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Abstract

This paper presents a comprehensive survey of approaches to the computational
modeling of visual attention. A key characteristic of virtually all the models surveyed is
that they receive significant inspiration from the neurobiology and psychophysics of
human and primate vision. This, although not necessarily a key component of mainstream
computer vision, seems very appropriate for cognitive vision systems given a definition
of the topic that always includes the goal of human-like visual performance. The review
is placed in the context of related computer vision and neuroscience research. Major
theories of primate visual attention are presented in an original classification.

1. Introduction

1.1. Overview

In this paper we will review the major theories and computational models of primate
visual attention.

To put this review in perspective, the paper starts with a definition of visual
attention that highlights the fact that attention is a set of strategies that have evolved to
minimize the computational load of vision. A number of areas in computer vision that
take a similar approach are briefly mentioned, in the context of the general trends in the
field.

Because any modeling effort has to be based on a thorough understanding of the
natural phenomenon under investigation, the paper continues with a brief presentation of
the most important experimental paradigms and findings that have guided the
development of computational models of visual attention.

The paper continues by introducing the key components of any complete theory
of attention, and based on these, presents the major theories of primate visual attention in
an original classification. With this foundation in place, we will present the criteria by
which some models have been included while others have not, and analyze the major
classes of models of visual attention and how they address the identified key components.



The paper will end with a brief summary and some conclusions about the state of
the art in the field, highlighting the major open issues.

1.2. What is visual attention?

In his famous 1890 definition, psychologist William James proposed: “Everybody knows
what attention is. It is the taking possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible objects or trains of thought. It implies
withdrawal from some things in order to deal effectively with others”. In the century that
has passed since, we have reached the point where we can confidently say “no one knows
what attention is” [1].

Of course, this rather pessimistic outlook hides a less dramatic reality. While we
are no further in defining visual attention, we have made tremendous progress in
understanding the nature of attention and its mechanisms. From a computational point of
view, the long-standing argument has been that the brain is simply not large enough to
process all incoming stimuli, but without a quantitative analysis, this argument is not
satisfactory. The theoretical analysis is provided by Tsotsos within the framework of
computational complexity [2], while at the same time providing constraints on the
processing system. The proof starts by showing that purely data-directed visual search in
its most general form is an intractable problem in any realization, and concludes that
attentive selection based on task knowledge is a powerful heuristic to limit search and
make the overall problem tractable. This conclusion leads to the following view of
attention: Attention is a set of strategies that attempts to reduce the computational cost of
the search processes inherent in visual perception. Of course, this definition is rather
broad, but, as we will see while reviewing the experimental evidence, visual attention
manifests itself through a very large spectrum of phenomena, influencing all aspects of
vision, so any simplistic, narrow definition is likely to miss important aspects.

1.3. Computer Vision Approaches

The inherent complexity of visual processing has been recognized as a problem from the
early days of computer vision, and the history of the field has been, at least partially, a
long struggle to find ways to reduce this complexity. Of interest here are methods similar
in nature to visual attention, namely methods that attempt to selectively process subsets
of an image in the hope that if these areas are carefully selected, sufficient information
can be extracted to perform the desired task, be it object recognition, autonomous
navigation, image compression, etc. A few broad directions have emerged, which can be
classified as (adapted from Tsotsos [3]): artificial manipulations, active vision, perceptual
grouping, and region of interest operators.



1.3.1. Artificial manipulations

Artificial manipulations are task-specific engineering solutions, based on assumptions
about relevant features, knowledge of task domain, controlled environments, etc. In
addition, quite often these types of systems are not purely vision-based, integrating
information from other modalities. Due to their somewhat ad-hoc nature (even if they are
based on rigorous mathematical concepts and proofs), these methods rarely generalize
well beyond their intended domain of application. We will only present one example of
such a system, illustrating both the power and limitations of the approach. One of the
leaders in biometric solutions, ZN Vision Technologies AG (http://www.zn-ag.com/),
produces a face recognition system for controlling access to secure areas, ZN-Face. A
person requesting access to the secure area has to stand in front of a camera, and the
system will take a snapshot of the person’s face and apply an elastic graph-matching
algorithm on a large number of facial features. The system requires the person to stand in
a predetermined position and pose, under highly controlled illumination. The face is
segmented out using an active infrared detector that is also used to make sure what is
presented is a live person and not a mask or photograph. While the performance of the
system is impressive, yielding very low false positive and false negative rates, it is clear
that the approach can not be generalized to other application areas due to the very strong
task-specific assumptions built into the solution.

1.3.2. Active vision

Active vision systems extract information from a visual scene by manipulating the
parameters of their sensory apparatus — in general one or more cameras mounted with one
or more mechanical degrees of freedom in addition to the internal degrees of freedom of
the cameras (zoom, focus). The basic ideas and first systems emerged in the late 1980s
[4-7]. The key observation is that many traditional vision problems could be solved with
simple algorithms by using controlled sensor motion [5]. Many systems are based on the
primate occulomotor system, with separate tracking (smooth pursuit) and saccade
subsystems. From a control point of view, the most common choice for tracking is the PI
(proportional band/integral) controller, embedded within a predictor to deal with time
delays — linear predictors (e.g. [8]) or Smith predictors (e.g. [9-12]), or Kalman filters
(e.g. [10, 12, 13]), while for saccades, sampled-loop [9, 11] or open-loop controller are
used [10, 12, 14].

In terms of application domain, two main directions have emerged: object
recognition and structure reconstruction. For object recognition, the approach is to
sample an input image through a saccadic search algorithm and encode the resulting sub-
images using a spatial (and sometimes spatio-temporal) encoding mechanism. These
signatures are then classified or recognized using neural networks or databases of images
[15-18]. Krotkov et al. present the key ideas behind active scene structure reconstruction,
where the parameters of the system (e.g. focus, vergence) are modified in order to
improve the performance of structure-from-stereo algorithms [19]. For stereo matching,
in [20, 21] matching is restricted to a short range of disparities close to zero, and then the

3



camera vergence is varied. [22, 23] use a combination of disparity, vergence, focus, and
aperture to build scene models over multiple fixations. Foveal multiresolution sensors are
used to improve performance in [22, 24, 25]. An interesting aspect of [25] is the ability of
their system to efficiently determine correspondences between non-uniform levels of
spatial resolution.

1.3.3. Perceptual grouping

Perceptual grouping encompasses processes that attempt to organize image
features into structures, thus allowing computer vision systems to move away from pixel
intensity data and deal with higher level constructs, allowing symbolic manipulations and
other traditional artificial intelligence techniques to be applied. Perceptual grouping, as
the link between low-level segmentation and high-level algorithms, has the potential to
make significant contributions to figure-ground segregation, object recognition, scene
reconstruction, change detection, spatio-temporal grouping, and many other areas. Many
approaches fall under the general heading of perceptual grouping, and different groups
use the same names to denote different processes, or different names for the same
process. This makes comparisons difficult, a problem first identified by Sarkar and Boyer
[26], a review paper that also proposed a unified terminology. A decade later Engberts
and Smeulders argue that little has changed in this respect [27]. In general,
clustering/classifying/feature grouping deal with generic methods that have not been
developed specifically for computer vision, such as k-means, graph-theoretic clustering,
nearest neighbor, and neural networks, and as such, their application is quite often
problem-specific (see [26, 27] for a thorough discussion of these and other issues).
Keeping with the biologically inspired theme of this paper, we will define perceptual
grouping as being concerned with simulating and understanding the mechanisms that
underlie Gestalt grouping principles. The role of these principles in computer vision was
demonstrated by [28, 29]. Early work (pre 1993) is reviewed in detail by Sarkar and
Boyer [26], where they also propose a classification structure for perceptual organization,
and based on this they identify areas of potential future research, especially in the area of
texture flows and motion.

Texture flows, defined as two-dimensional structures characterized by local
parallelism and slowly varying dominant local orientation, were first approached by
Stevens [30], using a histogram based approach on a sparse representation of the flow.
The idea of using dense, vector based representations that link local and global structure
through differential equations, was introduced by Zucker [31]. [32-34] perform texture
flow segmentation using gradient descent to control the smoothing of orientation
diffusion. Ben-Shahar and Zucker [35] extend earlier work [31] to handle sparse data sets
using a variation on orientation diffusion and relaxation labeling to asses the degree to
which a particular data point is consistent with the context in which it is embedded, and
whether or not that context is part of a single object or not.

In the motion domain, Little et al. [36] introduce the idea of computing optic flow
using a local voting scheme based on similarity of planar patches, an idea that was
extended by [37, 38] with the introduction of tensor voting, a method that better preserves
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discontinuities, while at the same time improving the performance of the algorithms by
being non-iterative. In general, many methods suffer from the over-smoothing problem
(e.g. the wavelet based approach of [39]), or from a strong dependence on initial
conditions (e.g. the recursive partitioning method of [40] or the steerable flow field basis
set of [41]).

1.3.4. Region of interest operators

Region of interest operators are primarily used in indexing to “summarize” images for
fast querying, in image/object recognition to provide invariant descriptions of important
features and in intelligent image compression to guide lossy compression algorithms.
Regions of interest are defined by Haralick and Shapiro [42] as points in an image that
are distinguishable from their immediate neighbors, and the position as well as the
selection of the interesting point should be invariant with respect to the expected
geometric and radiometric distortions.

In the next two sections we will review in some detail the area that has the most
similarity with the computational modeling of visual attention, namely region of interest
operators, with a particular emphasis on biologically inspired approaches.

1.3.4.1. Region of interest operators — Moravec’s legacy

Region of interest operators, originating in the early 1980s in the robotics community, are
primarily used in indexing to “summarize” images for fast querying, in image/object
recognition to provide invariant descriptions of important features and in intelligent
image compression to guide lossy compression algorithms. A region of interest is defined
by Haralick and Shapiro [42] as a point in an image that has two main properties:
distinctiveness and invariance. This means that a point should be distinguishable from its
immediate neighbors, and the position as well as the selection of the interesting point
should be invariant with respect to the expected geometric and radiometric distortions.

Moravec’s research is the first recorded use of region of interest operators is [43,
441, where it was used for stereo matching in the control of a mobile robot, the Stanford
Cart. Moravec’s operator detects points where intensity changes abruptly in at least one
direction. For most of the intervening years, the trend has been towards improving region
of interest operators by using better features and better matching heuristics, and towards
extending the approach to other types of images. The first logical step was the use of
corner detectors, and the Harris detector [45, 46] makes the process more repeatable over
image variations and near the edges, while extending the approach to motion tracking and
the recovery of 3D structure from motion.

Among the features tried as alternatives to the Harris detector, biologically
inspired and statistical approaches stand out. For example, orientation-selective Gabor
filters and their first and second derivatives are used in [47], while [48] uses blind



estimates of signal-dependent noise variation based on local statistics of pixels classified
as region/contour/interest point using autocorrelation.

Other improvements increased the range of changes over which features could be
matched. Zhang et al. [49] use correlation windows and outlier removal (majority vote on
geometric rigid constraints) to match corners over large changes. A similar approach is
taken by Torr [50] for long range motion matching. A major step forward in the field was
the introduction of rotationally invariant descriptors in Schmid and Mohr [51], the first
work to use region of interest operators in general image recognition. Another important
contribution was feature clustering, used to deal with occlusions and clutter. The next
logical step is scale-invariance, introduced by Lindeberg [52], Mikolajczyk and Schmid
[53] and Lowe [54]. Lowe’s novel local descriptor was also less sensitive to local image
distortions.

Schmid et al. [55] evaluate the state of the art, and draw two main conclusions for
future research: detectors should be included in multi-scale frameworks and in order to
generate detectors with high information contents, image statistics need to be studied.

The current trend seems to be towards the use of wavelet transforms [56-59], that
seem to be able to extract points with larger information content and provide better
repeatability [57]. The caveat is that this work is mainly focused on content-based image
retrieval, so the geometric stability of the selected points under transformations in not an
issue. It remains to be seen how the approach will fare in the general case.

It can be seen from this brief overview that Moravec’s legacy is still strong, but
since his goal was to guide indoor mobile robots, this work can not be extended easily to
natural images, where corners are rare, most likely to be detected in textured areas, so
points of interest will be strongly clustered, not the best thing to do.

1.3.4.2. Attention in computer vision

Of particular interest within the area of region of interest operators are
biologically inspired approaches that implement some form of visual attention. These
systems do not attempt to model neuroscience and psychology results, but simply take
them as starting points in the development of engineering solutions to the problem of the
computational complexity of vision. The general approach is to augment some form of
region of interest operator with intermediate or high level information, in the form of
either structural or semantic information.

Burt [60] provides a theoretical justification for the need for attentional
mechanisms in computer vision systems and suggests possible solutions for three subsets
of the problem, identified as foveation, tracking and high level interpretation. Under
foveation, equivalent to primate saccadic eye movements, older results regarding the
value of a non-uniform acuity sensor are reviewed in detail, and a computationally
efficient method for representing this kind of data is presented. Tracking is analogous to
primate smooth pursuit eye movements, and its purpose is to stabilize an object’s moving
image on the sensor. Simple feedback control is proposed as a solution, based on multi-
resolution image registration. Finally, high level interpretation is used in a hypothesis
testing paradigm to direct the high resolution processing to areas of the image that are
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most likely to contain information relevant for the task. The solution suggested is a
symbolic stage composed of "pattern trees" that describe a database of known objects in a
multiresolution representation. The paper concludes by describing a complete system that
could integrate all these concepts, and over the years many Sarnoff products have
included implementations of these ideas (e.g. the pyramid Vision Machine, the Acadia
processor, etc.). Burt [61] reviews a suite of pyramid-based algorithms and a progression
of vision processors developed based on them. Conception and Wechsler [62] present an
implementation of many of the key ideas of Burt [60], with a coarse segmentation and
classification stage followed by a memory-driven multiresolution recognition stage
reminiscent of Selective Tuning [63], but applied on a wavelet pyramid.

Howarth and Buxton [64] investigate the use of Bayesian inference networks to
provide a task based control system identifying relevant objects in the scene which
potentially fulfill the given task. The system accepts sequences of images representing
traffic movement, and the task is to identify areas of interest and determine relationships
between these areas (e.g. overtaking, following, etc.). The computational load on the
inference system is reduced since it is not necessary to consider the interactions between
all objects in the scene.

Baluja and Pomerleau [65] trained a neural network to perform dynamic
relevance assessments by using the hidden layer representation to predict the next input
image, in a manner very similar to Kalman filtering. The system is used in three very
different tasks. The first task is autonomous driving, the system being used to monitor
lane markings. The attentional focus mechanism allows the network to work in real
lighting conditions, with typical street markings that have frequent misleading features.
The second task, anomaly detection in silicon wafers, demonstrates the system’s ability to
highlight unexpected features in the input image. The third application, hand tracking in
cluttered environments, demonstrates the fact that the system’s design allows a priori task
information to be integrated into solutions.

Sela and Levine [66] and Gallet et al. [67] present approaches based on the
detection of symmetries in input images. In [66] the focus is on a novel real-time
algorithm for computing points of interest defined as the points of intersection of lines of
symmetry between edges in the image. The main advantage of the algorithm seems to be
its ability to select a relatively small number of points of interest, both when dealing with
faces and when dealing with complex outdoor scenes, points of interest that, at least
subjectively, seem to correspond to relevant areas of the image. By contrast, the
algorithm presented by Gallet et al. selects points of interest by pairing oriented curvature
points [67]. Since this method generates many points of interest, local competition is
employed to select the most relevant ones. This algorithm has been used successfully to
guide vision-based robots through an office environment augmented with directional
markers [68].

Real-time motion tracking is obtained in Toyama and Hager by combining a
series of visual search and tracking algorithms in a hierarchical system [69]. The
attentional mechanism monitors performance and performs two tasks: rapid selection of
potential candidate locations and the selection of the most appropriate algorithm to
execute. Both theoretical and empirical evaluations of the method are provided.

While the preceding systems use low or intermediate level features in determining
the points of interest within the image (or image sequence), Sun and Fisher [70] introduce



high-level features and perceptual grouping into the analysis. Competition occurs at all
levels, from features within objects to groups of objects, and selection can similarly occur
at all levels. Applying external biases, the system can perform tasks as varied as region
segmentation and object recognition.

This brief analysis of what is a relatively small subfield highlights the potential
and broad applicability of attentional methods in computer vision.

One final point to mention is that the use of attention is not limited to computer
vision, other areas of computer science benefit from the idea of selective processing to
reduce computational load. For example, an attention-based communications scheme
named “progressive transmission” has been proposed by Zabrodsky and Peleg [71].
Under this proposal, data is first transmitted at low-resolution, and then it is up to the
recipient to request any additional high-resolution data based on task requirements.
NASA uses a simplified version of this approach in its communications with space
probes.

1.3.5. Conclusions

Teaching computers to see is a very difficult problem, and computationally very
expensive. It is thus not surprising that despite the wide diversity of the field, one
common theme seems to run through most research: the reduction of the computational
load through selective processing. A few main themes have emerged. Active vision
attempts to maximize the relevance of the images by proper placement of the cameras, in
order to simplify the task of the modules of the system. Perceptual grouping attempts to
move away from pixel-level information, thus allowing the system to work on
significantly fewer basic features. The selective processing of areas of interest is probably
the most similar approach to visual attention, and some results are very impressive, but
the fact that semantic information is generally not used because of the very low level
features used limits the applicability of the method.



1.4. Key experimental results

Any biological modeling effort needs to start from experimental data, and visual attention
is no exception. A wealth of information has been published, using a wide variety of
methods, to the point where a thorough review is beyond the scope of any one
publication, but a short sampling of important experimental paradigms and results will
serve to highlight some of the key concepts and important features that any theory and
model must address, while at the same time touching on some of the controversies in the
field and some of the many open questions that need to be addressed.

1.4.1. Visual search

Probably the simplest method used to investigate visual attention involves visual search
tasks, and the evolution of many of the visual attention theories can be correlated to
seminal results of such experiments. In the standard visual search experiment, subjects
look for a target item among a number of distracter items (the total number of items in
the display is named set size). Generally the target is present in half of the trials while in
the others, only distracters are presented, and subjects have to indicate whether or not the
target is present. As the number of distracters increases, reaction times typically also
increase, and the rate of this increase is of particular interest.

Early experiments produced a very nice picture of a dichotomy between “parallel”
and “serial” searches. In “parallel” searches, reaction times are independent of the
number of distracters, and the usual interpretation of this result is that all items are
processed at once to a level that is sufficient to distinguish targets from distracters. In
“serial” searches, reaction times increase with the addition of distracters at a rate of
approximately 30 ms/item for target present and about 60 ms/item for target absent trials,
a pattern that is consistent with a self-terminating search through the items.

Later experiments have shattered this simple image, with experimental results
showing a continuum of reaction time vs. set size slopes, leading Wolfe to propose the
description of search performance in terms of efficiency classes, from “efficient”
searches characterized by a slope of approximately 0 ms/item, through “quite efficient” at
5-10 ms/item and “inefficient” at 20-30 ms/item, to “very inefficient” searches
characterized by slopes of more than 30 ms/item [72].

A very influential series of experiments has been proposed by Quinlan and
Humphreys [73]. They define different kinds of search tasks in terms of pairs of numbers
of the form (m,n), where m is the number of features and n is the number of features by
which each distracter group differs from the target. In this framework, (1,1) corresponds
to feature searches, (2,1) to standard conjunction searches, (3,1) and (3,2) are triple
conjunction searches where the target differs from all distracter groups by one and two
feature dimensions respectively. Many computational models of visual attention have
used this type of experiment to evaluate their performance.



Issues are complicated further by the existence of search asymmetries, which
occur when a target item of type A among distracters of type B is easier to find than a
target of type B among distracters of type A. For a thorough review of search
asymmetries see the special issue of Perception and Psychophysics (vol. 63, issue 3,
2001), and also note that Rosenholtz argues that in most cases search asymmetries are
just an artifact of hidden asymmetries in the experimental design [74].

For thorough reviews of the visual search literature, see [72, 75].

1.4.2. Saliency

Two aspects of saliency have been described: global saliency maps and local saliency
modulation. Saliency maps, initially proposed by Treisman and Gelade in the Feature
Integration Theory [76] as “master maps of locations,” and, in the current interpretation,
by Koch and Ullman [77], have been hypothesized as solutions to the problem of
merging the multiple feature-specific early representations into a single attentional focus.
Local saliency modulation has been observed in the striate cortex and is interpreted as
either a precursor or a consequence of texture and/or object segregation.

A number of anatomical sites have been proposed as possible locations for a
global saliency map, including the superior colliculus, the lateral geniculate nucleus, the
posterior parietal cortex, the dorsomedial region of the pulvinar, and the primary visual
cortex. The strongest candidate seems to be the lateral intraparietal (LIP) area [78]. This
area is known to be important in attentional and oculomotor processes, and it has
connections with the frontal eye fields, superior colliculus (both areas involved in the
generation of saccadic eye movements), and to prestriate and inferior temporal visual
areas. Neurons in the LIP of the rhesus monkey have been found to respond to recently
flashed stimuli better than they respond to stable, behaviorally irrelevant stimuli. They
respond transiently to abrupt motion onsets, but have no directional selectivity. The
conclusion of the study is that LIP is important in the attentional mechanisms preceding
the choice of saccade target rather than in the intention to generate the saccade itself, and
thus they seem to represent salient stimuli, but whether this is sufficient to declare LIP
“the” saliency map is subject to significant debate.

The recent study presented in [79] (on monkeys of an unspecified species) draws
similar conclusions, and also notes that the locus of attention cannot be ascertained by
measuring the activity of a single neuron in LIP, or even by measuring the activity of all
the neurons whose receptive field overlap on a location or object. A global analysis is
needed of the LIP neurons that represent the whole visual space, in which case activation
at one site can be correlated to the saliency of the associated image area.

Physiological and psychophysical studies show modulation of responses of
primary visual cortex neurons that is consistent with contour enhancement, figure-ground
segregation, and texture segmentation. Recordings from monkey V1 analyzed in [80]
show that collinear segments outside the classical receptive field of a neuron enhanced its
response to the preferred stimulus, and the same effect was shown in contrast thresholds
in humans. Gallant et al. summarize research results on V1 responses to textures,
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observing that responses along texture borders are enhanced, consistent with texture
segmentation, and that neurons corresponding to the “inside” of a texture defined area are
also enhanced, but to a lesser degree, consistent with object-background segmentation
[81]. See [82] for additional details.

While these results are very well established, there is significant disagreement in
the literature about the mechanisms responsible for them. Some authors propose the
lateral connections within V1 [83, 84], while others suggest that at least texture
segmentation and figure-ground segregation occur in higher cortical areas (V2, V4) and
the modulation observed in V1 is due to feedback connections [85, 86].

1.4.3. Neurophysiological mechanisms

A great deal of research has focused on the neurophysiological mechanisms of visual
attention.

Sensitivity to stimuli at attended locations is increased, and, at the neuronal level,
this could be explained by a multiplicative increase in firing rate or by an increase in the
effective strength of the stimulus. Each explanation results in different and conflicting
predictions. To test these predictions, Reynolds et al. recorded responses of macaque V4
neurons to stimuli across a range of luminance contrasts and measured the change in
response when monkeys attended to them [87]. It was observed that attention caused
greater increases in response at low contrast than at high contrast, which is consistent
with the predictions of the increase in effective stimulus strength model. This effectively
means that at the level of individual neurons, the effects of attention and luminance
contrast are indistinguishable. The same conclusion was reached in two independent
studies on attention to motion in macaques [88] and in humans [89].

McAdams and Maunsell examine the influence of spatial attention on the
orientation tuning of neurons in areas V1 and V4 of rhesus monkeys [90]. Attention was
found to enhance the responses of neurons in both areas, but the width of their
orientation-tuning curve was not systematically affected. Thus, the effects of attention at
the individual neuron level are consistent with a multiplicative scaling of the response
across orientations. Similar results are reported in area MT for non-spatial, feature-based
attention [91].

1.4.4. Neurophysiology of attentional competition

Given the hierarchical nature of the visual cortex, characterized by progressively larger
receptive fields, one of the most important questions that needs to be answered is what
happens when two stimuli fall within the receptive field of one neuron. In the classical
study of Moran and Desimone, monkeys were trained to attend to stimuli at one location
and ignore stimuli at another [92]. Single cell recordings in areas V4 and IT revealed that
when both stimuli were within the receptive field of the same neuron, the effect of the
unattended stimulus on the neuron’s response was significantly reduced.
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Since then, it was repeatedly shown that the greatest attentional modulation is
observed when multiple stimuli appear within a cell’s receptive field. To quantify this
effect, Reynolds et al. measured the responses of neurons in macaque areas V2 and V4 to
various combinations of stimuli, with or without attention [93]. As a control, they
measured each cell's response to a single stimulus presented alone inside the receptive
field or paired with a second receptive field stimulus, while the monkey attended to a
location outside the receptive field. The results confirmed the earlier finding that adding
the second stimulus causes the neuron's response to decrease. Directing the monkey's
attention to one element of the pair, the neuron's response moved toward the response
elicited when the attended stimulus appeared alone. The authors see this result as
consistent with the idea that attention biases competitive interactions among neurons,
causing them to respond primarily to the attended stimulus.

1.4.5. Overt and covert attention

Many experimental setups require the subject to fixate and avoid eye movements in order
to eliminate confounding factors or to exploit the retinotopy of many areas in the visual
cortex. This is a very unnatural situation, normally primates make 3-5 saccades per
second in order to foveate areas of interest in the environment. A wide variety of studies
indicates that the two forms of attention share many of the neural structures involved,
including areas in the superior colliculus, the pulvinar, the frontal eye field, the precentral
gyrus, and the intraparietal sulcus in the macaque, and homologues and/or adjacent areas
in humans.

In the area of psychophysics, [94] investigates the relationship between saccadic
eye movements and covert orienting or visual spatial attention. Subjects were required to
make saccades while attending to a target or location, and the results show that subjects
cannot move their eyes to one location and attend to a different one. In another
experiment, subjects were instructed to expect a cue at one of four predetermined
locations, thus directing covert attention to that location, and make a saccade down when
the cue appears [95]. The trajectory of the saccades deviated contralateral to the hemifield
in which the imperative stimulus was presented, demonstrating that spatial attention
allocation leads to an activation of occulomotor circuits, in spite of eye immobility.
Kowler et al. have found that saccades are facilitated by covert attention, perceptual
identification is better at saccadic goals, and attempts to dissociate the locus of attention
from the saccadic goal were unsuccessful, i.e. it was not possible to prepare to look
quickly and accurately at one target while at the same time making highly accurate
perceptual judgments about targets elsewhere [96]. The results are explained by a model
in which perceptual attention determines the endpoint of the saccade, while a separate
trigger signal initiates the saccade in response to transient changes in the attentional
locus.

Physiological studies show similar results. Colby and Goldberg found that while
some parietal neurons represent object locations in motor coordinates, and the salience of
a stimulus is the primary factor in determining the neural response to it, visual responses
are independent of the intention to perform saccades [97]. Andersen et al. study the effect
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of eye position on the light-sensitive, memory, and saccade-related activities of neurons
of the lateral intraparietal area and area 7a in the posterior parietal cortex of rhesus
monkeys [98]. The study finds that activity depends on the vector from the current eye
position to the cue or movement end point location, again independent of the intention to
perform saccades.

While this sharing of resources is fairly well established, overt shifts of visual
attention pose the additional problem of the need to remap the internal representation of
the world, and in particular, of the saliency map, and little is known with certainty in this
area.

1.4.6. Top-down influences

When viewing a natural scene or a visual stimulus, a number of factors influence the
deployment of attention. In general, salient items, or items that are different from their
neighbors, tend to attract attention, and the information that guides attention in this case
is purely stimulus-related. It is hard not to notice and attend to a red stimulus embedded
in a field of green distracters. This type of information is termed “bottom-up.” On the
other hand, we don’t have any difficulty in searching for particular orientations amongst
the green distracters in the same stimulus. The stimulus did not change, but our intention
did, and the type of information that guides attention in this case is labeled “top-down.”
Several forms of top-down information are identified in the literature. Explicit
information, as presented above, can take the form of verbal instructions or image cues.
Spatial information can guide attention to specific locations within an image, while
implicit information is based on previous stimuli. The latter can take the form of
“priming of pop-out” [99] when subjects respond faster to a feature if recent targets have
been the same feature, or “contextual cueing” [100] when subjects learn that the target is
more likely to appear at a particular location, even if they are not explicitly aware of this.
These and other related issues are discussed in detail by Wolfe [75], here we will only
look at two dramatic illustrations of the importance of top-down attention on perception.

In a study aimed at measuring the impact of top-down attentional selection, Blaser
et al. used an ambiguous illusory motion stimulus whose motion can be influenced by
attention [101]. The stimulus consists of a temporal sequence of five frames, each
containing a vertical sinusoidal grating. The stimuli used two types of grating, a red-
green isoluminant grating and a contrast-modulated random noise grating. The motion
sequence was constructed by alternating red-green and noise frames, with each frame
displaced 90° relative to its predecessor. The background was a 50/50 mixture of red and
green (i.e. yellow). No attentional instructions were given in the control experiment, and
psychometric curves of perceived motion direction detection were generated by
modulating the chromacity difference between the color patches and the background.
After this, subjects were instructed to repeat the experiment while attending to one of the
colors, and it was observed that the psychometric curves were shifted in the direction of
motion consistent with the attended color. The authors interpret the lateral shift of the
curves as indicative of the magnitude of the attentional effect, and note that this
magnitude does not depend on the spatial frequency of the stimuli.
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While most neurophysiological studies focus on neuronal activity in the intervals
following the onset of the trial, one of the most interesting findings of [102] refers to cell
activity preceding the presentation of the cue, so before the actual start of the trial. In
their experiment, rhesus monkeys were trained to fixate a cross in the center of a screen.
Trials started with the presentation of a complex cue (one of 24 complex color images,
ranging from identifiable objects to colored textures and patterns), followed, after a brief
delay, by an array of images from the same database. The monkeys were trained to
respond to the identification of the cue within the array either by performing a saccade to
the image, or by releasing a lever. Two stimuli were selected for each neuron based on
the response elicited in a simple fixation task: a “good” stimulus, which evoked a strong
response and a “poor” stimulus, which evoked little or no response. As in other studies,
neuronal responses following a “good” cue were seen to be elevated in the delay period,
indicating a memory for the task stimulus. Interestingly, when comparing responses
preceding the presentation of the cue in random and blocked design sets of trials, it was
observed that activity in the latter case was significantly above baseline when the monkey
had reason to expect the “good” cue. To eliminate the possibility that this increase is an
artifact of nonspecific changes in cell activity across the session, blocks of trials with the
“good” and “poor” cue were interleaved. Also, the higher activity preceding the “good”
cue in the block design could not have been due to a lingering response to the “good”
stimulus as target on the previous trial since this effect was not observed in the random
design. The authors concluded that the sustained activity preceding the cue in the blocked
design was a purely “cognitive” phenomenon related to expectation of a specific cue and
could not be a sensory response.

1.4.7. Objects and attention

In most traditional theories and models of visual attention, attention is characterized in
spatial terms as a “spotlight” [103], “zoom lens” [104] or “beam” [63], and many studies
use spatial cues to direct attention to a particular spatial location. It is well established
that valid location cues speed the response to a target while invalid cues slow it down
[103, 105]. But even early on, studies into what was called “selective looking” provided
evidence that even when stimuli are spatially superimposed, attention can select one of
the stimuli and ignore the other [106-108]. Some recent studies have confirmed and
expanded on this result [109, 110], while others have used the effect to test the validity of
theories and propose new ones [91].

One of the most influential experimental paradigms in the study of object-based
attention was proposed by Egly et al. [111]. In a typical experiment, the display consists
of two bars, and subjects were cued to one end of one of the bars and the task was to
detect changes at another location, on the same or on the other bar, at equidistant points.
In what was termed “same-object advantage, “ subjects consistently respond faster to
changes on the cued object, even though the spatial distance between the cued location
and the two probe locations is the same. Even more convincing, [112, 113] have shown
that the effect survives occlusions.

Other evidence for object-based attention comes from a number of disorders such

14



as unilateral neglect [114, 115] and the Balint syndrome [116]. Unilateral neglect patients
typically have lateralized parietal lesions and fail to perceive stimuli in the visual field
contralateral to the lesion. While the effect seems to be mainly spatial, two types of
experiments suggest that it could also be object-based. Caramazza and Hillis have shown
that some patients neglect the contralesional half of object with salient axes regardless of
the visual field in which they are presented [117]. Behrmann and Tipper have used
dumbbell type objects. Initially the patients were slower to detect targets on the
contralesional disk, but after the object was rotated in front of them by 180°, the same
patients responded faster to the now contralesional disk [118, 119]. Control experiments
have shown that the effect is indeed object-based: after removing the connecting line the
effect disappeared, and the effect did not transfer to stimuli added to the background.
Some patients with Balint’s syndrome exhibit a condition known as “simultanagnosia,”
which is the inability to perceive more than one object at a time, despite normal visual
processing, even when the objects are spatially overlapped. If two overlapping triangles
forming a Star of David are colored differently, patients often perceive only one of them.
For additional information on object-based attention see [120].

1.4.8. Conclusions

It is obvious from this brief and selective review that visual attention research is a
very broad area, and that the phenomenon manifests itself at all levels of investigation.
As such, the task of the modeler is very difficult. The breadth of research and the
sometimes contradictory results make it highly unlikely that a single model can account
for all observed phenomena. Models concentrating on the overall functionality revealed
by psychophysics can not shed light on the neural mechanisms involved. The sheer
volume of the primate visual system and its tight integration with the rest of the brain
make it very difficult for detailed models based on neurophysiology to scale up to the
level where they can meaningfully simulate behaviour.

15



2. Theories of Visual Attention

In this section we will review some of the major theories of attention. This brief overview
is not intended to be exhaustive, it merely attempts to identify what we see as the three
major philosophical approaches to attention, and provide a theoretical context for the
review of computational models. For a thorough historical review that tracks the
evolution of the major ideas of the field, see [121].

Even a summary review of the relevant literature shows that visual attention is a
very broad and fragmented field of study. Because of this, and to provide some context
for the rest of the paper, we will start by listing what we see as the key questions that
need to be answered by any work that wants to claim to be a theory of attention. Since, as
far as we know, no theory or model comes anywhere near meeting these criteria, and
borrowing from physics, we will call this a “grand unified theory of attention” — similar
in a way to Newell’s unified theories of cognition [122].

2.1. Key ingredients

To account for the wealth of experimental data in a single theory is not an easy task, and
as such, it is probably not surprising that most theories of attention focus on explaining
particular aspects of this complex phenomenon. To be in a better position to compare the
various theories and models and trace their evolution, we will start by listing the
components that seem to be needed for a grand unified theory of attention.

A theory of attention must be able to explain salience and pop-out. While some
authors don’t consider this to be a component of attention per se, but a mere side effect of
preprocessing steps or of the intrinsic connectivity patterns, the mechanisms involved are
very likely either shared or at the very least intimately related. Some theories and models,
such as biased competition, actually claim that the same mechanism is responsible for
both salience and attentional selection, considering attention an emergent property of the
competitive dynamics of the system.

A theory of attention must also be able to explain the mechanisms of top-down
modulation. There are a number of components to this, from describing the neural
mechanisms involved in the modulation and how they interact with the bottom-up
processes, to visual object representation and how they can be selected as the subject of
attention.

Theories of visual attention must define the kinds of stimuli that can be attended.
This is a very broad question, touching on issues such as attending to locations vs. objects
vs. features, the size of the attentional field, the shape and contiguity of the “focus” of
attention — can attention select discontinuous regions? Can it select doughnut shaped
regions? Can attention select multiple locations or objects? What are the mechanisms
responsible for these properties?

Another important component of a unified theory of attention is attentional
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selection, i.e. what exactly does it mean that a particular stimulus is selected by attention?
This is the interface between perception and consciousness, and relatively little is known
with any degree of certainty. Closely related to this is the issue of attentional control, i.e.
how are shifts of attention controlled and where do the control signals come from. The
reverse of selection needs to be explained, i.e. what happens to stimuli that are not
attended? Experimental evidence shows that unattended stimuli can influence behaviour
and reach consciousness, but in general, the information that gets through is either
incomplete, or incorrectly bound. What goes wrong when attention is not present can
provide us with very important clues about the role of attention in perception.

After a stimulus has been selected as the focus of attention, an important question
is what effect does this have on future selections? As with any other topic in visual
attention, opinions are divided. The classical view requires a mechanism of inhibition of
return [123] while a number of controversial studies seem to suggest that memory plays
only a marginal role in visual search [124]. While some of the evidence presented is
indeed tantalizing, the initial research has been fraught by methodological mistakes and
exaggerated claims that don’t help in making the idea very popular.

Most theories and models deal with covert attention, i.e. focusing without eye
movements, but in day to day life overt attention, i.e. eye movements that foveate stimuli
of interest, seems to dominate. Various studies seem to indicate that the two are closely
related and that the same neural structures involved. At least two aspects of this
dichotomy need to be addressed: what are the similarities and differences between overt
and covert shifts of attention? And, in the case of overt shifts of attention, what are the
mechanisms that compensate for the shifts in the saliency map that accompany eye
movements?

Last but not least, what are the implications of attentional selection from an object
recognition point of view. It seem that attention is needed to recognize certain categories
of stimuli and not others, but the mechanisms at work are far from clear.

All this has to be done accounting for results at all levels, from neurophysiology
to behaviour and cognitive science.

Of course, this fine grained analysis of the field is important in judging the
completeness of the various theories, and it can provide a framework for generating and
interpreting predictions, but it is not very useful in getting a clear picture of the
fundamental underlying assumptions made by each theory. We have identified three
major philosophical approaches and in the next sections will present the main theories of
visual attention using this classification.

2.2. Attention as selection

Many researchers view attention as a selection mechanism, used to simply identify areas
of interest in the visual scene and make them available for further processing. This could
take the form of object recognition, memory, or conscious perception. Most theories of
visual attention fall under this category.
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2.2.1. Early vs. late selection

Early work in attention was based mainly on auditory perception, a fact reflected in the
terminology used and in the format of the theories that were advanced.

The first major theory of attention was Broadbent’s Filter (or early selection)
theory [125]. Its basic hypothesis is that the recognition mechanism is only able to handle
one stimulus at a time, and thus, after an initial representation of all the physical
attributes of the input, a selection criterion is used to determine which stimuli should be
processed further. Because the attentional selection is supposed to act early (i.e. before
stimulus recognition), this and other similar theories have been termed early selection
theories.

At the other extreme, [126-128] have proposed that recognition has no capacity
limitations, but occurs in parallel for all stimuli, and selection is only needed for access to
memory and consciousness.

The idea that selective attention is more flexible than either the early or late
selection models allow, first introduced by Treisman [129], was detailed in the
multimode model [130]. Based on experimental evidence presented by Johnston and
Heinz [131], they proposed that attention could operate at various stages of processing
(or, as they put it, in multiple modes — early, middle, late) and that selection will occur as
early as possible depending on the task demands. This is due to the hypothesized higher
cost of later selection, which makes it less accurate than middle or early selection. Due to
its lasting impact on the field, and especially in the computational modeling world,
dominated by the Koch and Itti early selection style model, and the fact that later research
has shown it to be incorrect, this early serial/parallel dichotomy has been deemed to be a
“useful, but potentially dangerous fiction” [72].

2.2.2. Feature Integration Theory

Feature Integration has evolved significantly from its earliest incarnation - the
Attenuation Theory, which is a typical example of a late selection theory. The key points
in the theory’s evolution are the idea that attention allocation is gradual rather than
binary, attenuating unattended signals [126], followed by the idea that attention is a
hierarchical process, operating at various level [129].

As the field started moving from auditory to visual attention, this set of ideas
matured and incorporated new experimental results. In the Feature Integration Theory
[76] we see some of the major themes that have dominated most of the field ever since.
The model is hierarchical, with early processing occurring in separate modules for each
feature dimension, and consisting of the detection and comparison of features. The
selection is done by an attentional window that can operate at a specific stage. Feature
Integration Theory interprets the dichotomy between “serial” and “parallel” search
indicated by the early results quite literally, the model keeping a very clear distinction
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between preattentive and attentive mechanisms. The preattentive mechanisms are
supposed to operate in parallel on the whole image, and are responsible for flat search
times, while the limited capacity attentive stage is responsible for the serial search.

While some of the explanations provided have been revised, the concepts of
saliency, attentional spotlight, pop-out and serial search proposed by Feature Integration
Theory continue to be enduring themes of attention research.

2.2.3. Guided Search

Guided Search [132-134] maintains the preattentive-attentive separation, but removes the
need for an explicit distinction between parallel and serial search. In the first stage of
processing, features are segregated in parallel and engage in a limited form of
competition with their neighbors. The second stage is a weighted sum of the feature maps
that builds a saliency map, and this map “guides” the deployment of the limited
attentional resources. To explain primate performance in visual search tasks without the
need for distinct parallel and serial mechanisms, Guided Search postulates that the early
stage processing is noisy, which makes the guiding process less precise. Top-down
guidance is in the form of biasing the weighted sum towards the desired features.

2.3. Attention as filtering

One of the characteristics of a hierarchical system that does image processing by
introducing scale and location invariance, as the primate visual system seems to operate,
is that neurons in the higher levels of the hierarchy have large receptive fields that are
likely to include not only the optimal stimulus but also significant amounts of extra
information. The proposed role of attention is to filter out this information in order to
improve the signal-to-noise ratio in the system.

2.3.1. Selective Tuning

While most theories are more or less attempts at explaining experimental results, the
Selective Tuning theory [63] is unique in that it is based on a rigorous first principles
analysis of the theoretical aspects of biological image processing, and in particular on a
complexity analysis of the tasks involved [2]. Selective Tuning is based on a hierarchical
processing pyramid with reciprocal connections that carry stimulus information forward
and attentional control signals backward. According to the theory, the role of attention is
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to aid stimulus recognition by reducing the interference caused by the large receptive

fields found in higher visual areas. In order to do this, stimuli proceed to the higher levels

unimpeded in a first pass, and as a series of winner-take-all computations are propagated
backwards, any items that could potentially interfere with high level representations are
actively inhibited. The attentional control is both local and distributed.

Probably the most powerful feature of Selective Tuning is the theory’s ability to
generate predictions that have received significant support:

* An early prediction ([2]) was that attention seems necessary at any level of processing
where a many-to-one mapping of neurons is found. Further, attention occurs in all the
areas in concert. The prediction was made at a time when good evidence for
attentional modulation was known for area V4 only [92]. Since then, attentional
modulation has been found in many other areas both earlier and later in the visual
processing stream [135]. Evidence cited by Britten [136] who reached the conclusion
that 'attention is everywhere', was mostly post-1990. Vanduffel et al. [137] have
shown that attentional modulation appears as early as the LGN.

* Another early prediction of Selective Tuning is that attentional modulation in higher
areas precedes that in earlier areas, a prediction supported (at least in the ventral
pathway) by Mehta et al. [138].

* The notions of competition and of attentional inhibition were also early components of
the model [2] and this too has gained support over the years [93, 135, 139].

*The model has always included an inhibitory surround component [2]. This implies that
perception may be negatively affected in the vicinity of the attended stimulus. This
too has recently gained support [137, 140-142].

*The model also explains how so-called pre-attentive vision is only a special case of
attentive processes [2]; no separate pre-attentive process operates independently of
attention, a view Joseph et al. [143] seem to be suggesting too.

2.4. Attention as process

A number of theories discard the notion of a special attentional mechanism and attribute
all of the observed characteristics to emergent properties of the competitive neural
networks present in the brain.

2.4.1. Biased Competition

While all the theories reviewed above maintain in one way or another the notions of
saliency and attentional window, Biased Competition [139] introduces the idea that
attention is an emergent property of the dynamics of the visual system. Their theory
introduces the notion that all the stimuli in the visual field compete for access to
computational resources to influence behaviour. This competition takes place at all
levels, and it can be influenced by top-down biases both at a spatial and at a feature level.
The result is that the representation of behaviorally irrelevant stimuli is suppressed.

20



Biased Competition accounts for various slopes of search times by appealing to
the notion of similarity between target and distracters and the similarity of the distracters
to each other. Unlike selection theories that treat features and conjunctions differently,
resulting in a vast literature that attempts to list all the basic features, Biased Competition
argues that they are qualitatively the same.

One of the most controversial proposals of this theory is the notion of receptive
field plasticity, attention in effect “shrinking” the receptive fields around the attended
stimulus.

2.4.2. Feature similarity gain

An alternative to biased competition has been proposed by Treue and Martinez-Trujillo
[88, 91], based on electrophysiological data obtained from areas MT and MST of
macaque monkeys, data that was in disagreement with predictions of the biased
competition theory. Their studies address both the issue of spatial attention and feature
based attention, and suggest that spatial and feature based attention modulate neuronal
responses without changing the cell’s selectivity, and that this modulation changes a
given neuron’s response depending on the similarity between the attended feature and the
cell’s preferred feature.

The main experimental result is that attention only modulates the gain of neural
responses via a multiplicative mechanism that does not affect the shape of the tuning
curve of individual neurons. This means that instead of changing or biasing the receptive
field, attention merely changes the salience of the physical stimulus, so it is equivalent to
and indistinguishable from an increase in the intensity of the stimulus. Experimental
support for this ranges from neurophysiology to psychophysics [89], and [88, 144]
propose and model a physiological mechanism that could potentially account for this
effect.

To address the issue of receptive field plasticity, Treue and Martinez Trujillo used
superimposed random dot patterns moving in different directions, and the monkeys used
in the experiment were trained to selectively attend to one of the directions [88, 91]. The
modulatory effects did not change from a single stimulus scenario, and as the random dot
patterns were spatially superimposed, receptive field plasticity cannot account for this. In
addition, once animals attended to a particular stimulus feature, attentional gains for that
particular feature were found throughout the visual field, in contradiction with the notion
of receptive field modulation.

2.5. Conclusions

In this chapter we have introduced an original classification of the major theories
of visual attention, corresponding to a certain extent to the historical development of
neuroscience.
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Selection theories present a very attractive, simple and intuitive picture. The
notion of a localized saliency map in the brain is very compatible with the modular and
reductionist approach that has characterized much of neuroscience in the past. These
theories seem to be able to account for some behavioural results, especially in visual
search, but they offer little, if any, insight into the neurophysiological aspects of attention
in the main processing streams of the visual system.

Filtering theories focus on the process of extracting meaningful information out of
cluttered scenes. A number of facts converge on the conclusion that Selective Tuning has
the potential to make significant contributions to both theories of visual attention and
computer vision. Selective Tuning is the only theory based on rigorous formal analysis
(namely computational complexity theory). This approach moves attention in the
direction of signal processing and information theory, and is in a unique position to take
advantage of results in these areas. Also, the level of the theory is such that it can bridge
the gap between neurophysiology and psychophysics.

The emergent property theories share some of the advantages of filtering theories,
but lack the formal underpinning, and seem to be developed as reactions to developments
in the field, rather than being active generators of predictions. Decentralized processing
seems to be a major direction in current science, and developments in this area could
provide these theories with the necessary formal support.
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3. Computational Models of Visual Attention

3.1. Classes of computational models or What is included, what is not?

“Modeling plays a unique role in visual neuroscience. On one hand, single-unit
physiology catalogues neural responses to visual stimuli and perhaps correlates them with
behavior; on the other hand, psychophysics measures the overall functional capabilities of
the visual system. The goal of neural modeling is to produce theories that bridge the gap
between activity of the neural elements and responses of the functioning system. Thus, an
ideal neural model contains elements mimicking the response properties of neurons in
relevant visual areas and makes predictions of system behavior that are psychophysically
testable® [85].

Wide varieties of computational models of visual attention have been proposed,
including purely mathematical (such as [145]), signal detection (such as [146, 147]) and
Bayesian models (such as [148]). Some of these models provide very good fits for the
experimental data and are able to generate interesting predictions, but they fail to provide
the bridge required by Wilson’s definition, and are not providing explanations for the
neural mechanisms involved. Only models that fit this definition will be included in this
review, because in the author’s opinion, these are the models that are most likely to
generate significant progress in neuroscience.

3.2. Computational models

In the remainder of this review, instead of providing a phonebook style list of the current
biologically plausible computational models of visual attention, we will try to see how
they address the key ingredients of an attentional theory identified above.

3.2.1. Saliency maps

Most computational models of visual attention use saliency maps in some form or
another, as a two-dimensional scalar map of values representing the visual saliency of the
corresponding location, irrespective of the particular stimulus information that makes the
location salient. With this hypothesis, focusing attention to the most salient location is
reduced to simply selecting the highest activity in the saliency map.
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In the Shifter Circuits model [149, 150], inputs are filtered through Gaussian
blurring creating a "blobs map” in which units compete with each other and only the
control unit corresponding to the strongest blob prevails. In what is a clear example of an
“attention as selection” model, the input corresponding to the strongest blob is selected
and routed to an object recognition module.

The visual attention model of Itti and Koch [151] is inspired by the local center-
surround competition mechanisms that account for the non-classical receptive field
properties of neurons in the primary visual cortex. An iterative filtering and half-wave
rectification scheme similar to a winner-take-all mechanism limits the total number of
active sites within each feature map, and these are summed up to produce the saliency
map.

One of the problems encountered by computational models that use saliency maps
is that they translate physical properties of the stimulus such as luminance, color, size,
onset, etc. into saliency values. Because the various stimulus dimensions have very
different characteristics, combining them is a non-trivial problem. The four main
approaches presented in the literature are reviewed in [152]: simple normalized
summation, linear combination with learned weights, global non-linear normalization
followed by summation, and local non-linear competition between salient locations. The
conclusion of this study is that the best overall results can be obtained by the last two
methods, which happen to be simplified versions of what is thought to be biological
within-feature spatial competition for saliency.

Draper and Lionelle’s critical evaluation of the [151] model starts from the
assumption (questionable in the author’s opinion) that attention is simply a front-end for
object recognition [153]. If this assumption is true, Draper and Lionelle conclude that the
attentional system must have similar behaviour when faced with transformations of the
input, i.e. it must be insensitive to affine transformations of the stimuli in the image.
Draper and Lionelle’s analysis finds the model to be lacking, and propose a fairly simple
and intuitive solution: instead of a single master saliency map, they use one saliency map
for every scale, with global competition that ensures that the system as a whole is
insensitive to scaling, rotation and translation of stimuli in the input image.

An example of linear combination with learned weights is [154], in which a
backpropagation network receives task-dependent input and controls the flow of
information from the low level feature maps to the saliency (“priority’) map.

The models presented above all use low-level features in the process of building
the saliency map. A different approach is taken by Lee et al. with very impressive results,
but at the expense of generality [155]. Their Interactive Spiking Neural Network (ISNN)
is geared specifically to finding human faces, and in order to accomplish this they use
domain-specific intermediate-level features such as ellipses, aspect-ratio and symmetry,
in combination with skin-color detection. These intermediate level features are combined
into a saliency map using binary set operations, each possible combination of features
being given a weight through an original learning algorithm. Another interesting aspect
of this model is the fact that it does not employ a hierarchical processing scheme, this
being a saliency map model in its purest form.

Similarly, in order to facilitate segregation and object-based attention, [156] uses
symmetry, eccentricity, color contrast and depth to construct a 3D saliency map.
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Interestingly, while neurophysiologycal evidence for saliency maps in the brain
has been mounting (e.g. [157]), a number of models have started arguing that they might
not be needed after all, and proposed attention as an emergent property of the dynamics
of the object recognition network.

In the solution presented in the Selective Tuning Model [63], the highest level of
the processing hierarchy acts in essence as a very low-resolution saliency map, and it is
the attentive mechanism that provides the localization of the attended stimulus through
feedback connections that activate pyramids of ©-winner-take-all' (@-WTA)
competitions. These competitions refine the very coarse initial representation of the
attended stimulus location, while at the same time pruning connections that interfere with
representation of the selected area. A logical consequence of this approach is that each
level acts in effect as a saliency map for the features it represents, and thus selection does
not need to happen at the highest level of the pyramid, attention can be directed to any
feature that is represented at any level of the feature pyramid.

The Neurodynamical Model [158] implicitly codes saliency as a distribution of
modulation across the feature maps. Feature maps relevant for the task are enhanced
and/or distracters are inhibited, and the dynamics of the network produces winners
without the need for explicit representation of salience. This model is split along the
ventral/dorsal divide, with the ventral pathway implementing invariant object recognition
and the dorsal pathway representing space. The dorsal pathway represents a biasing map
with a dual role. In spatial selection mode, a location in this map is selected, and this
selection is used to bias the competition in V1 in favour of features located in the
corresponding position, features that will be processed first by the object recognition
subsystem. In object recognition mode, once a set of features emerges as winner of the
distributed competition, the corresponding area in the dorsal pathway is selected, again
biasing processing in favour of that spatial location. This biasing map is further used in
modeling the symptoms of neglect by introducing a bias gradient in the representation of
space, with the various manifestation of the disease associated with different gradient
profiles.

The underlying neural mechanisms of this competition are investigated in [93],
starting from the observation that attentional modulation peaks when multiple stimuli
share a neuron’s receptive field. The authors propose a very simple model neural circuit,
composed of three neurons, two input and one output, connected both directly and
through inhibitory interneurons. The input neurons correspond to the reference and probe
stimuli, and the dynamics of the circuit is described through differential equations.
Attention is assumed to increase the strength of the signal coming from the cell activated
by the attended stimulus, through an unspecified mechanism. The circuit behaves like a
feedforward competitive network, and is able to simulate the observed behaviour of its
biological counterpart. Work on the computational modeling of the competition and
selection microcircuitry has also been reported by Grossberg [83, 159] and Li [84, 160].

' Our terminology. In ©-winner-take-all, units only compete if they differ by more than a
threshold ©.
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3.2.2. Top-down influences

Many researchers have included top-down influence in their models, here we will
review a few characteristic approaches. Two general trends have emerged: in saliency
map based models, the top-down influences act directly on the saliency map, making it
more likely that targets within certain spatial areas will be selected, while in models
based on distributed competition, the competition itself is biased in favour of task
relevant stimuli.

Designed specifically as a word recognition system, MORSEL [161] integrates
top-down influences in a task-specific fashion. As discussed in more detail in the
“Attention and recognition” section, the system employs two distinct attentional selection
mechanisms: a late selection component (a “pull-out net”) and an early selection
component (the “attentional mechanism”). The top-down component of the attentional
mechanism moves the spotlight based on specific information such as static target
expectations or dynamic scanning patterns for reading. A second type of top-down
influence, independent of attention, can suppress features related to distracters in search
tasks, thus reproducing the flat search times observed in psychophysics experiments.

As seen above, in the Selective Tuning Model [63], due the fact that the model
makes a clear distinction between saliency and localization, top-down influences can be
integrated in a simple and natural fashion. The authors demonstrate the power of this
approach by implementing external biases for or against spatial regions and/or feature
maps. Unfortunately, the very simplistic processing pyramid and model neurons used do
not allow a comparison between the performance of the model and that of primates,
which is the ultimate test for any model of the kind reviewed here. Only scanpaths, i.e. a
qualitative evaluation of the system's performance, are presented, and not reaction times
in search tasks. Recent work [162] has started to address this issue by explicitly trying to
model Motter’s monkey experiments [163] using cameras mounted on a robotic head.

A model aimed specifically at the aspect of learning top-down influences uses a
backpropagation network that receives task-dependent input and controls the flow of
information from the low-level feature maps to the saliency (or “priority”’) map [154].
The network is trained to enhance the relevant and suppress the irrelevant information for
the current task. As shown by [152], this approach can have good results in dealing with
specific problems at the expense of generality.

In the Neurodynamical Model of visual attention [158], a sequence of parallel
“where” and “what” pathways that operate at different spatial resolutions and speeds is
presented. The whole system acts as a hierarchical predictor, where the low resolution
analysis determines areas of interest that are investigated in a serial fashion at
increasingly higher resolutions, under the guidance of the attentional system.

A number of modelers have decided to either ignore all the other issues or rely
purely on mathematical models or on existing models of attentional selection and focus
exclusively on the issue of top-down control.

One clear example of this approach is [164], which is a spinoff from previous
work by the same researchers on rapid scene categorization (e.g. [165]), which in turn
follows the pioneering work of Biederman [166]. The key point of this previous research
has been to demonstrate that low-resolution information is sufficient to categorize a
scene, and that this is done very quickly in the brain. The model uses this information to
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bias or cue a saliency map, and the resulting system is shown to demonstrate very human-
like sequences of fixations in natural scenes. While it is questionable whether this type of
cueing constitutes “top-down” influences, the approach has significant merit, as it and
[158] are the first models to explicitly take into account the fact that information is
processed at different speeds, and to suggest potential ways in which this phenomenon
could be used to influence behaviour.

A similar approach is taken by [155], but, significantly, in this model the quick
and dirty processing is combined with true top-down influences, presented to the system
in terms of instructions of the form “near red” or “above blue.” This is an approach
somewhat reminiscent of the concept of “indirect search,” introduced and analyzed
formally by [167].

3.2.3. Attentional selection and filtering

Experimental results show that primates can attend to locations, objects or
features in the visual field, and within each category, the actual shape and extent of the
attentional focus is subject to experimental manipulation.

Most computational models of visual attention include some form of spatial
attention, but the shape and size of the attended location and any limitations in this
respect are not explicitly addressed in a rigorous fashion. The Itti et al. model [151]
seems to assume that attention is a circular “spotlight” of fixed size that just indicates the
general area of interest. Approaches that rely on the dynamics of the neural networks for
selection, such as [63, 168, 169], do not make any assumptions about the shape, size or
even number of attended areas. While the models do not make any such assumptions,
some contiguity criteria are introduced in the implementation of the systems, mainly in
the form of soft winner-take-all competitions with proximity biases.

In general, it is difficult for modelers to approach the issue of the fate of objects
selected (or not selected) by attention since little is known about the high level cortical
mechanisms that use the information generated by the object recognition systems of the
brain, touching on notions that have so far eluded our understanding, such as
consciousness and awareness.

The fate of items not selected by attention is generally not discussed explicitly by
the theories and models, with the notable exception of the Selective Tuning Model [63].
The fundamental theoretical assumption behind this model is that the role of attention is
to eliminate the interference between the stimuli that fall within the receptive fields of
neurons, especially at high levels of the visual hierarchy where these can cover large
portions of the visual field. The competition between stimuli occurs at all levels of the
hierarchy, guided by top-down influences that in effect bias the competition in favour of
the stimuli that are part of (or consistent with) the winning object at the top of the
hierarchy. This means that stimuli close to the focus of attention will be inhibited
strongly, while stimuli outside this area of inhibition will pass unaltered. As mentioned
before, this prediction of the model has recently received significant experimental support
[142,170, 171].

27



Attentional control has not been the focus of intense modeling research, if it is
mentioned at all, it is in the form of unspecified external mechanisms. For example, in the
Neocognitron system [172] external switch signals disengage attention and allow it to
focus on the next target. Similarly, in the Selective Tuning Model [63] the time course of
the attentional process is determined by ‘“gating control signals” of unspecified origin.
These binary signals are responsible for initiating the WTA processes in the appropriate
sequence and for determining the duration of one attentional fixation.

3.2.4. Inhibition of return, covert and overt attention

While many models of visual attention include demonstrations of inhibition of
return (IOR) and overt attention, they are in general based on engineering solutions that
have little if anything to do with the way the brain accomplishes this complex task. The
fact that biologically plausible implementations are not readily available is a reflection of
the fact that little is known about the underlying neural mechanisms and representations
involved, rather than a weakness of the models. The experimental evidence for the neural
mechanisms involved in IOR is reviewed by Klein [123].

In terms of IOR in covert attention, three types of solutions have been presented
in the literature. Some models just inhibit selected locations, either in the input image
[63]* or in the saliency map [151]. In some cases the inhibition decays in time, allowing
for the locations to be reselected after a while. The second approach, exemplified by the
Neocognitron system [172], is to simulate neural fatigue, controlled by external attention
switch signals. A third solution, presented in the Selective Tuning Model, disables the
neural pathways corresponding to the selected item or location [63].

Models that use distributed representations of salience in the form of a dynamic
winner-take-all (WTA) network might not even need an explicit IOR mechanism. This
issue is not discussed in the computational modeling of visual attention literature, but
models of the dynamics of small neural networks prove that integrating neural adaptation
in WTA networks produces exactly the type of short-term memory that seems to be
needed for IOR [173].

Of course, these simple approaches are not sufficient in active vision systems or
in systems that attend to moving targets, where the attended feature’s location changes in
time. These cases require higher-level representations and some form of short-term
spatial memory. In an explicit attempt to address the issue of moving objects, [156]
implements a “semi-attentive” stage, which is in effect a short-term, limited capacity
memory of object files. Inhibition of return is implicit, and follows from the fact that
object files are assigned priorities based on the time when they were last selected,
unselected objects having the highest priority. While the idea of object files might have
some biological support, these object files are implemented as symbolic representations
of position, size, trajectory, etc.

At the same time, without specific reference to attention, a number of models
have addressed the issues of coordinate transforms and/or dynamic remapping that seem
to be needed (see [174] for a review).

* Implementation only, the theory uses the third solution.
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Two recent publications showcase the state of the art in this area. Zaharescu et al.
investigates the neural mechanisms for saccade target determination and execution,
proposing that processing in the central part of the field of view provides object
recognition, while coarser processing in the periphery provides support for saccadic eye
movements [162]. While the decisional aspects of the proposed model are rather
simplistic, it is the first model to integrate a full spectrum of mechanisms, including
coordinate transforms, saccadic remapping, and inhibition of return. Complementary
research is presented by Lanyon and Denham, where the decision-making surrounding
the execution of saccades is investigated in detail. Starting from feature-based attention,
the model proposes a pathway that involves LIP, where behaviorally relevant locations
are represented and saccadic eye movement decisions are taken [175].

3.2.5. Kinds of stimuli that can be attended

Experimental results show that primates can attend to locations, objects or features in the
visual field, and within each category, the actual shape and extent of the attentional focus
is the subject of experiments and modeling.

In the Neurodynamical Model [169], locations are selected as points at the
resolution of V1, but within each hypercolumn, features at a certain scale emerge as
winners of the competition, thus in effect achieving both precise localization and varying
sizes of the attentional focus. To mimic the observed faster processing of lower frequency
stimuli, time constants are chosen such that the competition converges faster for them
(note that this is very different from the “quick and dirty” processing proposed by [164]
and [155] reviewed above).

In many cases we can see a marked difference between the theoretical capabilities
of a model and those of its early implementations, differences that are sometimes
addressed in later work. For example, while Selective Tuning as a theoretical model
imposes no limits on the shape of the attentional focus, the implementation presented in
[63] is based on rectangular patches of space at various scales and aspect ratios. More
recently, [168] introduces a ©-winner-take-all’ algorithm that allows the shape of the
focus to be driven by the input data, in what is an impressive demonstration of the ability
of the model to perform its two main stated goals: identification and localization of
motion stimuli in natural image sequences.

Another example, again illustrated using Selective Tuning [63] concerns the
number of locations or objects that can be attended. Given that the nature of cortical
connectivity, and especially the inhibitory lateral connections, is local, a global WTA
competition is highly unlikely, so it is entirely possible that multiple winners can emerge
out of the competition, and thus multiple attentional beams can operate in parallel, but

? See footnote on page 25.
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this is avoided by implementing the decision in layers of extremely low resolution,
effectively imposing global competition and restricting the system to a single attentional
focus. It would be very interesting to see a demonstration of Selective Tuning where this
limitation is removed, especially because some of the predictions of the model seem to
require it. For example, some of the results presented by Cutzu and Tsotsos in support of
Selective Tuning [142] seem to require a second attentional focus to be consistent with
the theory.

A model that explicitly tries to address the lack of multiple attentional foci is
[156], unfortunately the model appeals to a biologically implausible symbolic stage that
represents a literal interpretation of the notion of “object files” and stores information
such as position, size and trajectory for the selected objects.

The first model to implement object-based attention is MORSEL [161]. For more
information see section 3.2.6. An interesting aspect of MORSEL is the pattern of
connectivity within the “attentional mechanism” network (see above). Here units have
local excitatory and distant inhibitory connections, which allows the network to converge
into an “elastic” spotlight, with size and position dependent on the input image.

While not a computational model of visual attention per se, MAGIC, the system
presented in [112] is an effort to simulate the results of Egly-type same-object advantage
experiments. The hierarchical system learns feature grouping from labeled examples, and
uses both firing rate and spike phase to encode the information. For a given neuron, the
firing rate is a measure of the confidence in the grouping of the particular feature, while
the phase correlation between features is used to indicate grouping. This information is
correlated to psychophysical performance in Egly-type experiments that the authors
present. The results seem to support the notion that strength of grouping can explain the
observed same-object advantage.

The limitations on the resolution of attention presented by Intriligator and
Cavanagh [176], and explained as limits imposed by the size of the receptive fields in LIP
have not been addressed by the modeling community, but in the author’s opinion a more
plausible explanation could be proposed in the context of Selective Tuning [63] or
Neurodynamical [169] Models. This may be caused by the size of the competitive circuits
in V1 and/or the extent of the feedback connections. This is supported by a series of
studies that find a very good similarity between the sizes of lateral connections in V1 and
the size of the feedback projections of individual neurons in V2 with the limits found in
attentional resolution [177].

3.2.6. Attention and recognition

Many modeling efforts separate attention and recognition, and even today, some
researchers persist in this approach, e.g. Draper and Lionelle [153] declare that the
purpose of a model of visual attention is to be “the front end to an appearance based
object recognition system.”
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Probably the most blatant example of this approach is the Shifter Circuits Model
[149, 150], a model that basically consists of a set of control neurons that dynamically
route information from a window on the input to higher areas. Once a cropped area of the
input image has been selected, it is presented to an associative recognition network. The
same approach is taken by the SCAN model [178] and by the Selective Attention for
Identification Model (SAIM) [179].

MORSEL [161] integrates attentional selection into an object recognition network
(in particular, stylized printed words), thus achieving the goal of multi-object processing.
The retinal input is processed by a recognition network (called BLIRNET) that maps the
raw stimuli to representations of words and letters. With several words in the input
image, a simple word recognition system will sometimes miscombine letters to form
words that are not present (similar to the “letter migration” phenomenon observed in
perceptual studies [180]). The addition of a separate attentional module is able to
overcome this problem. Two distinct attentional selection mechanisms are presented: a
late selection component (a “pull-out net”) and an early selection component (the
“attentional mechanism™). The late-selection mechanism acts on the outputs of the
recognition network. The attentional mechanism builds a spotlight by combining bottom-
up information, biasing selection towards locations that contain input, and top-down task
specific information such as static target expectations or dynamic scanning patterns for
reading. Note that the selection is not binary, and even non-attended locations get a
certain degree of processing.

Another approach that separates attention from object recognition is presented by
Walther et al. [181]. In this case, the saliency-based attentional system of Itti et al. [151,
182] operates in parallel to the hierarchical recognition system of Riesenhuber and
Poggio [183], and the result of the WTA competition on the saliency map is used as a
modulation mask in the layers that represent features of intermediate complexity in the
recognition hierarchy. The system seems to work well for simple, high contrast paper-clip
type objects on dark uniform backgrounds, but because saliency based on simple features
is used in segmentation, in natural images where objects are not uniform in their most
salient feature, the system has problems.

The diametrically opposite approach is the total integration of attention and object
recognition, a solution pioneered by Fukushima’s Neocognitron system [172]. While the
Neocognitron pattern recognition architecture has undergone significant evolution, the
form under which attention has been integrated is based on a hierarchical pyramid of
simple and complex cells that are trained through unsupervised learning. The last layer of
the system, the recognition layer, projects feedback towards the lower layer of the
system. Since the feedback signals are gated by the feedforward pathway, they follow the
same route as the feedforward signals. If a feature is missing, the feedback is blocked,
which causes a lowering of the detection threshold in the feedforward pass, so as to detect
even attenuated traces of the input, and the feedback signal continues. This process is
repeated until a perfect output is found, the system working in effect as an associative
memory. To ensure that only one output is active at any given time, the output layer has
lateral inhibitory connections.

The object recognition capabilities of the Selective Tuning Model [63] are
explored by Dolson [184]. In this work, simple object recognition is implemented as a
process of reconstruction from parts, the top-level selection being considered a
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recognition hypothesis. The role of attention is to prune the processing hierarchy of all
information that is not consistent with the hypothesis, thus validating (or invalidating) it.

Two different schemes of integrated attention and object recognition are
investigated in the context of the Neurodynamical model. The first one, presented in
[158] has been discussed above. In [169], attention is implemented through local
competition biased by top-down connections, while object recognition is implemented in
the feedforward connections that are trained through Hebbian learning. Parallel and
somewhat similar structures for invariant object recognition and spatial location are
presented, and this allows for a similar treatment of both spatial and object-based top-
down influences, manifested by the biasing of the appropriate top-level representations,
biases that travel through the network to simulate visual search and object recognition.

While not object recognition in the traditional sense, Tsotsos et al. [168] presents
an extension of the Selective Tuning model [63] that is able to recognize and localize
basic motion patterns in natural image sequences. In this system, high-level motion
patterns such as translation, rotation, spiral motion, and shear are built up from low-level
optic flow information and intermediate level motion gradients. Attention selects a
winning high-level pattern, and the Selective Tuning feedback process refines its
representation and localizes the pattern in the input image sequence.

One important and little understood aspect of the interaction between attention
and object recognition is the fact that while certain very complicated stimuli can be
recognized in the absence or near-absence of attention, simple stimuli like rotated T’s and
L’s can not be discriminated without the full deployment of attention. Understanding this
phenomenon can lead to significant insights into the mechanisms of object recognition
and the binding problem, but none of the models reviewed address this issue beyond
simply mentioning it.

The amount of research into the area of attentional object recognition
demonstrates its importance and actuality, but with the exception of early results in multi-
object recognition, and some purely technical contributions, our understanding of the
interaction between attention and object recognition is very limited, and this is one of the
most promising areas for computational modeling to make significant contributions.
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4. Conclusions

This review discussed and classified the main theories and computational models of
visual attention.

A number of areas in computer vision that take a similar approach have been
briefly reviewed, followed by a brief presentation of the most relevant experimental
paradigms and findings that have guided the development of computational neuroscience
models of visual attention.

The key components of any complete theory of attention have been introduced,
and, based on these, the major theories of primate visual attention have been presented in
an original classification, qualitatively different, but not incompatible with the one
proposed by Fernandez-Duque and Johnson [185]. With this foundation in place, the
major classes of computational models of visual attention have been analyzed, and with
emphasis on how the identified key components are addressed.

The important contributions that this paper makes are the identification of the
many disparate components that fall under the definition of attention, the analysis of the
main computational models of visual attention within this framework, and the original
classification of visual attention theories.

The main benefit of this systematic analysis is its ability to identify areas that
have received significant attention from the research community and, more importantly,
areas where there are major open questions.

The modeling of saliency is the dominant theme of visual attention modeling
research, probably due to a combination of historic, technical, and subjective reasons.
Historically, the first major theory of visual attention, Feature Integration Theory [129]
falls under this category, and several theories have developed these ideas with quite
considerable success in describing psychophysics results (but offer little, if any, insight
into neurophysiology). From a technical perspective, these theories are very easy to
implement, and match well with the extensive computer science work on region of
interest operators. Subjectively, the picture presented in the context of these theories and
models is very attractive, being very simple and intuitive. The notion of a localized
saliency map in the brain is very compatible with the modular and reductionist approach
that has characterized much of neuroscience in the past.

Most theories and models limit top-down influences to a biasing role, modulating
the combination of features into saliency maps or the competition between
representations. While this may be the case, neurophysiology also shows that top-down
influences play a crucial role in everything from figure-ground segregation to object
recognition, and the fact that most of these effects are not present in anesthetized animals
and in the absence of attention proves their very active role that modeling can not ignore.

Very little research has focused on attentional selection and filtering, and indeed,
most (saliency based) models are too simplistic to even approach these subjects. This is
the area in which dynamical models have the best chance to make a significant
contribution, as they do not suffer from the limitations that characterize other models.
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Inhibition of return and overt attention have long been subjects of computational
modeling research, but rarely have biologically plausible mechanisms been integrated in
visual attention models. This is beginning to change, and recent work has made
significant contributions in this direction.

Similar to attentional selection and filtering, the issue of the kinds of stimuli that
can be attended seems very much the domain of dynamical models. Recent attempts by
saliency based models to approach this problem (in particular object recognition) have
only served as reminders of their limitations, and while some of the results are technically
sound, they greatly depart from biological plausibility, being in effect region of interest
based systems.

Object recognition is the crown jewel of computer vision, and the fact that
biologically plausible models seem unable to approach the level of performance of
computer vision systems (let alone that of the primate brain) is a strong indication that
much remains to be done in this area. Progress here is very likely to also contribute
significantly to most of the other areas of research, especially in addressing questions
about attentional filtering and the kinds of stimuli that can be attended.

In this respect, while this paper has identified open questions in all areas of
research, object recognition stands out as probably the most important target for future
research.
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