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Motivation: One of the purposes of studying and analyzing protein-protein
interaction networks (PINs) is to identify new protein complexes that guide the
workings of a cell. Clustering algorithms for PIN data presented in the
literature often do not consider the layered structure of protein complexes,
creating instead a flat clustering.

Results: We propose the MULIC clustering algorithm that produces layered
clusters of PIN data. We applied MULIC clustering to five PINs, including
three yeast PINs. MULIC clusters correlate with known protein complexes in
the MIPS database. For example, a large cluster of 79 proteins significantly
overlaps with a known complex of 88 proteins.

Conclusions: MULIC clustering can assist in predicting protein complexes.
Given the layered structure of the MULIC clusters, the proteins in top layers
tend to be more representative of protein complexes than proteins in bottom
layers. Lab experiments on finding an unknown complex or determining the
potential effects of a drug can initially be guided by proteins in top layers and
later move to bottom layers of clusters.

Supplementary Information: http://www.cs.yorku.ca/~billa/MULICppi05/

Keywords: Clustering, multiple layer, protein interaction network, complex.

1 Introduction

The amount of PIN data in databases has increased exponentially in recent years.
Knowledge of the protein complexes in PINs has also increased, but at a slower rate.
Often, but not always, proteins in a specific complex have more interactions with one
another than they do with proteins from other complexes. This often allows clustering
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tools to predict protein complexes by identifying the dense areas in a PIN. One of the
challenges in analyzing PIN data is to develop efficient clustering tools that can fairly
accurately identify previously unknown protein complexes.

The main contribution of our work is to propose a novel method for finding protein
complexes in PIN data using the MULIC clustering algorithm. The main strength of this
algorithm is that each cluster consists of layers. Proteins in the top layer of a cluster have
very similar sets of interactions to other proteins, while proteins in lower layers have less
similar sets of interactions. A new cluster is created only when a set of proteins with very
similar interactions is found. We applied this algorithm to three yeast S. cerevisiae PINs,
one fruitfly D. melanogaster PINs and one worm C. elegans PIN. We filtered the clusters
by cluster size. We compared the filtered clusters with known protein complexes in the
MIPS database.

This paper is organized as follows. Section 2 describes previous related work. Section 3
describes the data sets and evaluation measures used. Section 4 describes the MULIC
clustering algorithm. Section 5 presents and discusses the experimental results. Section 6
discusses the results in detail comparing them to those of other algorithms and discusses
the advantages of this approach. Finally, Section 7 concludes the paper.

2 Related Work

Several clustering algorithms applied to PINs have been proposed so far, often based on
graph theoretic techniques. These algorithms often do not consider the layered structure
of protein complexes, creating instead a flat clustering. Moreover, the focus of these
algorithms is often on finding the most densely connected or largest hubs of a PIN and
not on the similarities between the proteins’ sets of interactions with all other proteins.

An application of the identification of k-cores algorithm was proposed by (Bader &
Hogue, 2003). K-cores in graph theory were introduced by (Batagelj et al., 2001). Given
a graph G = {V,E} with vertices set ¥ (proteins) and edges set E (interactions), the k-core
is computed by pruning all the vertices and their respective edges with degree (number of
edges) less than k. That means that if a vertex u has degree d,, and it has n neighbors with
degree less than £, then u's degree becomes d, — n and it will be also pruned if k > d, — n.
Figure 1 shows simple examples of protein complexes: a 4-core that can be found by both
MULIC and k-cores with k=4; and two 3-cores that can be found by MULIC but not k-
cores with k=4. K-cores with k=4 can not find the 3-core complexes, since some proteins
have 3 edges only. MULIC can find all of these complexes, since most proteins have
similar edge sets.

4-core Protein Complex 3-core Protein Complex 3-core Protein Complex
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Figure 1: A 4-core protein complex and two 3-core protein complexes.
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The Restricted Neighbourhood Search Clustering algorithm (RNSC) (King et al.,2004).
is a cost-based local search algorithm based loosely on the tabu search metaheuristic
(Glover, 1989). A clustering of a network G = {V,E} is equivalent to a partitioning of the
node set V. The RNSC efficiently searches the space of partitions of V, each of which is
assigned a cost, for a clustering with low cost. RNSC searches for a low-cost clustering
by first composing an initial random clustering, then iteratively moving one node from
one cluster to another in a randomized fashion to improve the clustering’s cost. The
algorithm searches using a simple integer-valued cost function as a preprocessor before it
searches using a more expressive (but less efficient) real-valued cost function.

(Ding et al., 2004) present a representation of PINs based on an underlying bipartite
graph model that allows generating the protein complex - protein complex association
network. This representation allows viewing the PIN as consisting of protein complexes
that share components.

(Dunn et al., 2005) describe separating PIN graphs into subgraphs (protein clusters) of
interconnected proteins, using the JUNG implementation of Girvan and Newman's Edge-
Betweenness algorithm. Functions are sought for the subgraphs by detecting significant
correlations with the distribution of Gene Ontology functional annotations which had
been used to annotate the proteins within each cluster. The method was implemented
using freely available software (JUNG and the R statistical package). (Yang & Lonardi,
2005) propose a parallel implementation of Girvan and Newman’s clustering algorithm
that runs on clusters of computers. This parallel implementation achieves almost linear
speed-up and allows running this computationally intensive algorithm on large PINs.

3 Data Sets and Evaluation Measures

We used three yeast S. cerevisiae PINs originating from (von Mering et al., 2002)
containing 2455 interactions (988 proteins), 11855 interactions (2617 proteins) and
78390 interactions (5323 proteins). We refer to these networks as Y2K, Y11K and Y78K
respectively. Y2K contains high confidence interactions only, Y11K contains high and
medium confidence interactions and Y78K contains high, medium and low confidence
interactions. We used two more PINs of organisms for which little knowledge of protein
complexes exists, making the evaluation of the results difficult. We used one fruitfly D.
melanogaster PIN containing the set of 4637 interactions (4603 proteins) that have
confidence greater than 0.5, as given in (Giot et al., 2003). We refer to this network as
F4K. Finally, we used one worm C. elegans PIN containing 5222 interactions (3659
proteins) (Li et al., 2004, King et al., 2004). We refer to this network as W5K. We first
clustered these networks using the MULIC algorithm. Then we filtered the results based
on cluster size, to preserve only the clusters that are large enough and more likely to
represent true biological complexes.

3.1 Representation of PIN Data Sets

PIN information on an organism is categorical, meaning that the objects (proteins) have
attribute values that are taken from a set of discrete values and the values have no
specified ordering. We represent PIN information as a categorical data set by creating a
symmetric square NxN matrix, where N is the number of proteins of an organism. Figure
2 shows the representation of a PIN data set. The categorical attribute value (CA) in cell
(i,j) of the matrix is ‘zero’ or ‘one’, where ‘one’ represents that protein / interacts with
protein j and ‘zero’ represents that protein i does not interact with protein ;.
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Figure 2: Cells representing interactions between proteins have attribute values of ‘zero’ or ‘one’.

3.2 Filtering Clusters by Size

We filter the clusters by size so that clusters of size less than a lower bound are
ignored. The lower bound is determined experimentally for each PIN. One reason for
ignoring small clusters is that an overlap of x% between a large cluster and a known
complex is less likely to be by chance than an overlap of x% for a small cluster.
Furthermore, small known complexes have low protein interaction rates and thus it is
difficult to detect these complexes through clustering of PINs. Thus, small clusters are
less likely to represent true protein complexes.

In the previous work by King et al. the results were also filtered by cluster density (i.e.
the average number of interactions between proteins in a cluster) and functional
homogeneity (i.e. whether a known functional annotation occurs in a cluster more
frequently than would be expected by random). We do not filter the results by cluster
density or functional homogeneity, because the clusters resulting from our algorithm have
a more complex structure and we want all clusters to be investigated for structural
properties. We do not filter the results by functional homogeneity because we want to
evaluate the results independently of whether a function occurs frequently in the cluster —
for example, a function might occur frequently at a high layer but a totally different
function might occur at a lower layer and this may show something interesting about the
complex’s structure.

3.3 Matching Clusters to Complexes

We used matching criteria proposed in (King et al., 2004) to match the filtered clusters
of proteins to the known protein complexes in the MIPS complex database (Mewes et al.,
2002). According to the matching criteria, a cluster matches a known MIPS complex by
overlap if there are sufficient overlapping proteins between them and preference is given
to larger overlapping clusters and complexes. A cluster matches a known MIPS complex
by containment if the cluster is nearly entirely contained in the complex. A large cluster
containing a small complex is not useful for researchers, so we ignore this case.

The notation O(C) represents the set of all objects (proteins) in a cluster or complex C.
We consider a cluster C/ to match a complex Co by overlap if both criteria are satisfied:

cluster

lo(co)| ~log,,(7+|0(C1))

o nocco)| P

and
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|O(Cl) M O(C0)| > complex
OCo)l ™ log,(7+]0(Co))

This means that for C/ to match Co by overlap: a. the proportion of Cl’s proteins that are
contained in Co should be larger than a percentage which decreases as the size of CI
increases, and b. the proportion of Co’s proteins that are contained in C/ should be larger
than a percentage which decreases as the size of Co increases. Thus, matches by overlap
occur easier for larger overlapping clusters and complexes rather than smaller ones.

We consider a cluster to match a complex by containment if:

0(Ch N O(Co)|
locch| -

This means that for C/ to match Co by containment, the proportion of C/’s proteins that
are contained in Co should be at least P.,,;,. The constants Pjuser, Peompiex AN Propiain are
user-defined, experimentally derived proportions between 0 and 1. More details on these
matching criteria and their experimental derivation are given in (King et al., 2004).

contain

3.4 Evaluation of Results

To evaluate the effectiveness of our clustering algorithm for finding protein complexes,
we filter the clusters by size (Sections 3.2) and then match them to the MIPS complexes
according to the matching criteria (Section 3.3). Our goal is to achieve a high number of
passing clusters, matching clusters and high prediction rate. Passing clusters are those
that pass the size filter. Matching clusters are passing clusters that match at least one
known MIPS complex according to the matching criteria. The prediction rate is the
proportion of passing clusters that are also matching clusters. Another goal of our work is
for the matched complexes to be of a large size and to have a large overlap with the
matching clusters.

We use strict values for the matching criteria of Pjsier=Peompie=0.7 and P o1in=0.9,
such that a cluster matches a complex only if there is a significant overlap between them.

4 The MULIC Clustering Algorithm

MULIC is an extension of the k-Modes clustering algorithm for categorical data sets
(Huang, 1998). The k-Modes clustering algorithm requires the user to specify the number
of clusters to be produced and the algorithm builds and refines the specified number of
clusters. Each cluster has a mode associated with it. Assuming that the objects (proteins)
in the data set are described by m categorical attributes, the mode of a cluster is a vector
0={q:, 92 ---» gn} Where g; is the most frequent value for the ith attribute in the given
cluster.

The MULIC clustering algorithm makes substantial changes to k-Modes. MULIC
ensures that when each object is clustered it is inserted into the cluster with the most
similar mode, thus maximizing the similarity between the object and the mode:

similarity(o,;, mode ) 1

where o; is the ith object in the data set and mode; is the mode of the ith object’s cluster.
The similarity metric is defined in Section 4.1.

The MULIC algorithm has the following characteristics. First, the number of clusters is
not specified by the user. Clusters are created, removed or merged during the clustering
process, as the need arises. Second, it is possible for all objects to be assigned to clusters
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of size two or greater by the end of the process. However, outliers are assigned to
separate clusters of size one. Third, clusters are layered.

Figure 3 shows the main part of the MULIC clustering algorithm. The algorithm starts
by reading all objects from the input file and storing them in S. The first object is inserted
in a new cluster, the object becomes the mode of the cluster and the object is removed
from S. Then, it continues iterating over all objects that have not been assigned to clusters
yet, to find the closest cluster. In all iterations, the closest cluster for each unclassified
object is the cluster with the highest similarity between the cluster’s mode and the object,
as computed by the similarity metric.

Input: (1) aset S of objects;
Parameters: (1) Jg : the increment for ¢;

(2) threshold for ¢ : the maximum number
of values that can differ between an
object and the mode of its cluster;

Default parameter values: (1) dp = 1;
(2) threshold = the number of
categorical attributes m;
Output: a set of clusters;
Method:
1. Insert the first object into a new cluster, use the
object as the mode of the cluster, and remove the
object from S;
2. Initialize p to 1;
3. Loop through the following until S is empty or ¢
is greater than the specified threshold
a. For each object oin S
i.  Find o’s closest cluster ¢ by using the
similarity metric to compare o with the
modes of all existing cluster(s);
ii.  If the number of different values
between o and ¢ s mode is larger than
@, insert o into a new cluster

iii. Otherwise, insert o into ¢ and update

¢’s mode;

iv. Remove object o from S;

b. For each cluster c, if there is only one object in
¢, remove ¢ and put the object back in §;

c. If in this loop no objects were placed in a
cluster with size > 1, increment ¢ by dp.

Figure 3: The MULIC clustering algorithm.

The variable ¢ is maintained to indicate how strong the similarity has to be between an
object and the closest cluster’s mode for the object to be inserted in the cluster — initially
@ equals 1, meaning that the similarity has to be very strong between an object and the
closest cluster’s mode. If the number of different values between the object and the
closest cluster’s mode is greater than ¢ then the object is inserted in a new cluster on its
own, else, the object is inserted in the closest cluster and the mode is updated.

At the end of each iteration, all objects assigned to clusters of size one have their
clusters removed so that the objects will be re-clustered at the next iteration. This ensures
that the clusters that persist through the process are only those containing at least 2
objects for which the required similarity can be found. Objects assigned to clusters with
size greater than one are removed from the set of unclassified objects S, so those objects
will not be re-clustered.
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At the end of each iteration, if no objects have been inserted in clusters of size greater
than one, then the variable ¢ is incremented by Jdp. Thus, at the next iteration the criterion
for inserting objects in clusters will be more flexible. The iterative process stops when all
objects are classified in clusters of size greater than one, or ¢ exceeds a user-specified
threshold. If the threshold equals its default value of the number of attributes m, the
process stops when all objects are assigned to clusters of size greater than one.

The MULIC algorithm can eventually classify all objects in clusters, even if the closest
cluster to an object is not that similar, because ¢ can continue increasing until all objects
are classified. Even in the extreme cases, where an object o with m attributes has only
zero or one value similar to the mode of the closest cluster, it can still be classified when
@ =m or ¢ = m-1, respectively.

cluster 1 cluster Z cluster 3

@ layer
@ layer &

.

w

Figure 4: MULIC results. Each cluster consists of one or more different layers representing
different similarities of the objects attached to the cluster.

Figure 4 illustrates what the results of MULIC look like. Each cluster consists of many
different "layers" of objects. The layer of an object represents how strong the object's
similarity was to the mode of the cluster when the object was assigned to the cluster. The
cluster’s layer in which an object is inserted depends on the value of ¢. Lower layers
have a lower coherence - meaning a lower average similarity between all pairs of objects
in the layer - and correspond to higher values of ¢. MULIC starts by inserting as many
objects as possible in top layers — such as layer 1 - and then moves to lower layers,
creating them as ¢ increases.

If an unclassified object has equal similarity to the modes of the two or more closest
clusters, then the algorithm tries to resolve this ‘tie’ by comparing the object to the mode
of the top layer of each of these clusters — the top layer of a cluster may be layer 1 or 2
and so on. Each cluster’s top layer’s mode was stored by MULIC when the cluster was
created, so it does not need to be recomputed. If the object has equal similarity to the
modes of the top layer of all of its closest clusters, the object is assigned to the cluster
with the highest bottom layer. If all clusters have the same bottom layer then the object is
assigned to the first cluster, since there is insufficient data for selecting the best cluster.

4.1 MULIC Characteristics for PIN Data Clustering

MULIC includes characteristics specific for PIN data clustering. A position of the mode
of a cluster is set to ‘one’ if there is at least one object in the cluster that has an attribute
value of ‘one’ in the corresponding position. We do not use the most frequent value for
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each position of the mode as in the traditional k-Modes, because with the PIN data sets
most or all values of the mode would be set to ‘zero’.

When calculating the similarity between a mode and an object, pairs of ‘zero’ attribute
values between mode y and object o are ignored. The similarity metric is defined as

follows:

L (o; =u; =1

0 otherwise .

m

similarity(o, i) = 2. O'(Oi,,ui) oo ;)= {
i=1

The function o returns 1 if an object 0 and a mode x have identical CAs of ‘one’ at a

position, and returns O otherwise.

4.2 Merging of Clusters

We should generally avoid the situation where the similarity of the top layers of two
different clusters is stronger than the similarity of the top and bottom layer of the same
cluster. To avoid this, after the clustering process MULIC can merge pairs of clusters
whose top layers’ modes’ dissimilarity is less than the maximum layer depth of the two
clusters. For this purpose, MULIC preserves the modes of the top layers of all clusters.
This process reduces the total number of clusters and may improve the quality of the
results. This process is described as follows:

for (c = first cluster to last cluster)
for (d = c+1 to last cluster)
if the dissimilarity between c’s mode and d’s mode is less than the maximum
layer depth of ¢ and d, merge c into d and break the inner loop;
where the dissimilarity between two modes (Q.= {q., ..., gem} and Qs= {quas, ..., Gum}) 18
defined as:

0 (9. =94

dissimilarity(Q. , Q)= ;5(%,%’.) 0(q,+94) = { L (g, %4,).

4.3 Detection of Outliers

MULIC will eventually put all the objects in clusters if the threshold for ¢ equals its
default value of the number of attributes m. When ¢ equals m, any object that remains
unclassified will be inserted in the lowest layer of a cluster. This is undesirable if the
object is an outlier and has little similarity with any cluster. The user can disallow this
situation from happening by specifying a value for threshold that is less than m. In this
case when ¢ exceeds the maximum allowed value specified by threshold, any remaining
objects are treated as outliers by classifying each object in a separate cluster of size one.
We showed that top layers are more reliable than lower layers in (4dndreopoulos et al.,
2004).

5 Experimental Results

Our tests involve various values of d¢, threshold, as well as both merging and not
merging the clusters. For most of our experiments we set threshold to its default value of
the total number of objects (proteins) because we do not want any proteins to be treated
as outliers and we want all proteins to be assigned to clusters with at least one other
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protein, since a protein does not function independently but in protein complexes. The
detailed results of our experiments including clustering outputs and matches with known
MIPS complexes are available on the supplementary information website (see Abstract).

5.1 Filtering the Clusters by Cluster Size

Increasing the lower bound for the cluster size decreases the number of passing
clusters. The lower bound for the cluster size filter was set to a value of 4, to allow plenty
of clusters to pass the filter while ensuring they had a good chance of matching known
MIPS complexes. Table 1 shows the number of clusters that pass the size filter for the
chosen lower bound for different yeast PINs.

Table 1: Numbers of total and passing clusters for the yeast PINs. The lower bound for the cluster
size filter is 4. The value of threshold is set to its default value. The clusters are not
merged after the clustering process.

PIN dp | Total clusters Passing clusters
Y2K 3 232 73
YI1K 3 480 178
Y78K 5 936 130

5.2 MULIC Clusters Matching MIPS Complexes by Overlap and by Containment

In most of our Y2K tests without merging clusters, there were at least 10 MULIC
clusters that matched known MIPS complexes by overlap (cluster and complex are large
enough and have significant proportions of overlapping proteins). Furthermore, there
were approximately 20 MULIC clusters that matched known complexes by containment
(a significant proportion of the cluster is contained in the complex). Table 2 shows that
all of the MULIC clusters that match known MIPS complexes by overlap have a large
number of overlapping proteins. A MULIC cluster of size 12 matches by overlap the
MIPS protein complex “550.3.60” of size 13. A MULIC cluster of size 10 matches the
MIPS protein complex “550.2.163” of size 10. In this case, 3 of the proteins in the cluster
do not overlap with the complex. All 3 of the non-overlapping proteins were in the
bottom layer of the MULIC cluster. For the matched complex “500.10.40” there is also
one protein in the bottom layer of the cluster that does not overlap with the complex.
Relations of a cluster’s bottom layer proteins with the matched MIPS protein complexes
can be further investigated in the lab.

5.3 Results after Merging of Clusters

Similar MULIC clusters can be merged after the clustering process, as described in
Section 4.2. Table 3 shows that merging the clusters has the effect of reducing the total
number of clusters. Many of the original clusters get merged into few large clusters and
all or most of these large merged clusters match a known MIPS complex. For example,
the second row in Table 3 shows reducing the number of clusters to 210 after merging.
The original number of clusters was 232, so 22 small clusters were merged into 2 large
merged clusters. As shown, both of these merged clusters match by overlap known MIPS
complexes. What is most interesting is the size of these merged clusters. One merged
cluster is of size 104 and it matches by overlap the MIPS complex “550.1.149” of size 88
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that is involved in RNA metabolism (Gavin AC, et al., 2003). The second merged cluster
is of size 14 and it matches by overlap the MIPS complex “360.10.20” of size 18, that is
involved in 19/22S regulation. Clearly, these matches point to the effectiveness of
MULIC combined with merging for predicting large complexes.

One would expect that some small clusters that match different complexes would be
merged and some of the resulting merged clusters would match more than one complex.
However, this never happens in our detailed results (see supplementary info page). In
fact, all of the matching merged clusters match by overlap single complexes, despite their
large size. This is another testament to the effectiveness of this method, given that the
majority of known protein complexes are of a small size (typically of a size less than 10
proteins) and large complexes are relatively infrequent. Large clusters that are likely to
match large protein complexes are more interesting in a lab setting than small clusters.

Table 2: Pairs of MIPS complexes and Y2K clusters that match by overlap and their overlapping
proteins. The value of dg is 3. The value of threshold is set to its default value. Clusters
are not merged after the clustering process.

Matches by overlap Overlapping proteins between Proteins contained

matching cluster and complex in the cluster but

not in the complex

Complex 550.3.60 (20S YJLOOTW, YGR253C, YPR103W, | YER094C
Proteosome) of size 13 YOLO038W, YMR314W,
matches cluster 179 of size YMLO092C, YGR135W,
12 YGLO11C, YERO12W,

YBLO41W, YOR362C
Complex 550.2.163 of size YNL147W, YMR268C, YJL124C, | YNL118C,
10 matches cluster 133 of YER112W, YDL160C, YCRO77C, | YER146W,
size 10 YBL026W YPR182W
Complex 550.2.241 of size4 | YPR101W, YMR213W,
matches cluster 80 of size 4 YLR117C, YLLO36C
Complex 260.90 YNRO35C, YLR370C, YKLO13C, | YGRI196C,
(Arp2p/Arp3p complex) of YJR065C, YIL062C, YDL029W YBR234C
size 6 matches cluster 92 of
size 8
Complex 260.30.10 (Coat YNL287W, YILO76W, YFRO51C, | YKRO67W
complexes) of size 8 matches | YDR238C, YDL145C,
cluster 125 of size 8 YGL137W, YPLO10OW
Complex 550.1.4 (probably YLR314C, YJRO76C, YHR107C,
cell cycle) of size 5 matches | YDL225W, YCR002C
cluster 135 of size 5
Complex 500.10.40 (elF3) of | YNL244C, YDR429C, YBL076C
size 7 matches cluster 199 of | YMR309C, YMR146C, YBR079C
size 6
Complex 160 (exocyst YIL068C, YGL233W, YERO08C,
complex) of size 7 matches YDR166C, YPRO55W, YLR166C
cluster 204 of size 6
Complex 550.1.166 YDR422C, YDRO028C, YELO022W,
(probably signalling) of size | YGL208W, YER027C, YDRO99W,
10 matches cluster 209 of YDR477W, YGL115W YDROOIC
size 9
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Table 3: Numbers of merged and unmerged Y2K clusters passing the size filter and matching a
MIPS complex after reducing the total number of clusters through merging. The number
of clusters before merging was 232 of which 73 were passing and 29 were matching
clusters. The value of dg is 3. The value of threshold is set to its default value.

Total Merged | Unmerged | Passing | Matching Passing Matching | Prediction

clusters | clusters clusters merged merged unmerged | unmerged rate for

after clusters clusters clusters clusters merged

merging clusters
220 1 219 1 1 65 28 100%
210 2 208 2 2 61 27 100%
200 3 197 3 2 57 27 66%
190 5 185 5 2 52 26 40%
180 6 174 6 3 48 23 50%
170 9 161 9 6 42 20 66%
160 11 149 11 6 38 18 55%
150 8 142 8 5 37 17 63%
100 10 90 10 3 19 9 30%
67 8 59 8 4 11 5 50%

5.4 Results after Treating Objects as Outliers

Objects are treated as outliers by setting the threshold for ¢ to a value less than the
number of attributes m, as discussed in Section 4.3. When ¢ exceeds the maximum
allowed value specified by threshold, any remaining objects are treated as outliers by
placing them independently in clusters of size one. Table 4 shows the results for various
values of threshold without merging clusters. A lower value of threshold leads to treating
more proteins as outliers which is beneficial for the prediction rate. When setting
threshold to its default value of the number of attributes m, many proteins that have little
interaction similarity to any other protein will likely be clustered incorrectly with proteins
of different complexes; then fewer clusters will match known complexes. On the other
hand, by setting threshold to a lower value these proteins are treated as outliers; they are
placed in independent clusters of size one and then filtered out though the cluster size
filter.

Table 4: Numbers of Y2K clusters passing the size filter and matching a MIPS complex using
various values of threshold. The value of d¢ is 3. Clusters are not merged after the
clustering process.

threshold | Total clusters | Passing clusters | Matching clusters | Prediction rate

20 219 65 32 50%
25 227 67 32 48%
30 228 67 30 45%
35 230 69 29 43%

40 232 72 31 43%
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Figure 5 illustrates the prediction rates for the Y78K data set, for various values of
threshold and both merging and not merging clusters. As shown, the highest prediction
rates are derived using a low value of threshold of 17. The prediction rates for Y78K are
not very dissimilar from Y2K, even though many interactions of low confidence are used
in the clustering process. This supports that the clustering process is not significantly
affected by the high rate of false positives in data from high-throughput interaction
experiments.

1/4 - 310
15 - 14
320- 15
1/10- 3/20

0D®E 0O

Prediction rate

Figure 5: This graph illustrates the Y78K prediction rates, using various values of threshold and
both merging and not merging the clusters. The value of dg is 5.

Table 5: Numbers of Y2K clusters passing the size filter and matching a MIPS complex using
various values of dp. The value of threshold is set to its default value. Clusters are not
merged after the clustering process.

120) Total Passing Matching Prediction
clusters clusters clusters rate
1 251 64 25 39%
232 73 29 40%
5 218 75 27 36%
10 189 72 23 32%
25 160 68 22 32%
50 156 61 23 38%
75 150 56 20 36%
100 151 56 19 34%

5.5 Results for Various Values of 6p

Table 5 shows the MULIC results for Y2K using various values of dp and without
merging clusters. We notice that a value of d¢ set to 3 results in more clusters matching
complexes than other values. The reason why a d¢ value greater than 1 is used is that it
allows sufficient proteins to be clustered at each iteration so that the modes of the clusters
are given the opportunity to change, as opposed to remaining static. Then, at the next
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iteration more unclassified proteins will be attracted to the cluster. A value of Jd¢ that is
too large, on the other hand, decreases the prediction rate and the quality of the results
because many proteins are assigned to clusters to which they are not so similar.

6 Discussions

MULIC has characteristics specific to PINs that allow it to find unknown protein
complexes. In PINs, there are many complexes of small sizes that have high internal
connectivity, where the connectivity is the number of interactions divided by the number
of proteins. For example, in the yeast proteome of 6,000 proteins most complexes have
sizes of 3-30 proteins. MULIC does not require for the number of clusters to be specified
- a new cluster is created when a set of proteins is discovered that have similar (highly
overlapping) interaction sets. As the process continues MULIC relaxes its criterion for
assigning proteins to clusters, forming cluster layers of lower connectivity. This is in
accordance with a recent study (Dezso et al, 2004) in which protein complexes were
discovered to feature centers of highly co-expressed proteins which mostly display the
same deletion phenotype.

6.1 Comparisons

MULIC is able to achieve high matching rates between PIN clusters and known
protein complexes. In comparison, Bader and Hogue generate a set of 209 protein
complexes, of which 54 match the MIPS database in at least 20% of their proteins in a
yeast PIN of 15,000 interactions (Bader & Hogue, 2003). King et al. generate a set of 28
clusters filtered by size, density and functional annotation, of which 18 match the MIPS
protein complex database in the Y2K yeast PIN of 2,000 interactions (King et al., 2004).
Our results complement these efforts to better understand protein complexes. Our
prediction rate is lower than that of (King et al., 2004) and one reason for this is that we
get more passing clusters since we do not filter the results by density and functional
homogeneity as in their work. Furthermore, we use strict values for the matching criteria
(Petuster = Peompiex = 0.7 and Peopain = 0.9) such that a cluster matches a complex only if
there is a significant overlap. Table 6 shows relaxing the matching criteria increases the
number of matching clusters — with relaxed matching criteria, 92% of the passing clusters
match a known MIPS complex. Table 7 shows a comparison of the MULIC results with
the results of the RNSC clustering algorithm (King et al., 2004). Even with strict criteria,
our number of clusters that match a known MIPS complex is higher and our cluster size
is often larger (both works used a lower bound of 4 for the cluster size filter for Y2K).
With MULIC, before merging clusters there was a cluster of size 55 proteins matching
the MIPS complex “550.1.149” of size 88 proteins. After merging to 220 clusters, there
was a cluster of 79 proteins matching the same complex.

Table 6: As the matching criteria are relaxed, the number of Y2K matching clusters increases.
Since there are 73 passing clusters for Y2K, the prediction rate for Y2K also increases.
The value of dg is 3. The value of threshold is set to its default value. Clusters are not
merged after the clustering process.

Matching criteria Matching clusters Prediction rate
Pepuster = Peomplex = 0.7, Peontain = 0.9 29 40%
Petusier = Peomplex = 0.5, Peontain = 0.7 52 1%
Pepuster = Peomplex = 0.3, Peontain = 0.5 67 92%
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Table 7: The number of Y2K matching clusters and the largest size of a cluster that matches a
MIPS complex by overlap, for the MULIC, RNSC, k-Modes and AutoClass algorithms.
All works used a lower bound of 4 for the cluster size filter. MULIC used strict values
for the matching criteria of Py se/=Pcompiex=0.7 and P y41,=0.9. The value of dg is 3.
The value of threshold is set to its default value.

Number of Y2K Largest size of a cluster that matches a
matching clusters | MIPS complex by overlap

MULIC 32 MIPS complex “550.1.149” of size 88

matches MULIC merged cluster of size 79
by overlap. Their overlap is 44.

RNSC 18 MIPS complex of size 29 matches RNSC
cluster of size 17 by overlap. Their
overlap is 7.

k-Modes 16 MIPS complex of size 20 matches k-
Modes cluster of size 15 by overlap. Their
overlap is 7.

AutoClass 10 MIPS complex of size 15 matches
AutoClass cluster of size 14 by overlap.
Their overlap is 6.

We also applied k-Modes (Huang, 1998) and AutoClass (Stutz & Cheeseman, 1995) to
the same PIN data sets and compared their results with the MULIC results. Table 7
summarizes the results. K-Modes does not have the MULIC characteristics specific to
PIN clustering (described in section 4.1) and we modified the source code to implement
them. Without these characteristics, the clusters’ modes would have all values set to zero.
To evaluate the k-Modes and AutoClass results on our PIN data sets we compared the
clusters to known MIPS complexes. For the k-Modes experiments, we did trials by
setting the number of clusters k to values between 2 and 1500. For the k-Modes
experiments we set the convergence threshold to 0 and we set the modes of the initial
clusters equal to the values of the first objects inserted. For the AutoClass experiments
we did not specify the number of clusters beforehand as the software considers results for
numbers of clusters varying from a minimum of 2; we set the prior distribution for the
categorical attributes to the single multinomial distribution, with no attributes ignored,
which was also the distribution chosen by the developers of the software for their tests on
the soybean data sets.

6.2 Cluster Structure

The multiple layer structure of the MULIC clusters reveals several things about the
structures of the predicted protein complexes that could not be identified with other
algorithms. In all of the derived MULIC clusters the top-layer proteins (layer O and 1)
have the highest connectivity to the other protein members of the cluster. For clusters that
match known MIPS complexes, the proteins in the top layer are often ‘central’ points of
connectivity for the matched complex and perhaps even the entire cell — in other words,
interactions occur with top-layer proteins more frequently than other proteins in the
complex. For example, the well-studied FKS1p (YLR342W) and FKS2p (YGR0O32W)
proteins have a very high connectivity to the other proteins in their complex and were
clustered in the top layers of MULIC clusters. FKS1p and FKS2p are catalytic subunits
of the beta-1,3-glucan synthase complex, which synthesize beta-1,3-glucan, a major
structural polymer of the cell wall in Saccharomyces cerevisiae. The drug caspofungin
binds to FKS1p and FKS2p to disturb the interactions of the glucan synthase complex
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(Markovich et al., 2004). Thus, a biologist could start by testing a new drug on the
proteins in top layers, instead of all proteins in the cluster.

Table 8: For the Y2K matching clusters, the percentages of the proteins in different layers that are
contained in the matched complex.

Layers % of the proteins in these layers contained in matched complex
1-4 72%
7-10 66%
13-19 49%

Furthermore, the multiple layer structure of the derived MULIC clusters can be very
useful in cases where few protein complexes are known for the PIN of an organism, such
as fruitfly and worm. A researcher’s experiments can initially focus on the proteins
clustered in the top layers. Later, the proteins in lower cluster layers can guide the
experiments for the growing set of predicted protein complexes. Table 8 shows that
proteins in top layers of Y2K clusters matching a known MIPS complex are more likely
to be contained in the matched complex, than proteins in bottom layers.

A MULIC cluster can be viewed as a graph, where the nodes correspond to proteins
and the edges correspond to interactions between proteins. A MULIC cluster represented
as a graph is referred to as an outward decreasing density (ODD) graph. An ODD graph
has a set of ‘central’ nodes, with a dense set of undirected edges between them, and a set
of ‘peripheral’ nodes. The nodes are organized in ‘layers’ such that the central nodes are
considered to belong to layer 1 and the peripheral nodes to layers 2 to n. The layers 2 to n
with the peripheral nodes have sparsely occurring edges to the central nodes in layer 1.

pl pe p3 pd pE pé

pli| O 0 1 1 0 o |
layer 1

pzl[ 0 0 1 1 ] o

p31| 1 0 1 0 a0 |
layer 51

pa1| 1 o 0 1 o o |
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Figure 6: A typical MULIC cluster with 3 layers and its representation as an ODD graph.
density layer(1)=414, density layer(51)=417, density layer(101)=4/11.
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Let density_layer(i) represent the density of the edges occurring between the nodes in
layer i and the nodes in layers 1 to i. It is defined as:

density_layer(i) = number of edges between nodes in layer i and nodes in layers 1 to i /

number of nodes in layers 1 to i.
Then, an ODD graph has the following property:
density_layer(i) > density _layer(i+1)

Figure 6 illustrates a typical MULIC cluster and its representation as an ODD graph
structure. Modeling the PIN topology as an ODD graph can help researchers to predict
complexes, as well as the proteins that are likely to be central to complexes.

6.3 Complexity and Runtime

The worst case complexity of MULIC is O(N°), where N is the number of objects. A
high runtime might occur in the rare situation where all objects (proteins) were extremely
dissimilar to one another, such that the algorithm had to go through all m (number of
attributes) iterations and all N objects were clustered in the last iteration. Table 9 shows
the runtimes of our trials on the PINs. The experiments were performed on a Sun Ultra 60
with 256 MB of memory and a 300 MHz processor.

Table 9: Runtimes of MULIC on the PIN data sets.

PIN Runtime
Y2K 10 seconds
Y11K 30 seconds
Y78K 7 minutes
F4K 2 minutes
WS5K 1 minute

We did not encounter a very time-consuming data set in our clustering experiments.
The most intensive test run was on Y78K which took seven minutes. The runtime of
MULIC is better than or comparable to other algorithms, such as k-Modes and
AutoClass, but MULIC can find more complexes and the cluster structure is more
complex and more interesting for analysis. The reason for the low runtime is that most
objects are clustered during the initial iterations when the top cluster layers (1, 2, 3) are
created. Thus, few comparisons between objects and modes need to be done during the
clustering process. Moreover, decreasing the value of threshold or increasing the value of
Jdp improves the runtime significantly. Changing these parameters does not necessarily
imply weakening the quality of the results. Decreasing the value of threshold is useful for
detecting outliers. Increasing the value of dp often improves the quality of the resulting
clusters (Andreopoulos et al., 2004).

7 Conclusion and Future Work

We have proposed a method for finding protein complexes based on clustering PINs
represented as categorical data sets. The main advantage of this method is that clusters
have multiple layers, where top layers are created first to contain proteins with very
similar interaction sets - the similarity criterion is progressively relaxed at lower layers.
Furthermore, this method does not require the number of complexes to be specified by
the user — it returns as many coherent complexes as it can find. Furthermore, this method
is effective for detecting proteins that are outliers. Moreover, this method can find
complexes of greatly varying sizes. Comparison with MIPS complexes shows that the
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clusters are representative of known protein complexes, including many complexes of
relatively large size. Researchers can label the proteins in top cluster layers as potentially
significant pieces of the interactome and validate the predicted complexes in the lab.

The cluster merging process can be used to merge similar clusters, thus leading to
predicting complexes of large sizes. We have shown that merged clusters significantly
overlap with complexes of relatively large sizes, pointing to the method’s effectiveness.
The merging process may eventually place an object in more than one cluster, which is in
accordance with the reality of proteins being involved in more than one complex.
However, we have focused on single membership in this paper, assuming that a
researcher will initially seek specific hints for guiding the experiments.

One direction worth pursuing is to extend our method so that it incorporates
uncertainty on the interactions. In many PIN data sets the interactions have annotations of
high, medium or low confidence. If the high confidence interactions are given a heavier
weight in the clustering process, this may lead to improved complex prediction. This may
also help to identify small protein complexes that have sparsely occurring interactions
and connectivity, which is a drawback of current clustering algorithms applied to PINSs.
Another direction is to develop an improved method for merging clusters that will
hopefully improve the results.

Another direction worth pursuing is to implement a parallel implementation of the
MULIC clustering algorithm that will be capable of running on clusters of computers.
This parallel implementation will ideally achieve linear speed-up on very large PINs.
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