponymous implementation (for k processes) of every
object from objects of type T and registers. Secondly, if cons(T1) < cons(T2), then objects of
type T1 (and registers) cannot implement an object of type T2 in an eponymous system of more
than cons(T1) processes. Thus, the consensus hierarchy gives us a great deal of information
about which implementations of one type from another are possible and which are not. In
particular, this work influenced the design of shared-memory hardware to include objects from
level ∞ of the consensus hierarchy.

A second key problem for studying the power of anonymous systems is the naming problem,
where each process must output a distinct natural number (which it can then use as its name).
One of the essential difficulties of solving some problems in anonymous systems is their inability
to break symmetry: two processes with identical inputs may be scheduled in such a way that
they take exactly the same sequence of steps. As we shall see, some types of shared objects
can be used to break symmetry, while others cannot. The naming problem is essentially the
problem of breaking symmetry between all pairs of processes.

The names chosen in a naming algorithm can be arbitrarily large. In the strong naming
problem, each of the n processes must output a distinct number in the range {1, 2, . . . , n}.
We shall see that this version is strictly harder to solve. The naming and strong naming
problems address the question of whether the identifiers that are used by so many algorithms
can be assigned within the system model or whether they must be pre-assigned by the system
designer. If the strong naming problem can be solved, then any eponymous algorithm can be
run in an anonymous system: processes first simply choose identifiers and then run the code of
that process. (Of course, this approach does not have the privacy benefits that some anonymous
algorithms have; anonymity is necessary for true privacy, but not sufficient.)

The following assumptions are fairly standard when studying asynchronous shared-memory
systems and are, in particular, used for Herlihy’s definition of cons(T ):

(1) an unlimited number of objects of type T are available,
(2) an unlimited number of registers are available,
(3) algorithms are deterministic,
(4) objects can be initialized by the algorithm designer,
(5) n (or an upper bound on n) is known in advance,
(6) processes have unique identifiers, and
(7) the identifiers are 1, 2, . . . , n.

Variants of the hierarchy were defined by altering assumptions (1) and (2) [17], but it was
ultimately agreed that these assumptions were indeed the most natural ones to use in defining
the hierarchy. If assumption (3) is dropped, the consensus hierarchy collapses because there is
a randomized algorithm to solve consensus among any number of processes using only registers
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[2, 9]. Borowsky, Gafni and Afek showed that assumption (4) is essentially redundant, at
least for deterministic objects, given the other assumptions [6]. However, the construction
they used to prove this relies heavily on unique identifiers. Algorithms that work without
assumption (5) are called uniform algorithms, and have been widely studied in the context of
eponymous systems. (For examples, see the survey by Aguilera [1].) For this paper, we retain
assumptions (1) to (5) in order to investigate the importance of assumptions (6) and (7). (In
Section 4.1 we also briefly consider the effect of dropping assumption (5).) The significance
of assumption (6) was questioned by Buhrman et al., who showed that it was indeed crucial
for Herlihy’s universality result [8]. In particular, they studied systems that are equipped
with registers and black-box objects that solve consensus. They showed that such a system
cannot solve the naming problem. We continue this line of research by studying shared-memory
systems equipped with arbitrary types of shared objects. Part of the goal of this paper is to
understand what Herlihy’s classification into the consensus hierarchy would have looked like
without assumption (6). We shall also see whether assumption (7) is an essential addition to
assumption (6).

1.1 Results

We define the anonymous consensus number of an object type T , denoted acons(T ), to be
the maximum number of processes for which there exists an anonymous wait-free consensus
algorithm using objects of type T and registers. If there is no such maximum, then acons(T ) =
∞. Except for the requirement that the algorithm be anonymous, this definition is the same as
Herlihy’s definition of cons(T ). We also define the anonymous consensus hierarchy to be the
classification of types according to their anonymous consensus numbers: a type is said to be at
level k of this hierarchy if its anonymous consensus number is k.

We also define the strong naming number of an object type T , denoted snaming(T ) to
be the maximum number of processes for which there exists an anonymous wait-free strong
naming algorithm using objects of type T and registers. If there is no such maximum, then
snaming(T ) = ∞. There is no need to define a corresponding hierarchy for the ordinary
naming problem, since we shall prove that any type that can be used to solve naming among
two processes can solve naming among any number of processes. In the end, it may turn out
that the strong naming hierarchy similarly collapses into two levels (1 and ∞): it is an open
question whether there exist types at other levels of the strong naming hierarchy.

Herlihy showed that, in eponymous systems, a type T is universal for k processes if and only
if cons(T ) ≥ k. The same result does not hold for anonymous systems. We define the universal
number of a type T , denoted univ(T ), to be the maximum number of processes for which every
type of object can be anonymously implemented from objects of type T and registers. If no
such maximum exists, then univ(T ) = ∞. We shall demonstrate that, if the system can solve
strong naming for two processes, univ(T ) = cons(T ). On the other hand, if the system cannot
solve strong naming for two processes, then univ(T ) is clearly 1.

The classification of types T according to acons(T ), univ(T ) and their ability to solve the
naming problem gives us a lot of information about whether anonymous implementations of
one type from another are possible, just as the consensus hierarchy gives us information about
eponymous implementations. By definition, an anonymous system with objects of type T and
registers can implement any object for up to univ(T ) processes. If acons(T1) < acons(T2)
then T1 (and registers) cannot implement T2 anonymously in a system of more than acons(T1)
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Solves
Example type T cons(T ) acons(T ) naming? snaming(T ) univ(T )

register 1 1 No 1 1
weak-name 1 1 Yes 1 1

? 1 1 Yes z ∈ {2, 3, . . .} 1
strong-name 1 1 Yes ∞ 1

Tx,y x ≥ 2 y ∈ {2, 3, . . . , x} No 1 1
aconsx x ≥ 2 x Yes ∞ x

Table 1: Classification of types according to ability to solve consensus and naming.

processes. Similarly, if T2 can solve naming, but T1 cannot, then T1 cannot implement T2

anonymously.
This paper proves the following facts about the anonymous consensus hierarchy.

• A type is at level 1 of the anonymous consensus hierarchy if and only if it is at level 1 of
the (standard) consensus hierarchy (Theorem 3.5).

• For types T at level x ≥ 2 of the consensus hierarchy, acons(T ) can take any value between
2 and x, inclusive (Proposition 3.4).

• If acons(T ) < cons(T ) then objects of type T (and registers) cannot solve the naming
problem (Theorem 5.3).

This paper proves the following results about the ability of types to solve naming.

• If naming can be solved for two processes, then it can be solved for any number of processes
(Theorem 4.2). This theorem also provides a simple characterization of the types that
can solve naming.

• If strong naming and consensus can be solved for two processes, then strong naming can
be solved for any number of processes (Corollary 5.2).

• Strong naming is strictly harder than naming (Theorem 5.4).

• Strong naming is equivalent in difficulty to naming in systems where 2-process (epony-
mous) consensus can be solved (Theorem 5.1).

• Uniform naming is strictly harder than naming (Corollary 4.4).

Many of these results are summarized in Table 1: The results of this paper can be combined
to show that every object type belongs to one of the rows in this table. (See Theorem 6.1.) It
is not known whether any types fit into row 3. For each other row, we give examples of types
belonging to the row. We also show that all deterministic types belong to rows 1, 5 and 6 of
the table.

In Section 7 we also discuss the non-robustness of the classification of types according to
acons(T ) and univ(T ).
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1.2 Related Work

Asynchronous anonymous computation in failure-free models has been studied in several pa-
pers. Johnson and Schneider gave leader-election algorithms [18]. Attiya, Gorbach and Moran
characterized tasks solvable using only registers [4]. Aspnes, Fich and Ruppert looked at mod-
els that provide other types of shared objects, such as counters [3]. They also saw how those
models are related to an anonymous broadcast model.

The naming problem was introduced by Lipton and Park, who called it the processor identity
problem [21]. If the system is failure-free, there are randomized algorithms that solve the
problem using registers [10, 20, 21, 29].

There has been some recent work on fault-tolerant anonymous computing, which is closer to
the topic of this paper. Panconesi et al. [26] gave a randomized wait-free naming algorithm, but
it is not purely anonymous, since it requires using single-writer registers, which give the system
some ability to distinguish between different processes’ actions. Randomized naming is known
to be impossible if only multi-writer registers are available [8, 10, 20]. However, consensus is
solvable in this randomized model [8]. Thus, naming is strictly harder than consensus in this
randomized setting.

Guerraoui and Ruppert investigated what can be implemented deterministically in an anony-
mous asynchronous system using only registers if processes may crash [13]. They gave a variety
of algorithms for snapshots, timestamps and consensus, some of which are wait-free, while others
satisfy the weaker non-blocking and obstruction-free progress properties. They also characterize
the types that can be implemented in an obstruction-free manner from registers. Herlihy and
Shavit [15] gave a characterization of decision tasks that have wait-free eponymous solutions
using only registers, and extended the characterizaton to systems with a kind of anonymity:
processes have identifiers but are only allowed to use them in very limited ways.

Merritt and Taubenfeld considered uniform algorithms (where processes do not know the
size of the system) in a failure-free model where processes have identifiers but can only use
them in a limited way: identifiers can be compared with one another but cannot be used, for
example, to index into an array [24].

2 Preliminaries

The model of computation is a fairly standard one for shared-memory asynchronous distributed
systems, except for the assumption of anonymity. We quickly describe the model here.

An object type is described by a sequential specification which is comprised of a set of possible
states Q, a set of operations OP , a set of responses to operations RES and a transition function
δ : Q×OP → P(Q×RES)−∅. (Here, P(S) denotes the power set of S.) If (q′, r) ∈ δ(q, op), it
means that if a process applies op to an object in state q, the object may return response r and
switch to state q′. Since δ(q, op) may contain several different elements, objects are, in general,
allowed to behave non-deterministically. An object type is called deterministic if δ(q, op) is a
singleton set for all choices of q and op. An object type is said to have finite non-determinism
if δ(q, op) is a finite set for all choices of q and op. The behaviour of an object when accessed
concurrently is governed by the constraint that it is linearizable [16].

The most fundamental type of shared object is the (read-write) register. The state stores
a value from some domain D and provides two deterministic operations: Read, which returns
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the value stored without changing it, and Write(v) (where v ∈ D), which changes the state
of the register to v and returns Ack.

A distributed algorithm is a sequential programme for each process, P1, . . . , Pn. The sub-
scripts used to identify the processes are used for convenience to reason about the distributed
system; the processes themselves are unaware of them and the algorithm cannot make use of
them. The programme can do standard (Turing-computable) steps on the process’s local mem-
ory, and perform operations on shared objects. If the programmes assigned to all processes are
identical, the algorithm is called anonymous. Otherwise, it is called eponymous.

A step of the algorithm is a single access to shared memory. It is denoted by a tuple
(Pi, op, X, res, q), which specifies the process Pi that performs the operation, the operation op
that is performed, the object X that it is performed on, the result res of the operation and the
new state q that object X has immediately after the operation. There is no need to explicitly
represent the local computations performed by process Pi: we may assume that Pi can carry
out any necessary local computation immediately following each of its steps. An execution of an
algorithm is a sequence of steps satisfying two constraints: the subsequence of steps performed
on each object X must conform to that object’s sequential specification, and the subsequence
of steps performed by each process Pi must conform to Pi’s programme. A solo execution by
Pi is an execution where only Pi takes steps.

We consider two types of problems in this paper: one-shot tasks and long-lived implemen-
tations. In a one-shot task, each process receives an input (possibly null) and must eventually
produce an output. The problem specification describes which outputs are legal for each possi-
ble assignment of inputs to processes. In a long-lived implementation, the goal is to implement
or simulate an object X of type T . This requires giving a programme (to each process) for
each operation that can be applied to X. Also, the initial state of all shared objects used in
the implementation must be specified for each possible initial state of X. The implementation
must be linearizable. In both cases, wait-freedom requires that there is no execution in which
a process takes an infinite number of steps without completing its programme.

A configuration of an algorithm describes the state of all shared objects and the local state
of all processes. If C is a configuration and s is a step that can be taken when the system is in
configuration C, then Cs denotes the configuration that results from this step.

2.1 Consensus versus Binary Consensus

The consensus problem allows inputs to come from an arbitrary set. The binary consensus
problem is a special case where the inputs are restricted to come from the set {0, 1}. The
following proposition shows that the two problems are equivalent in anonymous systems.

Proposition 2.1 If there is an anonymous binary consensus algorithm for k processes using
objects of type T and registers, then acons(T ) ≥ k.

The proposition is stated in a slightly different form as Proposition 8 of [13]: there it is
given for obstruction-free algorithms, but the proof for wait-free algorithms is identical. The
proof uses a fairly standard technique of agreeing on the output bit-by-bit.

Proposition 2.1 allows us to assume, throughout the rest of this paper, that all inputs to
consensus are either 0 or 1. When referring to such input bits, we use the notation x to denote
1 − x.
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2.2 Valency

Some of the proofs in this paper use valency arguments, which originated in the work of Fischer,
Lynch and Paterson [12] and have been used extensively since. (See [11] for a survey.) For some
proofs that appear in this paper, the definitions of the terms that are usually used in valency
arguments had to be generalized somewhat to take advantage of the anonymity of the system,
so we introduce those generalized definitions here.

Fix some (binary) consensus algorithm. Suppose we have a tree T with the following
properties. Each node represents a configuration of the algorithm. One configuration can be
represented by several nodes. The root of the tree represents an initial configuration of the
algorithm. If a node u is a child of another node v, then the configuration u must be reachable
from v. An example of such a tree is the complete execution tree, in which each node v has one
child for each configuration that is reachable from v by a single step.

A branch in T corresponds to an execution of the algorithm. If, during the execution that
leads from the root to some node, a process outputs a value, label that node with the value.
If no descendant of a node is labelled by v, that node is called v-valent in T . A node that is
0-valent in T or 1-valent in T is called univalent in T . A node is called multivalent in T if it is
not univalent in T .

When T is the complete execution tree, we omit the phrase “in T” for the terms defined
in the previous paragraph. (For example, we say a node is multivalent rather than multivalent
in T .) In this case, the definitions correspond to the original definitions of Fischer, Lynch and
Paterson [12].

2.3 Wait-Freedom versus Bounded Wait-Freedom

In the definition of wait-freedom, every process is required to terminate after a finite number
of its own steps. However, there is not necessarily a bound on how many steps it must execute.
The following results show the existence of such a bound for one-shot tasks.

Lemma 2.2 (König’s Lemma [19]) If G is a connected graph with an infinite number of
vertices and every vertex has finite degree, then there is an infinite path in G.

The following application of König’s Lemma was observed in [5, 7].

Corollary 2.3 Consider a (deterministic) wait-free algorithm for a one-shot task. If the al-
gorithm uses only objects with finite non-determinism then, for any input, the algorithm has a
finite execution tree.

Proof: Since the algorithm is wait-free, the execution tree has no infinite path. Since the
objects have finite non-determinism, every node in the tree has a finite number of children. By
König’s Lemma, the tree is finite.

Throughout the remainder of this paper, we make the (realistic) assumption that all objects
have finite non-determinism.
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3 Anonymous Consensus Numbers

In this section, we investigate the anonymous consensus hierarchy. Since any anonymous con-
sensus algorithm can also be used in an eponymous system with the same number of processes,
we have the following observation.

Observation 3.1 For all types T , acons(T ) ≤ cons(T ).

One of the main applications of the anonymous consensus hierarchy is given by the following
simple proposition.

Proposition 3.2 If acons(T1) < acons(T2), then T2 cannot be implemented from objects of
type T1 and registers in an anonymous system of more than acons(T1) processes.

Proof: Let k = acons(T1). Suppose there is an anonymous implementation of an object of
type T2 from objects of type T1 and registers for k + 1 processes. There is an anonymous
consensus algorithm for k + 1 processes using objects of type T2 and registers. Each object of
type T2 in this consensus algorithm can be replaced by the implementation from objects of type
T1 and registers to yield an anonymous consensus algorithm for k + 1 processes from registers
and objects of type T1. This contradicts the definition of k.

3.1 The acons Hierarchy is Full

The anonymous consensus hierarchy is full: it has types at every level. To see this, let k > 1 and
consider the type aconsk, which supports the operation Propose(x) for x ∈ {0, 1}. Intuitively,
if the object is suitably initialized, it returns the argument of the first Propose operation to
each of the first k Propose operations that are performed on it. It returns to its initial state
after the kth Propose.

Formally, the object has state set ({0, 1} × {1, . . . , k − 1}) ∪ {⊥}. Its (deterministic) tran-
sitions are described by the following function:

δ(⊥,Propose(x)) = {((x, 1), x)}, for x ∈ {0, 1},

δ((x, i),Propose(y)) = {((x, i + 1), x)}, for x, y ∈ {0, 1} and 1 ≤ i < k − 1, and

δ((x, k − 1),Propose(y)) = {(⊥, x)}, for x, y ∈ {0, 1}.

Proposition 3.3 For k ≥ 2, acons(aconsk) = cons(aconsk) = k.

Proof: To solve anonymous consensus among k processes, each process proposes its input
value to an aconsk object which is initially in state ⊥ and outputs the value it returns. Thus,
acons(aconsk) ≥ k. A simple valency argument proves that cons(aconsk) ≤ k. (This also
follows from Proposition 12 in [27].) Suppose there is an eponymous consensus algorithm for
k + 1 processes that uses registers and aconsk objects. By the usual valency argument [14, 22],
there is a multivalent configuration C such that any step will take the system into a univalent
configuration. Furthermore, each process accesses the same object X in the next step after C,
and that object must be an aconsk object. If X is in state ⊥ in C, then let i = 0; otherwise, let i
be the second component of the state of X in C. Let s0 and s1 be steps by some processes P0 and
P1 after C such that Cs0 is 0-valent and Cs1 is 1-valent. Let C0 be the 0-valent configuration

9



reached from C by having processes P0, P1, P2, . . . , Pk−i−1 each take a step (in this order). Let
C1 be the 1-valent configuration reached from C by having processes P1, P0, P2, P3, . . . , Pk−i−1

each take a step (in this order). Note that there is a process Pk that does not take a step in
either of these sequences. Then X will be in state ⊥ in both C0 and C1, because it has been
accessed k − i times after C. Each shared variable has the same state in C0 and C1. The
internal state of Pk is the same in C0 and C1. So a solo execution by Pk from C0 must output
the same value as a solo execution by Pk from C1, contradicting the fact that C0 and C1 have
opposite valencies. Thus, cons(aconsk) ≤ k. The proposition follows from Observation 3.1.

Levels 1 and ∞ of the anonymous consensus hierarchy contain the following two object
types. A register has consensus number one [9, 22], so its anonymous consensus number is also
one, by Observation 3.1. Herlihy gave a simple algorithm to show that a single compare&swap
object can be used to solve consensus among any number of processes [14]. The object is
initialized to ⊥ and each process with input x executes Compare&Swap(⊥, x). The process
returns x if the operation is successful, or the result of the operation otherwise. This algorithm
is anonymous, so acons(compare&swap) = ∞.

3.2 Comparing the acons and cons Hierarchies

Observation 3.1 says that anonymous consensus is no easier than consensus. Here, we show
that anonymous consensus is strictly harder than eponymous consensus in some shared-memory
models: it is possible for acons(T ) to be strictly smaller than cons(T ).

We define an object type Tx,y that has cons(T ) = x and acons(T ) = y, for any x and y
satisfying 2 ≤ y ≤ x ≤ ∞. The type Tx,y will, of necessity, be somewhat artificial, since we wish
to construct an example for all possible values of x and y. However, as we shall see in Section
3.3, there are more natural objects that have acons(T ) < cons(T ). Intuitively, an object of type
Tx,y simply solves the consensus problem by returning the first value given to it by a process,
but only if it is accessed anonymously by at most y processes and by at most y − x additional
processes that use unique identifiers when accessing the object. If more than y processes try
to access it without giving an identifier or if two processes use the same identifier, then the
object becomes “upset” and returns useless random results to all further accesses. In order to
implement this functionality, the state of the object remembers the value first proposed to it,
the number of anonymous accesses that have taken place and the set of identifiers that have
been used by the eponymous accesses.

Formally, the type Tx,y has state set

{⊥,Upset} ∪ {(r, k,S) : r ∈ {0, 1}, 0 ≤ k ≤ y,S ⊆ {y + 1, . . . , x} and either k > 0 or S 6= ∅}.

(If y = ∞, k will be a non-negative integer and S will always be ∅. If y < x = ∞, then S will
be a subset of {y +1, y +2, . . .}.) It provides two operations, Propose(v) where v ∈ {0, 1} (an
anonymous access) and (if y < ∞) Propose(v, id) where v ∈ {0, 1} and id ∈ {y + 1, . . . , x}
(an eponymous access). The non-deterministic transition function is specified by

δ(⊥,Propose(v)) = {((v, 1, ∅), v)},

δ(⊥,Propose(v, id)) = {((v, 0, {id}), v)},

δ((r, k,S),Propose(v)) =

{

{((r, k + 1,S), r)} if k < y,
{(Upset, 0), (Upset, 1)} if k = y,

}
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δ((r, k,S),Propose(v, id)) =

{

{((r, k,S ∪ {id}), r)} if id /∈ S,
{(Upset, 0), (Upset, 1)} if id ∈ S,

}

δ(Upset,Propose(v)) = {(Upset, 0), (Upset, 1)}, and

δ(Upset,Propose(v, id)) = {(Upset, 0), (Upset, 1)}.

Proposition 3.4 For 2 ≤ y ≤ x ≤ ∞, cons(Tx,y) = x and acons(Tx,y) = y.

Proof: If x < ∞, there is a simple eponymous consensus algorithm for x processes that uses
a single object of type Tx,y, initialized to state ⊥. For 1 ≤ i ≤ y, the ith process performs a
Propose(input) operation on the object and returns the result. For y < i ≤ x, the ith process
performs a Propose(input, i) operation on the object. It is easy to see that the object will
never become upset and every process will return the first input value that was proposed to
the object. If x = ∞, then the preceding algorithm can be used with any number of processes.
Thus, cons(Tx,y) ≥ x.

If y < ∞, y processes can solve consensus anonymously as in the previous paragraph:
each process performs a Propose(input) operation on an object initialized to ⊥ and returns
the result. If y = ∞, then this algorithm can be used for any number of processes. Thus,
acons(Tx,y) ≥ y.

If x < ∞, we can see that cons(Tx,y) ≤ x using a straightforward valency argument. To
derive a contradiction, suppose there is an eponymous consensus algorithm for x + 1 processes
using objects of type Tx,y and registers. By the usual valency argument [14, 22], there is
a multivalent configuration C such that any step from C leads to a univalent configuration.
Furthermore, all processes must access the same object X of type Tx,y in their next step after
C. Let s0 and s1 be steps by different processes P and Q, respectively, such that Cs0 is 0-valent
and Cs1 is 1-valent. Let α be the solo execution by P , starting from Cs0. Since Cs0 is 0-valent,
P must output 0 in this execution. Let C ′ be the configuration that is obtained by starting
from Cs1 and having the x − 1 processes other than P and Q each take one step, followed by
one step, s0, by P . This is legal because, regardless of the state of X in C, if x + 1 processes
access X, it will end up in the state Upset, and the object is free to return either 0 or 1 to the
last of the x + 1 accesses. Furthermore, α is a legal continuation from configuration C ′ since
the local state of P and the state of every object except X is the same in Cs0 and C ′, and it is
possible for X to return the same sequence of responses to subsequent accesses by P because
X is upset in C ′. Thus, there is an execution from Cs1 where P outputs 0, contradicting the
fact that Cs1 is 1-valent. This completes the proof that cons(Tx,y) ≤ x.

Finally, we show that acons(Tx,y) ≤ y. To derive a contradiction, suppose there is an
anonymous consensus algorithm for y + 1 processes, denoted P0, . . . , Py, using only objects of
type Tx,y and registers. We adapt the valency technique to take advantage of the anonymity of
the algorithm.

We construct a tree, where each node represents a configuration C of the algorithm such
that process P1, . . . , Py have the same local state in C. The root is the initial configuration of
the algorithm where process P0 has input 0 and processes P1, . . . , Py have input 1. If C is any
configuration in the tree where P0 has not terminated, we add left children of C to represent
the configurations that can be reached from C by a single step of process P0. Similarly, if C
is any configuration in the tree where P1 has not terminated, we add right children of C to
represent the configurations that can be reached from C if each of the processes P1, . . . , Py take
an identical step and receive an identical response. There is at least one such extension because
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a sequence of Writes to a register will all return a null response, a sequence of Reads of a
register will all return identical responses, and a sequence of operations on an object of type
Tx,y can always all return identical responses. Since the algorithm is wait-free, there are no
infinite branches in the tree.

All leaves of T are univalent in T . The root is multivalent in T , since the executions where
only P0 takes steps must produce output 0 and the executions where P0 takes no steps must
produce output 1. There must be a node C such that C is multivalent in T and C’s children
are all univalent in T ; otherwise there would be an infinite path of nodes that are multivalent
in T . Then there must be a left child Cleft of C that is v-valent in T and a right child Cright of
C that is v-valent in T .

If P0 and P1 either access different objects or if they both read the same register in their first
steps after C then a right child of Cleft and a left child of Cright are identical configurations,
contradicting the fact that they have opposite valencies. If, in their next steps after C, P0

writes a register R and P1 accesses R, then P0 cannot distinguish Cleft from a left child of
Cright, which is again a contradiction. A symmetric argument applies if P0 reads a register R
and P1 writes to R in their next steps after C. Thus, P0 and P1 must both access the same
object, X, in their next steps after C and X must be of type Tx,y.

Let α be a solo execution by P0, starting from configuration C and passing through Cleft. In
this execution, P0 must output v. If an object of type Tx,y (in any state) has the same operation
applied to it y times, it will end up in the state Upset (since y ≥ 2). Thus, in Cright, X must
be in state Upset, since it has just been accessed by y identical operations. The local state of
P0 and the state of every object except X are the same in C and Cright. Thus, the execution α
is also legal starting from Cright, since the sequence of responses that P0 receives from X in α
can also occur if the execution is started from Cright, where X is upset. This means that Cright

has a descendant in T that outputs v. This contradicts the fact that Cright is v-valent in T .
This contradiction proves that acons(Tx,y) ≤ y, as required.

Although the consensus hierarchy and the anonymous consensus hierarchy are quite differ-
ent, the division between levels one and two coincide.

Theorem 3.5 For any type T , cons(T ) = 1 if and only if acons(T ) = 1.

Proof: The “only if” direction follows from Observation 3.1.
To prove the other direction, it must be shown that cons(T ) ≥ 2 implies acons(T ) ≥ 2.

Assume that cons(T ) ≥ 2. Let Propose0(x) and Propose1(x) be the code that is executed
by two processes to solve consensus eponymously. Let B be a bound on the maximum number
of steps a process must do while executing either of these routines. Corollary 2.3 guarantees the
existence of such a bound, since there are only two possible inputs to each of the two processes
in the binary consensus algorithm.

The algorithm in Figure 1 is an anonymous two-process consensus algorithm. It uses two
registers R0 and R1, which are initially ⊥, in addition to any shared objects used by Propose1

and Propose2. It is clearly wait-free. (It is necessary to include the “time limit” of B steps in
calling the subroutine Proposex(x) because there are some executions in which both processes
will call Propose0(0) or both will call Propose1(1), and if this occurs there is no guarantee
that those subroutines will halt.) If both processes have the same input x, then Rx always has
the value ⊥, so processes may only output x. For the remainder of the proof, suppose the two
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Propose(x)
if a Read of Rx returns ⊤ then

return x
else

Write(⊤) in Rx

run Proposex(x) until it halts or B steps of it have been taken
let r be the result produced (if it halts)
if a Read of Rx returns ⊤ then

output r
else

output x
end if

end if
end Propose

Figure 1: Anonymous consensus algorithm using eponymous consensus algorithm.

processes have different input values. It must be shown that, if both produce an output, those
outputs are the same. Consider two cases.

If one process P with input x sees ⊤ when first reading Rx, then the value of Rx remains
⊥ throughout the execution. Thus, the other process, Q, can only output its own input value,
x. Process P also can only return x.

If each of the processes receives ⊥ as the result of its first Read, then one process runs
Propose0(0) and the other process runs Propose1(1). This means that the subroutines will
both terminate within B steps and will both produce the same output r. If both processes
return r, agreement is guaranteed. However, if one process P sees ⊥ in its second Read of Rx,
then it returns its own input x. In this case, P has completed running Proposex(x) before
the other process Q started running Proposex(x), so r must be equal to x, and Q must return
x also.

3.3 Some Examples

Many of the object types discussed in this paper are somewhat artificially constructed in order to
highlight the differences between the anonymous and eponymous model fully. In this section, we
start with an example of a natural type where there is a stark difference between the anonymous
and eponymous models.

Consider an array A[1..m] whose elements can be read, written and atomically swapped. A
Swap(i, j) operation exchanges the values stored in A[i] and A[j] and returns an acknowledge-
ment to the process that invoked the operation. Herlihy showed that this object has consensus
number ∞ [14]. However, the type is much weaker in anonymous systems.

Proposition 3.6 An array of registers with memory-to-memory Swap has anonymous con-
sensus number 2.
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Proof: It follows from Theorem 3.5 that the anonymous consensus number is at least 2.
We now show that there is no three-process anonymous consensus algorithm using a valency
argument. Suppose there was such an algorithm using arrays with memory-to-memory Swap to
derive a contradiction. We construct a tree T of executions whose root is the initial configuration
where two processes, P and Q, have input 0 and process R has input 1. To each node in the
tree representing a configuration C, we add a left child that represents the configuration that
can be reached from C by having P and Q each take one step (if they have not terminated) and
a right child that represents the configuration that can be reached from C by having R take one
step (if it has not terminated). Note that, in every configuration in the tree, P and Q have the
same local state, so they take identical steps in reaching the left child of that configuration. The
root is multivalent in T , since the leftmost path must lead to the output 0 and the rightmost
path must lead to the output 1. Thus, there is a critical configuration C that is multivalent
in T and whose children are univalent in T . One child of C is 0-valent in T and the other is
1-valent in T .

As in the proof of Proposition 3.2, the next steps that are taken by P , Q and R after C must
be on the same array, and they cannot be Reads or Writes. Thus, P and Q must perform a
Swap(i, j) and R must perform a Swap(k, ℓ) on the array after C. Let C1 be the right child
of the left child of C and let C2 be the right child of C. Then the configurations C1 and C2 are
identical, contradicting the fact that they have opposite valencies in T .

Herlihy also considered an array A[1..m] where entries can be read, written and copied. A
Copy(i, j) command atomically changes the value stored in location A[j] to the value that is
stored in location A[i]. Herlihy showed that this type has consensus number ∞ [14]. However,
his algorithm makes essential use of process identifiers. There is a much simpler anonymous
algorithm for (binary) consensus that works for any number of processes.

Proposition 3.7 An array of registers with memory-to-memory copy has anonymous consen-
sus number ∞.

Proof: There is an anonymous binary consensus algorithm that uses an array A[0, 1] that is
initialized with A[0] = 0 and A[1] = 1. Processes with input 0 execute a Copy(0, 1) operation
and then return the value they read from A[1]. Processes with input 1 execute a Copy(1, 0)
operation and then return the value they read from A[0]. In any execution, the first Copy

operation ensures that both elements of the array contain the input value of the process that
performed the Copy, and those values will never change thereafter, so processes can output
only that value.

4 Naming

In this section, we take a closer look at the ability of different types of shared objects to solve
the naming problem. Throughout Sections 4 and 5, all algorithms and systems are anonymous,
since the naming and strong naming problems are trivial in the eponymous case. First, we see
that the number of processes in the system has no effect on whether the naming problem is
solvable. Theorem 4.2, below, shows that, in contrast to the consensus problem, solving naming
among any number of processes is no harder than solving it among two processes. It also gives
an exact characterization of the types of objects that can be used to solve the naming problem,
using the following definition of Aspnes, Fich and Ruppert [3].
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Definition 4.1 An operation defined on a shared object type is called idemdicent if, for every
starting state, for every operation, and for every choice of operands for that operation, it is
possible that two consecutive invocations of the operation with these operands return identical
responses. An object type is called idemdicent if every operation defined on it is idemdicent.

Intuitively, an object is idemdicent if it is incapable of “breaking symmetry” between two
processes that access it. Examples of idemdicent objects include registers, snapshot objects,
resettable consensus objects, counters (with separate Read and increment operations, the
latter of which returns a null result), and the type Tx,y defined in Section 3.2.

Theorem 4.2 For any type T and any n ≥ 2, the following statements are equivalent.

(1) Naming can be solved for n processes using objects of type T .

(2) Naming can be solved for n processes using objects of type T and registers.

(3) Naming can be solved for two processes using objects of type T .

(4) Naming can be solved for two processes using objects of type T and registers.

(5) T is not idemdicent.

Proof: First observe that the following implications are trivial: (1) ⇒ (2) ⇒ (4) and (1) ⇒
(3) ⇒ (4). Showing that (4) ⇒ (5) and (5) ⇒ (1) will complete the proof.

(4) ⇒ (5): Suppose that there is a naming algorithm for two processes that uses objects of
type T and registers. To derive a contradiction, assume T is idemdicent. Consider an execution
of the naming algorithm where the two processes alternate taking steps, and they both perform
the same sequence of operations and get the same sequence of responses. This is possible,
since the algorithm is anonymous and every time the two processes perform the same operation
on an object, that object can return the same response to both of them, by the definition of
idemdicence. In this execution, both processes must produce the same output, contradicting
the assumption that the algorithm solves the naming problem.

(5) ⇒ (1): Let T be a type that is not idemdicent. Then there is some state q and some
operation op such that the first two invocations of op on an object in state q cannot return the
same response. Let R be the set of possible responses that can be returned if op is performed
up to n times on an object initialized to state q. Since T has finite non-determinism, R is a
finite set. Let d = |R|.

An algorithm for the naming problem among n processes can be constructed using objects
of type T as a weak kind of splitter [25]. The naming algorithm uses a tree of height n−1, where
every internal node has d children. Each node has an associated object of type T , initialized to
state q. The edges leading from a node v to its d children are labelled by the elements of R.
The leaves of the tree are labelled by distinct natural numbers.

To run the naming algorithm, each process starts at the root of the tree and follows a path
towards a leaf. For each internal node v that the process visits, it applies the operation op to
the associated object. When it receives a response r, the process advances to a child of v along
the edge labelled by r. When the process reaches a leaf, it outputs the label of that leaf.

If m processes accesses a node v, the first two processes must receive different responses and
proceed to different children of v. Thus, at most m − 1 processes will visit any child of v. It
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follows by induction on k that at most n−k processes will visit any node at depth k in the tree.
Thus, at most one process will reach any leaf, and this guarantees that the names produced by
the algorithm are distinct.

4.1 Uniform Naming

The naming algorithm used to prove that (5) implies (1) in the proof of Theorem 4.2 is not
uniform: a process must know n (or at least an upper bound on n) because the process must
proceed through the tree until it reaches a node at depth n − 1. This knowledge is indeed
necessary: we show in this section that some types that can solve naming for any number of
processes cannot solve uniform naming.

Consider the toggle object, which stores a single bit and provides a single operation, called
Toggle, that changes the value of the bit and returns its new value. This object is not
idemdicent, so it is capable of solving the naming problem among any number of processes, by
Theorem 4.2. However, we shall show that there is no uniform naming algorithm. To do this,
we first prove the following lower bound on the time complexity of any naming algorithm that
uses toggle objects and registers.

Proposition 4.3 In any naming algorithm for n processes that uses toggle objects and registers,
the number of Toggle operations performed during any solo execution of the algorithm is
greater than log2(n − 1).

Proof: Consider any naming algorithm for n processes that uses toggle objects and registers.
Let α be any solo execution of the algorithm by a single process p. The execution α can be
broken up into segments α = α0t1α1t2α2 · · · tkαk, where each ti is a single Toggle step on a
toggle object Xi and each αi is a (possibly empty) sequence of Reads and Writes.

To derive a contradiction, assume k ≤ log2(n − 1). Then n ≥ 2k + 1. We construct an
execution where 2k + 1 processes begin running in lockstep, each performing a prefix of the
sequence of steps that p does in α. Each time p performs a Toggle, we throw away the half
of the processes who receive the opposite answer to p, so that all remaining processes can still
continue taking steps as clones of p. Consider the execution β0τ1β1τ2β2 · · · τkβk, where

• β0 is an execution by 2k + 1 processes running in lock-step, so that each process performs
the same sequence of steps as p performs in α0,

• τi is an execution where each of the 2k−i+1 + 1 processes that took steps in βk−1 perform
a single operation, which will be a Toggle on Xi, and

• βi is an execution where each of the 2k−i + 1 processes that received the same response
from Xi during τi as p received in step ti run in lockstep; each process performs the same
sequence of steps as p performs in αi.

We remark that this execution is legal, since the state of each shared object is the same at the
end of the executions α0t1α1 · · · tiαi and β0τ1β1 · · · τiβi for all i ≥ 0. The two processes that
take steps in αk have taken exactly the same sequence of steps as p does in α, so they must
both terminate and output the same name as p chose in α. This violates the name uniqueness
property of the naming problem. Thus, the assumption that k ≤ log2(n − 1) must be false.
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Corollary 4.4 There is no uniform naming algorithm using toggle objects and registers.

Proof: Suppose there is such an algorithm. Consider a solo execution of the algorithm. Let
m be the number of steps the process takes in this execution. This algorithm solves the naming
problem in a system of 2m+1 + 1 processes. According to the preceding proposition, a solo
execution in such a system must take at least m + 1 steps, contradicting the definition of m.

Thus, the uniform naming problem is strictly harder than the naming problem.

5 Strong Naming

We now consider the strong naming problem, where processes must return distinct names from
the range {1, . . . , n}. Below, in Corollary 5.2, we obtain a result analogous to Theorem 4.2 for
the strong naming problem. However, it applies only to object types whose consensus numbers
are at least two. It is an open problem whether the result also holds for objects at level one
of the consensus hierarchy. The following proposition shows that, if the system is capable of
solving consensus among two processes, the naming and strong naming problems are equivalent.

Theorem 5.1 If cons(T ) ≥ 2 then, for any n, objects of type T and registers can be used
to solve naming for n processes if and only if they can be used to solve strong naming for n
processes.

Proof: The claim is trivial for n = 1, so assume n ≥ 2. The “if” part of the claim is trivial
since any strong naming algorithm is also a naming algorithm.

To prove the converse, suppose that naming is solvable for n processes using objects of type
T and registers. By Theorem 4.2, T is not idemdicent. By Corollary 2.3, the tree of possible
executions of the naming algorithm is finite, and therefore the set of possible names is finite.
Let M be the maximum possible name.

The following algorithm solves the strong naming problem for n processes. It uses a data
structure that consists of n binary trees, each with M leaves, to implement a renaming algorithm
that reduces the size of the name space. The trees are numbered 1 to n. Each internal
node of each tree is associated with a different instance of two-process eponymous consensus,
which is implemented from objects of type T and registers. Each process first obtains a name
i ∈ {1, 2, . . . , M} using the naming algorithm. It then accesses the first binary tree, starting
from the ith leaf and moving along the path from that leaf to the root. At each internal node,
it proposes left or right to the instance of the two-process eponymous consensus algorithm
associated with the node. If the process arrived at the node from its left child, it proposes left,
using the consensus algorithm for process 1, and if it arrived from the right child, it proposes
right, using the consensus algorithm for process 2. The process continues towards the root only
if the result returned is equal to the value it proposed. In this case, we say that the process
wins at that node. A process that does not receive its own input as the output of consensus at
some node is said to lose at that node. If it ever loses at some node, it stops accessing the tree
and switches to the next tree. It accesses this tree in exactly the same way, again moving on
to the next one if it ever loses at some node. The process continues accessing trees in this way
until it wins at the root of one of the trees. If the process wins at the root of the jth tree, it
outputs j as its name and halts.
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The consensus algorithm associated with a node can be run by at most one process for each
of the two children of the node, namely the process that either started at that child (if the child
is a leaf) or the process that won at that child (if the child is an internal node). Thus, the
algorithm executed at each node will correctly solve consensus. At most one process will win
at the root of any tree, and it follows that all names produced will be distinct elements of the
set {1, 2, . . . , n}. To prove that processes terminate, we observe that if r processes access nodes
at some level of tree T , at least ⌈r/2⌉ of them either win or experience a halting failure. So, if
any processes access tree T , at least one process either wins at the root of T or fails at some
time during its accesses to T . Thus, if k processes access a tree, at most k − 1 processes access
the next tree. It follows that no process continues past the nth tree. Thus, every non-faulty
process eventually outputs a name.

Corollary 5.2 For any type T with cons(T ) ≥ 2 and any n ≥ 2, the following are equivalent.

(1) Strong naming can be solved for n processes using objects of type T and registers.

(2) Strong naming can be solved for 2 processes using objects of type T and registers.

(3) T is not idemdicent.

Proof: This follows directly from Theorem 4.2 and Theorem 5.1.

This corollary can be used to reveal another connection between the consensus problem and
naming.

Theorem 5.3 If T is not idemdicent, acons(T ) = cons(T ).

Proof: To derive a contradiction, suppose T is not idemdicent but acons(T ) 6= cons(T ). By
Observation 3.1, acons(T ) < cons(T ). Thus, cons(T ) ≥ 2 and acons(T ) 6= ∞. Since T is not
idemdicent, strong naming can be solved for acons(T ) + 1 processes using objects of type T
and registers, by Corollary 5.2. Then, acons(T )+1 processes can solve consensus anonymously
using objects of type T and registers by first running the strong naming algorithm and then
running the eponymous consensus algorithm for acons(T ) + 1 processes. This contradicts the
definition of acons(T ).

Theorem 5.1 showed that the naming and strong naming are equivalent if the underlying
system can solve two-process consensus. However, if this is not the case, strong naming is
strictly harder than naming. We now define an object that can solve naming for any number
of processes but cannot solve strong naming even for two processes.

The weak-name object has a single operation, GetName, that behaves as follows. The first
two GetName operations non-deterministically return any two distinct names from the set
{1, 2, 3}. If any further GetName operations are performed, the object non-deterministically
chooses any value from the set {1, 2, 3} to return.

More formally, the state set is {⊥, 1, 2, 3,Upset}. The transition function is given by

δ(⊥,GetName) = {(i, i) : i ∈ {1, 2, 3}}

δ(i,GetName) = {(Upset, j) : j 6= i, j ∈ {1, 2, 3}}

δ(Upset,GetName) = {(Upset, j) : j ∈ {1, 2, 3}}
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Theorem 5.4 Weak-name objects can solve naming for n processes, for all n. Weak-name
objects and registers cannot solve strong naming for two processes.

Proof: The weak-name type is not idemdicent: if it is initialized to the state ⊥, the first
two accesses to it must return different results. By Theorem 4.2, it can solve naming for any
number of processes.

Assume that weak-name objects and registers can solve strong naming for two processes.
We shall use a reduction involving the renaming problem to derive a contradiction from this
assumption. The renaming problem is to design an anonymous algorithm such that, in any
execution where processes receive distinct inputs in the range {1, . . . , M}, they output distinct
values in the range {1, . . . , m}. We describe how to build a two-process renaming algorithm
for M = 3 and m = 2 using only registers. This was shown to be impossible by Herlihy and
Shavit [15].

To solve the renaming problem, each of the two processes runs the strong naming algorithm.
Each weak-name object X used in the naming algorithm is simulated without doing any accesses
to shared memory as follows. We consider several cases, depending on how X is initialized.
First, suppose X is initially ⊥. When a process with input i is supposed to first access X, it
pretends that the response from X was i. If the process does any subsequent accesses to X, it
pretends X’s response was i mod 3 + 1. Note that, in any execution, the first two simulated
responses from X will be distinct, whether those two accesses are by the same process or
by different processes. If X initially has state i, then all accesses to X return the response
i mod 3 + 1. If X is initially Upset, then all accesses to X return the response 1. This
simulation of the algorithm requires only registers. Because this is a faithful simulation of the
strong naming algorithm, the two processes will output distinct values from {1, 2}, thereby
solving the renaming problem, which is impossible.

Corollary 5.5 The type weak-name has consensus number 1.

Proof: By Theorem 5.4, weak-name objects can solve the naming problem for two processes.
If cons(weak-name) were bigger than one, then, by Theorem 5.1, strong naming for two pro-
cesses could be solved using weak-name objects and registers, but this would contradict Theorem
5.4.

6 Classifying Object Types

The preceding results provide enough information to give a fairly complete picture of the clas-
sification of object types according to their ability to solve consensus and naming, and their
universal numbers. This classification is given in the following theorem. Examples of types in
the various categories will be described below.

Theorem 6.1 Every type T belongs to one of the rows in Table 1 on page 5. (The fourth
column describes whether naming can be solved for any number of processes greater than 1
using objects of type T and registers.)

Proof: Consider any type T . We show that T fits into one of the rows in Table 1, ignoring
the last column for the moment.
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First, suppose cons(T ) = 1. Then, by Observation 3.1, acons(T ) = 1. If T is idemdicent,
then it cannot solve naming (even with registers), by Theorem 4.2, and therefore its strong
naming number is 1. Thus, T belongs to row 1 of the table. If T is not idemdicent, then it can
solve naming, so it belongs to row 2, 3 or 4, depending on its strong naming number.

Now suppose cons(T ) = x > 1. If T is idemdicent, then objects of type T (and registers)
cannot solve naming, by Theorem 4.2. Therefore, they cannot solve strong naming, even
for two processes, either. The anonymous consensus number of T must be at least two, by
Theorem 3.5, and at most x, by Observation 3.1. Thus T belongs to row 5 of Table 1. If T
is not idemdicent, then acons(T ) is also x, by Proposition 5.3. Objects of type T can solve
naming, by Theorem 4.2. Objects of type T and registers can solve strong naming for any
number of processes, by Proposition 5.2. Thus, T belongs to row 5 of Table 1.

Finally, we show that the value given for univ(T ) is correct for each row. For the first 4
rows, univ(T ) must be 1, since objects of type T and registers cannot implement consensus
for two processes. For row 5, univ(T ) must be 1, since objects of type T and registers cannot
solve strong naming for two processes. For types in row 6, univ(T ) ≤ x, since objects of type
T and registers cannot implement consensus for x + 1 processes. To see that univ(T ) = x, we
describe how x processes can anonymously implement any object using objects of type T and
registers. First, the processes solve strong naming and then, because cons(T ) = x, they can
apply Herlihy’s eponymous universal construction to implement any object [14].

It is an open question whether there exist any types belonging to row 3 of Table 1, so it is
possible that this row could be removed from the table, or additional constraints on the value
of z could be included. We now show that the rest of the classification cannot be improved: we
give examples for each other row in Table 1.

A register has consensus number 1 [9, 22] and is idemdicent, so it belongs to row 1 of Table 1.
The weak-name object, defined in Section 5, belongs to row 2 of Table 1, according to Theorem
5.4 and Corollary 5.5.

For row 4, we define a new strong-name type. It provides a single operation, GetName(k)
where k is a positive integer, that returns a positive integer. If processes perform up to k
GetName operations with the same argument k, the object returns distinct responses from
{1, 2, . . . , k}. If processes access the object in a different way, the object becomes upset and
returns non-deterministic results.

More formally, the state set of the strong-name object is {⊥,Upset} ∪ {(k,S) : k ≥ 1,S ⊆
{1, . . . , k}}. The state (k,S) is intended to represent the situation where processes have been
accessing the object with argument k and the object has already given the responses in the set
S. The transition function is defined by

δ(⊥,GetName(k)) = {((k, {i}), i) : 1 ≤ i ≤ k},

δ((k,S),GetName(k)) = {((k,S ∪ {i}), i) : i ∈ {1, . . . , k} − S} if |S| < k,

δ((k,S),GetName(j)) = {(Upset, i) : 1 ≤ i ≤ j} if |S| = k or j 6= k, and

δ(Upset,GetName(k)) = {(Upset, i) : 1 ≤ i ≤ k}.

The following proposition shows that this type occupies line 4 of Table 1.

Proposition 6.2 A single strong-name object can solve strong naming for any number of pro-
cesses and cons(strong-name) = 1.

20



Proof: There is a very simple algorithm for strong naming among n processes using a single
strong-name object initialized to the state ⊥: each process performs a GetName(n) and
outputs the object’s response.

We now show that cons(strong-name) = 1. We do this by showing that a strong-name
object can be implemented (eponymously) for two processes without using shared memory. So,
if there were a two-process eponymous consensus algorithm that uses strong-name objects and
registers, then two processes could solve eponymous consensus using only registers, which is
impossible [14, 22].

A strong-name object X can be implemented in a two-process eponymous system without
using shared memory at all as follows. If X is initialized to Upset, all operations on X simply
return 1. If X is initialized to (k,S) let S ′ = {1, . . . , k} − S. Any GetName(j) with j 6= k
can simply return 1. Process 1’s GetName(k) operations performed on X return the elements
of S ′, in order. Process 2’s GetName(k) operations performed on X return the elements of
S ′ in reverse order (starting with the largest element). If either process runs out of values, it
can start simply returning 1. Then, the only way that two GetName(k) operations on X can
return the same result is if at least k − |S|+ 1 accesses to X have been done, by which time X
should be in the Upset state, and it is legal for equal results to be returned. If X is initialized
to ⊥, and a process’s first operation on X is GetName(k), then the process can implement X
as above, using S ′ = {1, . . . , k}.

The object Tx,y, defined in Section 3.2, was shown in Proposition 3.4 to have cons(Tx,y) = x
and acons(Tx,y) = y for every x and y satisfying 2 ≤ y ≤ x ≤ ∞. It is easy to verify that Tx,y

is idemdicent by examination of the transition function. If the object is in state ⊥, the next
two operations can return the first argument of the first operation. If the object is in state
(r, k, S), the next two operations can both return r. If the object is in state Upset, the next
two operations can both return 0. Thus, objects of type Tx,y cannot be used with registers to
solve the naming problem. This means that there are types in row 5 of Table 1 for all possible
values of x and y. The memory-to-memory swap array discussed in Section 3.3 is another
example of a type in row 5 of the table.

The final row of Table 1 is occupied by the object aconsx, defined in Section 3.1, for 2 ≤
x < ∞. Notice that this object is not idemdicent, and can therefore solve naming, because two
successive invocations of Propose(1) starting from state (0, x − 1) must return 0 and 1. The
compare&swap object also occupies the final row of Table 1, with x = ∞.

6.1 Deterministic Types

If we restrict attention to deterministic types only, then the classification of Theorem 6.1 can
be refined. The objects given above as examples for rows 1 and 6 of Table 1 are deterministic.
The following proposition rules out the possibility of any deterministic types in rows 2, 3 and
4 of Table 1.

Proposition 6.3 If T is deterministic and not idemdicent, then acons(T ) ≥ 2.

Proof: Since T is deterministic and not idemdicent, there is a state q and an operation op
such that two successive invocations of op return results r1 and r2, respectively, with r1 6= r2.
Then the algorithm in Figure 2 solves consensus for two processes anonymously using one object
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Propose(x)
Write(⊤) in Rx

if applying op to X returns r2 and a Read of Rx returns ⊤ then
return x

else
return x

end if
end Propose

Figure 2: Two-process anonymous consensus using a deterministic non-idemdicent object.

X of type T , initialized to state q, and two registers R0 and R1, initialized to state ⊥. In the
algorithm, both processes can only return the input value of the first process that accesses X.

There are some deterministic types that belong to row 5 of Table 1. For example, standard
x-consensus objects have consensus number x, but are idemdicent. It is an open question
whether there is a type in row 5 for all possible values of x and y.

7 Non-robustness

Jayanti raised the question of the robustness of the consensus hierarchy [17]. In general, a
robustness property means that two types of objects that cannot be used individually to solve
a problem cannot be used together to do so. In particular, Jayanti asked whether two types at
level k or lower in the consensus hierarchy can be used together to solve consensus among more
than k processes. (It is known that the answer is yes, although this cannot happen for certain
classes of objects. See [11] for a survey of these results.) We can ask the same question for the
anonymous consensus hierarchy.

Theorem 7.1 The anonymous consensus hierarchy is not robust: for 2 ≤ y < x, neither the
weak-name nor the Tx,y type can be used (with registers) to solve consensus anonymously among
more than y processes, but anonymous consensus can be solved among x processes using objects
of type weak-name, Tx,y and registers together.

Proof: It was shown in Corollary 5.5 that cons(weak-name) = 1, so acons(weak-name) = 1
by Observation 3.1. By Proposition 3.4, acons(Tx,y) = y.

Since the weak-name object is not idemdicent, x processes can choose unique names using
them, by Theorem 4.2. Once the processes have chosen unique names, they can use objects of
type Tx,y and registers to implement the renaming algorithm used in the proof of Proposition 5.1.
This will provide each process with a unique name in the range {1, . . . , x}. Then the processes
can use these names to run the eponymous consensus algorithm built from objects of type Tx,y

and registers. (Proposition 3.4 proved that such an algorithm exists.)

It follows from the argument above that the classification of types T according to univ(T )
is not robust either.
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Proposition 7.2 The types weak-name and Tx,y each have universal number 1, but together
the types weak-name, Tx,y and registers can be used anonymously to implement any object type
for x processes.

Proof: It follows from Corollary 5.5 that univ(weak-name) = 1. As shown in Section 6, type
Tx,y is idemdicent, so it has univ(Tx,y) = 1.

The preceding proof showed that the types could be used together to solve strong naming
and consensus among x processes. Then Herlihy’s universal construction [14] can be used to
implement any other object type in a system of x processes.

The same object types can be used to show that the strong naming hierarchy is not robust:
we have snaming(T2,2) = snaming(weak-name) = 1, but a system with both types (and
registers) can solve strong naming for any number of processes, as shown in Theorem 5.1.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of
Canada and was partly done during a sabbatical at the École Polytechnique Fédérale de Lau-
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