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Abstract

In this paper, we study a fast adaptation problem of n-gram language models
under the MAP estimation framework. We propose a heuristic method to explore
cross-word correlation to accelerate the MAP adaptation of n-gram models. Ac-
cording to the correlation, occurrence of one word in adaptation text can be used
to predict all possible n-grams which will likely appear in the same adaptation text.
Then the predicted occurrence is incorporated into the MAP estimation of n-gram
models. In this way, a large n-gram model can be efficiently adapted with only a
small amount of adaptation data. We have conducted two experiments to evalu-
ate the proposed fast adaptation technique, e.g., topic adaptation within a domain
and cross-domain adaptation. All experimental results clearly show that the pro-
posed fast adaptation approach is very efficient and effective to adapt a large n-gram
model to a new task quickly, in terms of perplexity reduction and speech recognition
improvements. It is also shown that the proposed fast adaptation technique signifi-
cantly outperforms the conventional MAP adaptation, especially when we have very

limited amount of adaptation data.

Index Terms:
Language Model Adaptation, Bayesian Learning, Maximum a posteriori (MAP) Estima-

tion, N-gram, Cross-word Correlation, Automatic Speech Recognition (ASR)



1 Introduction

It is well known that a proper statistical language model (LM) plays an important role in
large vocabulary automatic speech recognition (LVASR) system. A statistical language
model is used to calculate probability of observing any given word sequence (sentence).
The most popular LM in speech recognition is n-gram modeling, which assumes the proba-
bility of observing a word only depends on its preceding n—1 words (n—1-order Markovian
assumption) in a sentence. Based on information provided by an n-gram language model,
an LVASR system is able to reduce search space considerably and successfully resolve the
serious confusion of speech signals in acoustic level. But, estimating a reliable n-gram
model usually requires a huge amount of text corpus. And it is always very expensive and
tedious to collect a lot of text data for many different domains. Thus, it is not practical
to collect enough text data to train a domain-dependent n-gram model for every specific
task. Today’s LVASR systems always use a general-purpose task-independent (TI) n-
gram language model for all tasks or domains. However, because language characteristics
usually differ more or less from one domain to another and even from topic to topic within
a domain, it is strongly desirable to have a task-dependent (TD) n-gram model for each
specific task in order to achieve an optimal recognition performance for that particular
task. Obviously, one feasible strategy to achieve this goal is to adopt adaptive learning
method, i.e., we adapt a TI n-gram model to each target task by using merely a small
amount of text data collected for that task. In the literature, a bunch of research works
have been done to adapt n-gram language models in the area of speech recognition. Gen-
erally speaking, three different methods have been proposed to perform n-gram language
model adaptation.

The first category is called interpolation-based methods. In this category, usually sev-
eral n-gram models are first built to represent different knowledges or domains. Then a
linear interpolation of all available n-gram models is calculated as final language model
for speech recognition, such as in [Kuhn & De Mori, 1990], [Jelinek et al, 1991],
[Matsunaga et. al, 1992], [Kneser & Steinbiss, 1993], [Clarkson & Robinson, 1997],

[Iyer & Ostendorf, 1999], [Kalai et al, 1999], and etc.. In [Kuhn & De Mori, 1990], and
[Clarkson & Robinson, 1997], a so-called cache model, which is calculated from the most

recently observed text data on the fly, is interpolated with a general n-gram model to



track the article level correlation. In [Jelinek et al, 1991] and [Matsunaga et. al, 1992], a
general topic-independent LM is adapted by linearly combining with a simple target topic
related model. In [Kneser & Steinbiss, 1993] and [Iyer & Ostendorf, 1999], interpolation
weights are dynamically updated from the observed history text based on maximum likeli-
hood (ML) criterion to enhance the interpolation-based LM adaptation. The interpolation
method is very simple and has been reported to be quite effective by many different sites.

Secondly, another major work related to LM adaptation is based on Minimum Discrim-
ination Information (MDI) [Della Pietra et al, 1992, Rao, Monkowski & Roukos, 1995,
Rao, Dharanipragada & Roukos, 1997]. In MDI-based adaptation method, the new LM
is calculated by minimizing discrimination information (Kullback-Liebler distance) from
an original TT model under some constraints which reflect important features of text
data in target topic. Usually an iterative algorithm, called generalized iterative scaling
(GIS)[Darroch & Ratcliff, 1972], is used to solve the constrained optimization problem
for n-gram models. A drawback of MDI-based adaptation is its computation complexity
because the iterative scaling has to be done for all elements in an n-gram model. If an
n-gram model’s size is large, the adaptation procedure becomes quite slow.

Thirdly, mainly motivated by the success of Bayesian learning for HMM[Gauvain & Lee, 1994],
some researchers have proposed to adapt n-gram language models under the Bayesian
framework, especially the mazimum a posteriori (MAP) estimation[Federico 1996]
[Masataki et al, 1997]. Although the MAP estimation of n-gram models results in a
very simple formula, a major problem with the MAP estimation of n-gram models is
that it is very slow to converge in terms of learning rate, which means that lots of
adaptation data are needed to make adaptation effective. In fact, not only particular
to the Bayesian method, this problem is also general for all other above-mentioned n-
gram LM adaptation methods. Therefore, it becomes a very interesting question how
to perform rapid adaptation for n-grams, namely efficiently update n-gram models from
only a very small amount of adaptation data. Although we have many fast adapta-
tion techniques available for acoustic models, e.g., HMM’s, such as transformation-based
methods|Leggetter & Woodland, 1995], we have not yet found any good solution for n-
gram LM adaptation because n-gram models are even harder to handle in some senses,

e.g., an n-gram model is flat and contains a large number of parameters, and also these pa-



rameters are mutually constrained, which makes it difficult to apply transformation-based
adaptation strategy to n-gram models.

In this paper, we study the problem how to rapidly adapt n-gram models from a
Bayesian viewpoint. As we have mentioned, the MAP (maximum a posteriori) estimation
of n-gram models has a straightforward form to implement, but it is too slow to converge
in a new task domain. In this work, we focus on a rapid adaptation method for n-gram
models under the Bayesian learning framework. Starting from the MAP formulation of n-
gram models, we propose a heuristic method to explore correlation between each key-word
and all n-grams appearing in a near context. And the recorded correlation information
is utilized to make the MAP adaptation of n-gram models faster, more efficient and
effective. Particularly, when we estimate task-independent n-gram model from a large
text corpus, we also explore and record all information about the correlation between
every key-word and its surrounding n-grams in a correlation matrix. Each element of
the matrix represents frequency of their co-occurring in a single document. When we
adapt the task-independent n-gram model to a certain target task with only a small
amount of adaptation text, appearance of any key-word in adaptation text can be used
to predict occurrence of all other possible n-grams based on the correlation matrix. Then
the predicted occurrence of each n-gram is integrated with its actual occurrence. Finally,
a task-adaptive n-gram model is derived under the framework of MAP estimation. In
this way, a large n-gram language model can be rapidly updated based on merely a very
small amount of task-dependent text data. In this work, the fast adaptation technique
is evaluated in two LM adaptation tasks, namely topic adaptation within a domain and
cross-domain adaptation. All experimental results clearly show that the approach works
pretty well to adapt n-gram language models into a new task in terms of both perplexity
reduction and speech recognition performance improvement. When comparing with other
conventional methods, the results also show that it significantly outperforms the standard
MAP adaptation, especially in case only a very limited amount of adaptation data is
available. As an example, in cross-domain adaptation case, the proposed approach can
reduce perplexity of a relatively large bi-gram model nearly 30% (from 210 down to 152)
with only 133 adaptation sentences from the target domain while a widely-used MAP

adaptation can improve about 20% in the same case.



In this paper, we summarize and gather together all results scattered in [Sasaki, 2000,
Sasaki, Jiang & Hirose, 2000, Moriya et al, 2001, Hirose, Minematsu, Moriya, 2002] to make
our works more accessible to general readership. The remainder of this paper is organized
as follows. In section 2, we first introduce the standard MAP adaptation formulation for
n-gram language models. Next, in section 3, we present our new fast adaptation method
and give all details on how to explore cross-word correlation in text to enhance the MAP
adaptation for n-gram models. Then we report within-domain topic adaptation experi-
ments in section 4 and cross-domain LM adaptation experiments in section 5 respectively.
Finally, we conclude the paper with our findings and some possible future works in section

6.

2 MAP Estimation of N-gram Model

Today n-gram models have become the dominant statistical language modeling method
for large vocabulary speech recognition. In n-gram modeling, any given word sequence
(sentence) S = {wywsy---wy} is assumed to be a Markov chain, observing the current
word w; only depends on its immediate history h;. Thus, probability of observing S is

calculated as

=1

Depending on the case, history h; could be the preceding word w;_; (in bigram), the
preceding two words w;_sw;_; (in trigram), or even a longer segment.

Generally speaking, an n-gram language model A is composed of a set of word occur-
rence conditional probabilities on the corresponding histories, i.e., P(w|h). If we denote

P(w|h) = Apyw, the n-gram model A can be expressed as
A={ w|weWandheH}. (2)

where W denotes the set of all words in vocabulary and H all possible histories. Obviously,

the n-gram model parameters Ap,, follow the constraint

> M =1 (3)

weWw

for every h in H.



Given any text corpus T = wjws...w,, the likelihood function of n-gram model A is

computed from eq.(1) as

HT|A) = Pwiws..wy) = H P(w;|hy)

i=1

= [I 11 »e (4)

weW heH
where Np,, denotes occurrence number (frequency) of n-gram hw in text 7. By taking the
constraints in eq.(3) into account, the maximum likelihood (ML) estimation of n-gram

model which maximizes {(T'|A) can be derived as:

N,
N (5)
" ZwEW th

From eq.(4), we note that the likelihood function of n-gram model is a multinomial dis-
tribution. Its natural conjugate prior is the so-called Dirichlet distribution|DeGroot, 1970]:
p(A) =p({w}) o T T A (6)

weW heH
where {an, | b € H,w € W} are hyperparameters, which usually are estimated from a

task-independent corpus 7"
pw =N, +1 (weW, he H) (7)

where N} denotes occurrence number of hw in the corpus T".
According to Bayes’ theorem, given an adaptation text data T'*, the posterior pdf is
a a Niw+Naw
p(AIT®) o p(A) - U(T*[A) oc [T TT Ane™ (8)
weW heH
Then the MAP (mazimum a posteriori) estimation of an n-gram model is obtained as:
(MAP) _ ay _ . ay _ Nj,+Ng,
A = arg max p(A|T*) = arg max p(A) - I(A|]T?) = arg max H H Ao 0w (9)
weEW heH
Similarly, by considering the constraints in eq.(3), the MAP estimation of n-gram

model, to say Ap,, can be derived as:

\orapy _ (N + Niyy)
i ZwEW (N}Zw) + Nl?w)

In the case of language model adaptation, the amount of adaptation data usually is

(10)

much less than that of TI training data used to estimate the priors (or baseline language
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model), i.e., N, >> N¢ . In many cases, in order to improve performance of the MAP

adaptation, a widely-used method is shown as follows:

/\51MAP) _ (Nh, + B-Ni,) (11)
v ZwEW (Nflzw+ﬁ‘NI?w)

where a boosting factor 5 (8 > 1) is used to simply boost N} to make it comparable
with N{_, and its proper value depends on relative amount difference of training and
adaptation data on a case-by-case basis.

From the above egs. (10) and (11), we note the MAP estimation of n-gram model
has a very straightforward formulation. However, it converges too slow, even after the
simple boost scaling scheme. Comparing with TI text data 7%, the adaptation text 7@
usually has much less amount of data. Therefore, the values of Ny, will be much smaller
than that of Ni, . A small amount of adaptation data will not change the value of A,
too much. So it usually requires a relatively large amount of adaptation data to make

MAP-based adaptation effective. Because it is relatively costly to collect data in practice,

it is strongly desirable to have a fast method to adapt n-gram model more efficiently.

3 Rapid MAP Adaptation Using Cross-word Corre-
lation

Motivated by the MAP estimation for jointly correlated Gaussian mean vectors

[Lasry & Stern, 1984] and correlated continuous density HMM[Huo & Lee, 1998], we are
interested in studying how to accelerate Bayesian learning of n-gram models by using
correlation information. However, it seems extremely difficult to directly model corre-
lation between n-gram model’s parameters in a rigid way. Alternatively, in this paper,
we consider to utilize cross-word correlation empirically. In other words, if two words
or n-grams tend to frequently appear together in a close context, we will think these
two words are strongly correlated. When one of them occur in a document, it indi-
cates another one and causes its probability estimation to change. This kind of cor-
relation information has been investigated in the so-called trigger language model in
[Lau, Rosenfeld & Roukos, 1993, Rosenfeld, 1996] to capture information from a long dis-

tance history in statistical language modeling, where the correlation is cast as a set of



feature constraints. These constraints are expressed in terms of marginal distribution.
Then the information is incorporated into n-gram language models based on the maxi-
mum entropy principle. In contrast to [Lau, Rosenfeld & Roukos, 1993, Rosenfeld, 1996],
in this work, we attempt to incorporate the correlation information into n-gram language
modeling in context of model adaptation under a Bayesian framework, which results in a

much simpler solution than the Maximum Entropy estimation.

3.1 Basic Adaptation Algorithm

In this section, starting from the MAP formulation of n-gram models, we propose a heuris-
tic method to investigate cross-word correlation to make the Bayesian adaptation of n-
gram model fast, efficient and effective. Concretely, when we estimate a task-independent
n-gram model from a large text corpus, we also explore and record all information about
correlation between any a key-words and all its surrounding n-grams in the corpus, i.e. a
correlation matrix to indicate the frequency of co-occurrence in a close context. When it
is needed to update the task-independent n-gram model to a certain target task based on
a small amount of adaptation text, by using the estimated correlation matrix, appearance
of one certain key-word in adaptation text can be used to predict occurrence of all other
n-grams. Then all of these predicted occurrences are added with the actual occurrence in
the adaptation text. Finally, a task-adaptive n-gram model is derived under the frame-
work of MAP estimation. In this way, a large n-gram language model can be rapidly
updated based on merely a small amount of task-dependent text data.
Our proposed fast adaptation algorithm is performed as follows:

A. Estimate TT n-gram model and record correlation matrix:

1. From the task-independent corpus 7%, we estimate a TI n-gram model {)\,} and

record all sufficient statistics N} for every n-gram hw.

2. Based on the TT data T% we build a common word list (CWL) which includes all
common words appearing equally everywhere in a language, such as prepositions,

adverbs, auxiliary verbs, and etc. Hereafter, a key-word is defined as any word not

included in the CWL.



3. Partition the TI data T into some contiguous segments: T* = T{Ts...T%.. Hereafter,
we call each segment T} (1 < k < K) as a document. Here each document T} can be
a sentence, a paragraph, or even an article. Although the partition is flexible, it is

better to make sure all sentences in a document are from a single domain (or topic).

4. For any n-gram hw and every document 7} (1 < k < K), we calculate its co-

occurrence indicator with all key-word v appearing in T%, i.e.,

. 1 if v and hw co-occur in T},

qv[hw} = . (12)
0 otherwise.

Then we summarize q,l’f[hw] over all documents 7} to obtain a correlation matrix

between any a key-word v and any n-gram hw, i.e.,

Qulhw] = Z Q’lljc[h,’u)] (13)

1<k<K

Note that in this paper we don’t consider the unknown word problem in adaptation
for simplicity. Thus we just set gy[n,) = 0 when either Aw or v contains an unknown

word. All unknown words are denoted as UNK.

B. Fast adaptation

5. Given adaptation data T, we first collect sufficient statistics, IV, i.e., occurrence

number in 7, for every n-gram hw.

6. According to the correlation matrix gy[n.,], we compute a predicted occurrence num-

ber Qp, for every n-gram hw based on all key-words v occurring in 7'*. That is,
Qo= Y. NI g (for all hw) (14)
veT* veECW L

where N denotes occurrence number of word v in 7.

7. The predicted occurrence of an n-gram hw is added to its actual occurrence. Based

on the MAP formulation, we estimate a new n-gram model as follows:

e When w # UNK (w is a known word),

r_ Nflzw—i_ﬂNgw'i_thw (15)
i ZwEW N}Zmu + B : ZwEW N;Llw ta- ZwEW Qhw
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where « is a weight to control the contribution of the predicted occurrence

number.
e When w =UNK,! (w is an unknown word)

Y ZwEW lelw+6 ) ZwEW Ngw

8. Obviously, the new n-gram model updated from egs.(15) (16) does not satisfy the
constraint Y .- Ay, = 1. Thus we use the following strategy to normalize )}, and

finally get the adapted n-gram model as:

C(h)- N, w#UNK,
Mw w=UNK

where
n
. ZwEVV,w#UNK hw
C(h) = x (18)
ZwEVV,w#UNK hw
and A}, denotes the pure MAP estimate:
Niw + IB ) Naw
o = : 3 (19)

ZwEW Nilzw + ﬂ ) ZweW Ngw
3.2 Some Implementation Issues

In step 2 of the algorithm, we need filter out those common words which equally appear
everywhere in various domains. In this work, we do not select particular trigger pairs
based on mutual information as in [Rosenfeld, 1996]. Instead, for simplicity, we assume
every key-word uniformly “triggers” all n-grams in the same document. In this case,
it is crucial to remove these common words from correlation consideration. Otherwise,
predicted occurrence of n-grams will be over-estimated.

In step 4, we calculate a correlation matrix gy, between all key-words and all ap-
pearing n-grams, which are saved for fast adaptation. A large value of g, indicates
that v and hw co-occur in a single document quite frequently, which implies they are

highly correlated. In eq.(13), an un-normalized correlation is computed. Alternatively, as

In case w is unknown word, in eq.(15), we have Qp, = 0 in numerator but a large number

> wew @hw > 0 in denominator. Thus eq.(15) will underestimate the probabilities of UNK.

11



in [Moriya et al, 2001], we can also calculate a normalized correlation matrix as:
_ 1 k
Qu[hw] = ? Z qv[hw}' (20)
1<k<K
In this case, every matrix element g,n, becomes a number between 0 and 1.
In the above algorithm, we only consider the correlation in task-independent training
set T*. Following steps 3 and 4, we can calculate an on-line version of correlation matrix
q,‘ul[hw] from adaptation data T'* as well. Then we can similarly predict occurrence of n-gram

hw according to qg[hw] as:

Q= Y,  Ni-qy, (forall hw). (21)

veTe vECWL

The predicted number @}, can be similarly included into the MAP estimation formula.
If w is not an unknown word, then we have
! N;Lw+6Ngw+thw+)‘ng

w = ) a a (22)
" ZwEW Ny + 8 ZwGW Ny, T ZwEW Qnw + A~ ZwEW Qhaw

where ) is another control parameter. Finally, we follow step 8 to normalize A}, to obtain

the adapted n-gram model.

4 Experiments(I): Topic Adaptation

In the first set of experiments, the proposed fast adaptation method is evaluated in the
task of topic adaptation within domain. We choose Japanese Mainichi newspaper as the
domain and all articles related to the “gulf war” are selected as the target topic. In the ex-
periment, totally 5000 articles (approximately 1.2M words) from 1991 electronic Mainichi
newspaper are used as topic-independent(TT) corpus (excluding all articles related to the
“gulf war”). Among all articles related to the “gulf war”, we choose 100 sentences as our
evaluation set to estimate perplexity of different language models, and several adaptation
sets with different sizes, including 100, 300, 500, 750, 1000 sentences respectively. More
details about the text corpus can be found in Table 1. The baseline bi-gram model is es-
timated from TI training corpus with the standard method[Clarkson & Rosenfeld, 1997].
Good-Turing discounting method is used in bigram model construction. And vocabulary

size of bigram model is chosen as 5k. Then this initial baseline bi-gram model is adapted
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to the target topic with different amount of adaptation data by using the rapid Bayesian
learning method proposed in this paper. Then the adapted language models are com-
pared with the initial baseline model and other adapted models from the standard MAP
adaptation, in terms of perplexity improvement and speech recognition error reduction.
In all experiments of this paper, we use CMU-Cambridge statistical language modeling

toolkit to build baseline bi-gram models and calculate perplexity.

4.1 How to build Common Word List (CWL)

As we have mentioned, it is important to filter out some common words to avoid over-
estimating cross-word correlation. Following the work in [Kawahara & Doshita, 1999], we
use mutual information to select the most common words for CWL. We use all articles
in 1991 Mainichi newspaper (except those on ’Gulf War’) and partition them into 10
topics, i.e., T = {t1, s, ...,t10} . The mutual information of each word w and the text T’
is calculated as

I(T5w) = - Z P(t;)log P(t:) + ) P(t;|w)log P(t:|w) (23)

i=1

where P(t;) = 0.1 and P(t;|w) = frequency of w in ;. Thus, I(7T'; w) indicates nonuni-
frequency of w in T
formity of frequency of the word w in various topics.
At first, we select top 20000 words according to their frequencies in 7. Then we
calculate I(T;w) for each word in the top list and sort them according to their I(7’; w)
values. Finally we pick up the last N, words in the sorted list which have smaller I(7; w)

values to build a Common Word List (CWL) of size N..

4.2 Effects of partition unit and « (as in eq. (22))

In step 3 of the algorithm, we need to partition TI training corpus into many small
segments to calculate correlation between words. Here we investigate what partition unit
is proper for our fast adaptation method. We partition the TI training set based on three
different partition units, namely sentence (PS), paragraph (PP) or article (PA). In figure
1, perplexity calculated in the evaluation set is shown as a function of « (as in eq. (15) or
(22)) for different partition units, where we fix § =1 and A = 0. From the experimental

results, we see that for all three different partition units the rapid adaptation method
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can achieve significant perplexity improvements over the baseline model (as well as the
model trained on adaptation data only) once we select a proper value for a.. We conclude
that PS and PP give much more perplexity reduction than PA, and PS yields the best
performance. In the following experiments, we will use PS as the default partition unit. As
for a, it is definitely task-dependent and but usually gives good performance in [0.01, 0.1].

In our following experiments, we fix o = 0.03 except explicitly stated.

4.3 Effect of the size of CWL (V)

In this section, we will investigate the influence of CWL size, N, in perplexity reduction
in our fast adaptation approach. We fix a = 0.03 and partition TI training corpus by
sentence. In Figure 2, we show perplexity as a function of V. in two cases, namely using
adaptation set C (500 sentences) and adaptation set D (750 sentences) for adaptation.
From the results in Figure 2, we can see the fast adaptation method performs reasonably
well in a quite wide range of N,, i.e.,[6000, 16000]. In particular, we choose N, = 7000 in

the following topic adaptation experiments.

4.4 Adaptation Performance Measured in Perplexity

In the experimental results reported in previous sections, we only consider the correlation
calculated from TI training data T, e.g., just using eq.(15). We denote it as FA method
in the following. To further accelerate adaptation, we can compute correlation )%, from
adaptation data 7*. In other words, we replace eq.(15) with eq.(22) in our rapid adap-
tation algorithm, which is denoted as FA2 method. Obviously, FA is a special case of
FA2 with A = 0. In Figure 3, we compare our fast adaptation methods FA, FA2 with
the standard MAP adaptation (eq. 10) for various amount of adaptation text data. It is
clear that by using correlation between key-words and the corresponding n-grams both
FA and FA2 converge much faster than MAP, and FA2 with § = 30 gives the maximum
perplexity reduction. It is amazing that our rapid adaptation method FA2 can reduce
perplexity of bi-gram model in target topic about 20% (from 102 down to 83) with only
100 sentences from the target topic, and nearly 35% (from 102 to 67) with 500 sentences.
From the results, we also see that the methods without the boost scaling (8 = 1) gives a

very poor performance. Thus, in all following experiments, we always use a proper boost
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scaling factor £ in both the baseline MAP estimation and the FA2 method.

4.5 Speech Recognition Results (I)

As the most important application of n-gram models, in this section, we will conduct
some speech recognition experiments to see how much the fast LM adaptation method
will help speech recognition. We first collect some speech data on the target task domain
from one male speaker. The speaker is asked to read all sentences in the evaluation set.
In decoding, we employ a standard Japanese JULIUS decoding software and a Japanese
state-tied triphone acoustic model (totally 3k distinct states and 16 Gaussian mixtures
per state) supplied with the decoder[Kawahara et al, 2000]. During recognition we use
the same recognizer setup except different bi-gram language models derived from various
adaptation methods. Comparative recognition results in terms of word accuracy? are
shown in Figure 4. We have found that our fast language adaptation method can generally
improve speech recognition performance even when we have only 100 or 300 sentences to
adapt language model and it significantly outperform the standard MAP adaptation. By
using 100 sentences to adapt language model, we can improve recognition word accuracy
3.7% in absolute. Because the recording condition of test speech data seriously mismatches
with the available acoustic models, unfortunately the absolute performance of the baseline
speech recognition system is too low, around 40%. In the next section, we will report more

speech recognition results on a better baseline system.

5 Experiments(IT): Cross-Domain Adaptation

In the second set of our experiments, we attempt to investigate the effect of our fast adap-
tation algorithm in case of cross-domain adaptation, where we adapt a task-independent
(TT) language model to a significantly different domain. Here, we still train a TI bi-
gram model from the same Mainichi Japanese newspaper corpus, but using a much larger
amount of text data. As the target domain, we choose Japanese translation of a fa-
mous novel, name Peter Pan originally written by J.M. Barrie. The text data used in

this part of experiments is summarized in Table 2. Based on TI training corpus, we use

2The word accuracy is defined as 1-WER, WER denotes word error rate.
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CMU-Cambridge statistical language modeling toolkit to build a standard bi-gram model
consisting of totally 20k words. In our experiments, the standard MAP LM adaptation
and the proposed fast LM adaptation using cross-word correlation are used to adapt the
baseline bi-gram model to the target domain based on three sets of adaptation data,
which all comes from the novel Peter Pan and contains 133, 526 and 699 sentences re-
spectively. At last, language models are evaluated in a disjointed evaluation set from the
target domain. We know, in cross-domain adaptation, two issues need to be addressed,
namely re-estimating word probabilistic distribution and dealing with out-of-vocabulary
(OOV) words. In this work, we only concentrate on the first issue, e.g., word probability
re-estimation. The OOV rate in the evaluation set remains quite huge, about 8%. As
for the other experimental setups, in this part we try to maintain the best configuration
we have achieved in section 4. For example, we partition training corpus in the unit of
sentence to estimate correlation matrix. And, we use the same mutual information based
method to select common word list (CWL) and choose its size N, = 8000 in this part of

experiments.

5.1 Evaluation in Perplexity

In the experiments, we first examine the standard MAP adaptation with the boosting
factor 3, e.g. eq.(11). We have found that the optimal value for the boosting factor
is around [1000, 3000]. In the following, we simply fix 8 = 2500. We note the optimal
value for 8 in this part of experiments is much larger than what we used in section 4.
The reason is that we have a much larger training corpus here and thus need a larger 5 to
boost N, to make it comparable with N} . Another major difference in this part is that
we use the normalized method, e.g., eq.(20) instead of eq.(13), to calculate the correlation
matrix gynw). Two choices give very similar performance but cause a huge difference in
value range of @ and A. In this case, we find that a suitable value for « is around 1el0
and 1e7 for .

In Figure 5, we compare our best fast adaptation method FA2 with the standard
MAP adaptation (with boosting) in case of various amount of adaptation data. From
the results, we can see, when we test the baseline bigram model (trained from newspaper

corpus) on the evaluation set (Peter Pan), perplexity is very high, about 210, which
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clearly shows the difference between two domains. When we have only 133, 526 and 699
adaptation sentences available, the standard MAP (with boosting) reduces the perplexity
down to 170, 128 and 105 while FA2 can improve further to 152, 113 and 96, respectively.
Even in cross-domain adaptation, the FA2 method still significantly outperforms the MAP
adaptation in terms of perplexity reduction when we only have very limited amount of

adaptation data.

5.2 Speech Recognition Results (II)

Similar as in section 4.5, we ask one male speaker to read the evaluation set and record
a small speech database for speech recognition experiment. Here we still use the same
decoder, JULIUS, and its accompanied acoustic models. We compare speech recogni-
tion performance based on the original LM, MAP-adapted LM’s and FA2-adapted LM’s.
Experimental results are shown in Figure 6. When we conduct speech recognition exper-
iments based on the original baseline bigram model, it gives word accuracy 64.8%. When
we adapt LM to the target domain, recognition performance can be improved significantly.
For MAP adaptation (with boosting), word accuracy goes up to 66.7%, 68.4% and 70.9%
when we use 133, 526, 699 adaptation sentences, respectively. And in all three situations,
the proposed FA2 method yields a consistent improvement over MAP, i.e., 67.6%, 69.9%
and 71.8%, respectively.

6 Conclusions

Since a speech recognition system can be deployed for various task domains and lan-
guage characteristics significantly differ from one case to another, it is strongly desir-
able to build statistical language models, mainly n-gram models, in an adaptive mode
just as what we have done for acoustic models, namely HMM’s. We know the MAP
estimation[Gauvain & Lee, 1994] has been shown as a good tool to adapt statistical mod-
els. However, when using the MAP method to adapt n-gram models, we encounter the
serious problem that it converges too slow in a new task domain. In this paper, we have
proposed a heuristic method to accelerate the MAP adaptation of n-gram language mod-

els based on cross-word correlation. To evaluate the proposed method, we have carried
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out two sets of LM adaptation experiments: i)topic adaptation within domain; ii) cross-
domain adaptation. In all experiments, the new method is compared with a widely-used
MAP adaptation method in terms of both perplexity reduction and speech recognition
improvement. All experimental results clearly show that our novel method significantly
outperforms the traditional MAP adaptation, and a significant perplexity reduction of
n-gram models in target domain has been observed even when we only have few hundred
adaptation sentences from the domain. And some ASR experimental results also show
we can consistently improve word accuracy about a few percentage by adapting a task-
independent language model with only a few hundred sentences of adaptation text from
the target domain. It is known that fast adaptation techniques for n-gram language mod-
els is very important and useful in many practical applications. The work in this paper
shows that using cross-word correlation in a language is a promising way to perform rapid
n-gram language model adaptation. Also as shown in the paper, the MAP estimation
is an attractive tool to incorporate cross-word correlation into n-gram language model
estimation for adaptation purpose. The resultant solution is much simpler in terms of
computational complexity and implementation convenience than other methods which
use similar correlation in language modeling, such as trigger model based on maximum
entropy[Lau, Rosenfeld & Roukos, 1993, Rosenfeld, 1996].

As far as future works are concerned, there are many modifications and enhancements
we can do over the current version of this fast adaptation technique. For example, in
this work, when we consider correlation between words and n-grams, we adopt a very
simple method, i.e., we exclude a list of common words and consider every word not
included in this list will uniformly “triggers” all n-grams in its near context. Obviously,
the concept of a “trigger” pair in [Rosenfeld, 1996] can be used to define what n-grams
will be “triggered” by each key-word in different context to model cross-word correlation
in a better way. Besides, in this paper, we only consider the case where a word trigger an
n-gram. Of course, all other combinations can be similarly tried, such as a word triggers
a word, an n-gram triggers an n-gram, an n-gram triggers a word, etc. Moreover, in
this work, we calculate the correlation matrix gy, by using a binary value (0 or 1).
Apparently, a probabilistic function depending on context can be used instead to capture

more context information. At last, throughout all experiments in this paper, bi-gram
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models are used to demonstrate efficacy of the new method for simplicity. Although this
approach is equally applicable to all n-gram models in theory, it is very interesting to

examine how it works for other n-gram models (n > 3).
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No. article | No. paragraph | No. sentence | No. words
TT Training set 5000 20,274 50,983 1,214,916
Adaptation set A - - 100 3192
Adaptation set B - - 300 9614
Adaptation set C - - 500 16,084
Adaptation set D - - 750 24,212
Adaptation set E - - 1,000 32,284
Evaluation set - - 100 3178

Table 1: Text corpus used in the first experiment on topic adaptation within domain.
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Figure 1: Perplexity changes as a function of « for different partition methods (in sentence,
paragraph, or article) in case of using adaptation set C (500 sentences) to adapt the

baseline bi-gram model, where we fix =1 and A = 0.
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Figure 2: Perplexity changes as a function of CWL size N, when using adaptation set

C (500 sentences) and adaptation set D (750 sentences).
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Perplexity change as a function of adaptation data (5K bigram, a=0.03, NC=7000)
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Figure 3: Comparative perplexity reduction results of FA, FA2 and MAP as a function

of various amount of adaptation data, where we set a = 0.03, A = 0.03, and N, = 7000.
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Word Recognition Accuracy (in %) as a function of amount of adaptation text
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Figure 4: Comparative speech recognition results based on different language model adap-

tation methods.

100
Amount of adaptation text in sentences

300

Domain | No. sentence | No. words | No. diff words
TI Training set | newspaper 2,438,662 58,290,111 200,380
Adaptation set 1 | Peter Pan 133 2,156 639
Adaptation set 2 | Peter Pan 529 8,931 1,738
Adaptation set 3 | Peter Pan 699 11,766 2,201
Evaluation set Peter Pan 107 1,709 570

Table 2: Text corpus used in the second experiment on cross-domain adaptation.
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Perplexity as a function of amount of adaptation data
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Figure 5: We plot perplexity as a function of amount of adaptation data (in sentences)
for the standard MAP adaptation and the proposed fast adaptation method FA2 in cross-
domain LM adaptation. In MAP, we choose 5 = 2500. In FA2, we choose a = 1el0,
B = 2500, A = le7, N, = 8000.
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Word Accuracy (in %) as a function of amount of training data
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Figure 6: Speech recognition performance (word accuracy in %) as a function of amount
of adaptation data (in sentences) for the standard MAP adaptation and the proposed fast
adaptation method FA2 in cross-domain LM adaptation. In MAP, we choose 8 = 2500.
In FA2, we choose a = 1e10, § = 2500, A = 1e7, N. = 8000.
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