MULIC:Multi-Layer Increasing Coherence Clustering of
Categorical Data Sets

Bill Andreopoulos
Aijun An

Xiaogang Wang

Technical Report CS-2004-07

December 2004

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

MULIC: MULTI-LAYER INCREASING COHERENCE
CLUSTERING OF CATEGORICAL DATA SETS

Bill Andreopoulos
Department of Computer Science,
York University, Toronto, Ontario,

Canada, M3J 1P3

billa@cs.yorku.ca

Aijun An
Department of Computer Science,
York University, Toronto, Ontario,

Canada, M3J 1P3

aan@cs.yorku.ca

Xiaogang Wang
Department of Mathematics and
Statistics, York University,
Toronto, Ontario, Canada,M3J1P3

stevenw@mathstat.yorku.ca

December 2004

ABSTRACT

We present the MULIC algorithm for clustering of categorical
data sets that offers major improvements over many aspects of the
traditional k-Modes algorithm, so that the results are more
accurate. A preprocessing of the objects in the data set is
performed, that imposes an ordering of the objects. MULIC does
not sacrifice the coherence of the resulting clusters for the number
of clusters desired. Instead, it produces as many clusters as there
seem to naturally exist in the data set. Each cluster consists of
layers formed gradually through iterations, by reducing the
similarity criterion for inserting objects in layers of a cluster at
different iterations. We show that the misclassification rates —
including HA Indexes [16]- of MULIC are much lower than those
of other algorithms, including k-Modes [14], ROCK [10],
AutoClass [19] and the WEKA clustering algorithms [18,20]. We
compare the MULIC run times to those of other algorithms,
showing that MULIC has comparable or better run times.
http://www.cs.yorku.ca/~billa/MULIC/

Keywords: Clustering, Categorical, Multi-layer, Coherence, HA
Index, Data Mining

1. INTRODUCTION

Clustering attempts to partition a set of objects into groups, so
that objects with similar characteristics are grouped together and
different groups contain objects with different characteristics [5,
8,9,11]. K-Modes is a widely used categorical clustering
algorithm that assigns a mode to each cluster as a 'summary' of the
cluster's contents. Using a mode for each cluster during the
clustering process ensures that a cluster will contain many
categorical annotations of the same type. We were motivated to
design a novel algorithm called MULIC: Multi-Layer Increasing
Coherence clustering of categorical data sets, to overcome the
following shortcomings of the classical k-Modes algorithm: a. the
accuracy of k-Modes is often questionable. b. the results produced
are usually subject to a strictly defined number of clusters. c.
when the ordering of the input objects to the k-Modes clustering
algorithm changes, the k-Modes produces different results. It is
not the case that just because two different orderings produce
different results with k-Modes, one ordering is more correct than
the other, nor that one result is more correct than the other. If two
different random orderings produce different results then we
cannot claim that one result is better than the other.

Various ideas for improving k-Modes arose from our imposing a
standard ordering on the objects. While ordering the objects in a
recasonable way, questions arose in our mind, such as "why do

" on

modes represent the annotations that occur most frequently”, "why
aren't objects with categorical annotations (CAs) that occur more
frequently than the CAs of other objects clustered differently"”,
"why sacrifice the coherence of the initial clusters for the number
of clusters desired", "why not create new clusters as the need
arises during the process, instead of creating them all at the
beginning".

MULIC has the following characteristics:

1) MULIC always produces the same results. We have placed an
ordering on the objects and we claim that this is better than a
random ordering. MULIC starts by clustering objects with high
values because that way more objects are likely to be clustered
carly in the process.

2)MULIC does not require the user to specify the number of
clusters before the process of clustering the data set — the number
of clusters produced can change during the process. MULIC does
not sacrifice the coherence of the initial clusters for the number of
clusters desired. MULIC prefers to form as many clusters of high
coherence as can be found naturally in the data set.

3)MULIC forms clusters gradually and if a new pattern is
discovered, then, MULIC allows for a new cluster to be formed.
4)MULIC clusters consist of many layers, where each layer
contains objects of different similarity and coherence. Higher
layers in a cluster are created earlier in the process and are more
coherent — i.c. the objects are more similar to one another - than
lower layers that are created later.

S5)MULIC ensures that the initial layers created will be as
coherent as possible, meaning that early in the process 2 objects
must have at most 1 different annotation for them to be inserted in
the same cluster. The layers that are formed at the end of the
process contain the objects that MULIC had difficulty clustering
carlier because they did not have enough similarity.

6) MULIC offers the user the opportunity to modify the resulting
clusters in the end, by merging similar clusters to reduce their
number.

This paper is organized as follows. First, in Section 2, we
describe previous work on clustering and k-Modes. In Sections 3
and 4 we describe MULIC and we explain how the design meets
the goals of clustering and analysis. In Section 5 we describe the
results for testing the accuracy and runtime performance of
MULIC against other algorithms, including k-Modes, ROCK and
AutoClass. A computational complexity analysis is also discussed
in Section 5. We discuss our main contributions in Section 6 and
we conclude the paper in Section 7.

2. RELATED WORK

A few algorithms have been proposed in recent years for
clustering categorical data. Some of these algorithms, such as
AutoClass and ROCK, do not require the user to specify the
number of clusters k beforechand.

AutoClass is a clustering algorithm that can work on categorical
as well as numerical data sets [19]. AutoClass uses a Bayesian
method for determining the optimal classes. AutoClass takes a
prior distribution of each attribute in each cluster, symbolizing the
prior beliefs of the user. It changes the classifications of items in
clusters and changes the mean and variance of the distributions,
until the mean and variance stabilize.

ROCK, an adaptation of an agglomerative hierarchical
clustering algorithm, is introduced in [10]. ROCK assumes a
similarity measure between tuples and defines a link between two
tuples whose similarity exceeds a threshold w. Initially, each tuple
is assigned to a separate cluster and then clusters are merged
repeatedly according to the closeness between clusters. The
closeness between clusters is defined as the sum of the number of
“links” between all pairs of tuples, where the number of “links”
represents the number of common neighbors between two
clusters.

k-Modes was introduced in [14] and described in Section 2.1.
An extension of k-Modes called k-Prototypes was proposed in
[13] for dealing with mixed numerical and categorical data sets.
K-Prototypes also uses an iterative approach to clustering that
continues until objects stop changing clusters.

A fuzzy k-Modes algorithm was proposed in [15]. In real
applications there is very often no sharp boundary between
clusters so that fuzzy clustering is often better suited for the data.
Membership degrees between zero and one are used in fuzzy
clustering instead of crisp assigments of the data to clusters.

LIMBO is introduced in [3], as a scalable hierarchical
categorical clustering algorithm that builds on the Information
Bottleneck (IB) framework for quantifying the relevant
information preserved when clustering. LIMBO uses the IB
framework to define a distance measure for categorical tuples.
LIMBO handles large data sets by producing a memory bounded
summary model for the data.

COOLCAT is introduced in [4] as an entropy-based algorithm
for categorical clustering. Clusters are created by "cooling" them
down, i.e. reducing their entropy. COOLCAT relies on sampling
and is non-hierarchical. COOLCAT starts with a sample of points
and identifies a set of k initial tuples such that the minimum
pairwise distance among them is maximized. All remaining tuples
of the data sct are placed in one of the clusters such that, at each
step, the increase in the entropy of the resulting clustering is
minimized.

STIRR is introduced in [7] as an iterative algorithm based on
non-linear dynamical systems. STIRR applies a linear dynamical
system over multiple copies of a hypergraph of weighted attribute
values, until a fixed point is reached. Each copy of the hypergraph
contains two groups of attribute values - one with positive and
another with negative weights - which define the two clusters. The
approach used in STIRR can be mapped to certain types of non-
linear systems.

Squeezer is introduced in [12] as a one-pass algorithm. Squeezer
repeatedly reads tuples from the data set one by one. When the
first tuple arrives, it forms a cluster alone. The consequent tuples
are cither put into an existing cluster or rejected by all existing
clusters to form a new cluster by the given similarity function.

CLOPE is introduced in [21] as a clustering algorithm for
categorical and transactional data. CLOPE uses a heuristic method
of increasing the height-to-width ratio of the cluster histogram.

CACTUS is presented in [6], introducing a novel formalization
of a cluster for categorical attributes by generalizing a definition
of a cluster for numerical data. CACTUS is a summation-based
algorithm that discovers exactly such clusters in the data.
CACTUS consists of three phases: summarization, clustering and
validation.

2.1 Background on k-Modes

K-Modes is a clustering algorithm that deals with categorical
annotations (CAs) only [14]. The k-Modes clustering algorithm
for categorical data sets requires the user to specify from the
beginning the number of clusters to be produced and the algorithm
builds and refines the specified number of clusters.

During the k-Modes clustering algorithm for categorical data
sets, the following generic loop is performed and most of its steps
are redefined in MULIC:

Insert the first K objects into K new clusters.
Calculate the initial K modes for K clusters.
Repeat {

For (each object 0) {

Calculate the similarity between object O
and the modes of all clusters.

Insert object O into the cluster C whose
mode is the most similar to object O.

}

Recalculate the cluster modes so that the
cluster similarity between mode and objects is
maximized.

} until (no or few objects change clusters) .

Each cluster has a mode associated with it. Modes are used to
choose the closest cluster to an object by computing the similarity
between the cluster’s mode and the object. In the loop above, the
object is then allocated to the closest cluster and the mode gets
updated.

A similarity metric is needed to choose the closest cluster to an
object by computing the similarity between the cluster’s mode and
the object. Assume that each object is described by m attributes.
Let X={x1,X,...,Xn} be an object, where x; is the value for the ith
attribute, and Q={q;,qy,-.-,qm} be the mode of a cluster. The
similarity between X and Q is defined as:

similarity(X,0)= Y (i, ;)

Jj=1
where dx;q;)=1 if xj=qj, 0 otherwise.

A mode Q for a cluster C is found by maximizing

n

Zsimilarity(X ;»Q), which is maximized if and only if
i=1

frequency(Xj=q;|C) >= frequency(X;=¢;|C) for g;#c; for all j=1
to m. Frequency(X;=q;|C) is the number of objects in the cluster C
that have the value q; in the jth attribute X Thus,
frequency(X;=q;/C) must be maximal for all j=1 to m.

In the descriptions that follow we assume that C represents the
total number of clusters and we use ¢ to index the clusters. We
assume N represents the number of objects and we use n to index
the objects. Mode, represents the mode of the cluster in which

object n is classified. We assume K represents the total number of
iterations and we use k to index the iterations. We assume 7
represents the number of annotations in an object and we use 7 to
index the annotations.

3. MOTIVATION FOR PROPROCESSING
OF DATA SETS BEFORE CLUSTERING

We defined the "Pessimistic Error” metric for clustering of
categorical data sets. This metric is based on the idea that most
clustering attempts will result in clusters whose objects'
annotations are not perfectly uniform in one or more annotation
indexes. By this point of view, the clustering result will almost
never be perfect. We proposed a formula for an error metric that a
categorical clustering algorithm should minimize:

Pessimistic Error metric: Let A be the most frequently
occurring annotation at index i of the objects in cluster c, if such
an annotation exists. Let Agp..Agm be the rest of the annotations in
cluster ¢ at annotation index i, if such annotations exist. A
clustering result for a categorical data set should minimize the
pessimistic error metric:

C I AciM
pessimistic _error _metric = Z Z (Z D
c=l i=1 a=Aci2

where c€ {1..C} represents all clusters, i€ {1..I} represents all
annotation indexes of the objects in a given cluster and
a€ {A.p--Agv} represents the least frequently occurring
annotations at index 7 of the objects in cluster c.

A categorical clustering algorithm should minimize formula (1).
Usually, when some clustering algorithm succeeds in producing
the most desired clustering result for the objects of a data set, one
or more of the clusters do not have uniform annotations in one or
more of the annotation indexes of the objects classified in that
cluster, so formula (1) does not return zero. Formula (1) only
returns zero if the desired clusters have uniform categorical
annotations across all of the member objects' annotation indexes.
However, such a case would be trivial.

By preprocessing the data sets as we describe in Section 4.1 we
attempt to minimize the return value of formula (1). This happens
by ensuring that the objects presented to the clustering algorithm
first - the objects contributing most to the "shaping" of the clusters
- contain the most frequently occurring annotations in the data set.
Thus, clusters are "shaped" on the basis of the most frequently
occurring annotations rather than the seldom occurring
annotations in the data set.

This is especially useful for a data set looking like the one in
Figure 1 below, where we want class 2 objects to be clustered in
different clusters from class 1 objects. As shown, class 1 contains
fewer objects than class 2. The gray areas in classes 1 and 2 show
that there are many objects in class 1 the categorical annotations
of which overlap significantly with the annotations of some
objects in class 2. The white areas in classes 1 and 2 show that the
objects in those arcas have distinct annotations between the two
classes. If objects in class 1 were clustered before class 2 with k-
Modes, then the mode of the first resulting cluster(s) would
largely represent the annotations of class 1 in the gray area. Then
many objects in the gray area of class 2 would end up erroneously
being clustered in the same cluster as class 1 objects. On the other
hand, if the objects were ordered by decreasing frequency of their
annotations occurring in the data set, then objects in the white area
of class 2 would be clustered first, then objects in the gray area of
class 2 and then objects in class 1. In this case, the mode of the
first resulting cluster(s) would not represent the annotations of the

objects in the gray area of class 2, since objects in the white arca
of class 2 with more frequent annotations were clustered first. So
it is unlikely that class 1 objects would be erroneously clustered
with class 2 objects, since the mode of the first resulting cluster(s)
represents primarily class 2 white area annotations.

—
Lata Set X - -

% - |

k"'.l

- |

{ /
i\\\"\-_

T

-
—_—

Clas=s 1 Clas

F
<

n

Fig. 1 — A data set X consists of classes 1 and 2. The gray areas
in classes 1 and 2 show that some of the categorical
annotations of the objects in those areas overlap between the
two classes. The objects in the white areas do not have
overlapping annotations.

4. THE MULIC CATEGORICAL
CLUSTERING ALGORITHM

We developed a variation of the k-Modes clustering algorithm,
called MULIC, that has many advantages over the traditional k-
Modes. As with k-Modes, a prominent element in the clustering
process is the "mode" for each cluster. The mode is a vector of
categorical attributes whose size is equal to the number of
categorical attributes in each object. Each index position in a
mode represents which attribute occurs most frequently at that
position over all objects in the cluster.

4.1 Data Pre-processing

"Modes" inspired us to arrange the data objects in an order
before clustering them. Each different categorical annotation in
the data set is ‘counted’ to determine how many times it occurs
across all objects in the data set. For cach object we sum the
counts for all of the object's annotations and we assign the
resulting ‘value’ to the object. The value indicates how frequently
an object’s annotations appear in the data set. Then, we order the
objects by decreasing value and present the objects to MULIC in
that order. This ensures that the modes in each cluster will be
influenced more by the attributes that occur more frequently over
all objects. Thus, if early in the process an object is compared to a
mode and some of the object’s attributes match the mode's
attributes, then those attributes are likely to occur frequently in the
objects that will be clustered in the next iterations.

Suppose that after setting the ordering on the objects, we start
by inputting to the clustering process the object X = {x7,x2,x3,x4}
with categorical annotations x/=“A”, x2=“V”, x3=“E” and
x4="“Q”. The object X has a value of i. Then,

value(X) = i = count(xl) + count(x2) + count(x3) +
count(x4) = count(“A”) + count(“V”) + count(“E”) +
count(“Q”).

The counts above are the frequencies by which the
annotations occur over all objects in the set. For the next object in
the ordering, Y={y1,y2,y3,y4}:

value(Y) <=1.

if value(Y) = i then there exist only few combinations of
annotations whose sum of counts equals 7, so it will be likely for

yl=x1=“A", y2=x2="V”, y3=x3=“E” and y4=x4=“Q”. Then, Y
will be inserted in the same cluster as X.

if value(Y) < i then it is likely that 3 of the indexes of Y have
categorical annotations that are the same as X and the 4th index of
Y has an annotation different from X whose count is slightly
lower; as a result value(Y) < i. Then, Y will be likely to be inserted
in the same cluster as X.

If many positions of ¥ have annotations that are different from
X, then Y might be inserted in a different cluster from X. However,
it is likely that the object K that comes after Y in the ordering will
have 3 or more annotations that are the same as X — then, K will
be inserted in the same cluster as X. It is likely that ¥ will be
inserted in the same cluster as X, but even if Y is inserted in a
different cluster from X, it is likely that the object K after Y will be
inserted in the same cluster as X.

This way, we avoid the situation where a cluster's mode is
shaped early in the clustering process by annotations that occur
infrequently in the data set, but just happened to be occurring
frequently in the initial objects presented to the clustering process.
Such annotations occurring frequently in a small subset of the
objects might be what forms 'outliers' and thus we would not want
them to overly influence the early stages of the clustering process.
If this was the case, then later on in the process objects might be
clustered incorrectly.

As an illustration of the undesirable situation that our algorithm
helps to avoid, suppose that in the large cluster ClusA that we
would like our clustering algorithm to produce, all member
objects have the following annotations in the first 3 indexes:

(B, 'V, ‘E’, x4}

In the 4™ index x4 there may exist various annotations, including
‘I’. If the objects are not ordered by the frequency of annotations,
then the cluster ClusB might be formed early in the clustering
process, consisting of 5 objects with the following annotations:
(S, V', ‘E’, ‘O’}, (S, V', ‘E’, ‘T'}, {X’, 'V, ‘E’, ‘T'}, {*S’, ‘B’,
E,T) (S, B, A, T)

Then, the resulting mode for ClusB will have values {‘S’, ‘V’, ‘E’,
‘I’J. If the objects are not ordered, then objects with annotations
of {‘B’, ‘V’, ‘E’, ‘I’} that really belong in ClusA will be classified
in ClusB instead. But if the objects are ordered then ClusA will be
formed first and ClusB last.

4.2 Clustering Algorithm

This use of count values for objects and categorical annotations
also prompted us to make other substantial changes to the k-
Modes algorithm. The purpose of our clustering algorithm is to
maximize the following similarity formula ar each iteration
individually, while at the same time ensuring that all objects can
eventually be inserted in clusters:

N

Z similarity (objectn, mod en) 2)
n=1

Object, is the nth object in the data set and mode, is the mode of
the object’s cluster containing the most frequent annotations in the
cluster. Maximizing formula (2) minimizes the pessimistic error
metric shown in formula (1) because all objects are as similar to
their clusters’ modes as possible, thus minimizing the number of
annotations in a cluster that differ from the most frequent
annotation for the same index position.

The MULIC algorithm has a few more important requirements:
a. A cluster C must contain at least 2 objects to qualify as a
cluster. b. It must be possible for all objects to be inserted in
clusters by the end of the clustering process.

The MULIC clustering algorithm is shown in Figure 2. The
algorithm starts by reading all objects from the input file and
putting them in order, as described in Section 4.1. Then it
continues iterating over all objects that have not been placed in
clusters yet, to find the closest cluster. In all iterations, the closest
cluster is determined for each unclassified object by comparing
how many similar attributes exist between a mode and the object.
The similarity between a mode and an object is determined by the
similarity equation described in Section 2.1.

The variable num_CAs_can_differ is maintained to indicate how
strong the similarity has to be between an object and the closest
cluster’s mode for the object to be inserted in the cluster — initially
num_CAs_can_differ equals 0, meaning that the similarity has to
be very strong between an object and the closest cluster’s mode. If
the number of different annotations between the object and the
closest cluster’s mode are greater than num_CAs_can_differ then
the object is inserted in a new cluster on its own. If the number of
different annotations between the object and the closest cluster’s
mode are less than or equal to num_CAs_can_differ then the
object is inserted in the closest cluster and the mode is updated.

At the end of each iteration, all objects classified in clusters with
size one have their clusters removed so that they will be
considered again at the next iteration. This ensures that the
clusters that persist through the process are only those containing
at least 2 objects for which a substantial similarity can be found.
Objects belonging to clusters with size greater than one are
removed from the linked list of objects.

At the end of each iteration if no objects have been placed in
clusters of size greater than 1, then the threshold
num_CAs_can_differ is incremented to represent how many
annotations are allowed to differ next time. Thus, at the next
iteration the threshold will be more flexible, ensuring that more
objects will be placed in clusters. It is possible for all objects to be
eventually classified, even if the closest cluster is a little similar.
The iterative process stops when all objects have been placed in
clusters of size greater than 1, or when num_CAs_can_differ is
greater than a user-specified threshold.

The MULIC algorithm of Figure 2 can eventually place all
objects in clusters, because num_CAs_can_differ can continue
increasing until all objects are classified. Even if, in the extreme
case, an object o with I annotations has only one annotation
similar to the mode of the closest cluster, it can still be classified
when num_CAs_can_differ = I-1.

Figure 3 illustrates what the results of MULIC will typically
look like. Each cluster consists of many different "layers" of
objects. The layer of an object represents how strong the object's
similarity was to the mode of the cluster when the object was
allocated to it. The cluster’s layer in which an object is inserted
depends on the value of num_CAs_can_differ. Lower layers have
a lower coherence and correspond to higher values of
num_CAs_can_differ and to a more flexible similarity criterion for
insertion. MULIC starts by inserting as many objects as possible
in high layers — such as layers 0 and 1 - and then moves to lower
layers, creating them as the need arises. Eventually, all objects can
be classified in clusters; if little similarity exists between an object
and its closest cluster mode, the object can be inserted in a low
layer of the cluster.

If an unclassified object has equal similarity to the modes of the
two (or more) closest clusters, then the algorithm tries to resolve
this ‘tie” by comparing the object to the modes of the clusters’ top
layers — these modes were stored by MULIC when the clusters
were created, so they do not need to be recomputed. If the object

has equal similarity to all top layers’ modes, the object is assigned
to the cluster with the highest bottom layer. If all clusters have the
same bottom layer then the object is assigned to the first cluster,
since there is insufficient data for selecting the best cluster.

One might ask how we know that (2) will be maximized. Our
ordering of the objects combined with the MULIC clustering
process contributes to preventing various cases described in
Sections 3 and 4.1. For instance, when objects from a smaller and
a larger class have overlapping annotations the objects from the
larger class will be presented first to the clustering process, so the
first cluster(s) formed will contain mostly objects from the larger
class. Furthermore, suppose a class consists of objects 0}, 0,, 03 ...
o0,. All objects have I annotations. Let the objects o; and o, have
I2 identical annotations. All objects o; ... o, are presented to
MULIC according to our ordering by decreasing frequency of
annotations. We want to show that when o, and o, are presented
to MULIC, at least /2 annotations will match the closest cluster
mode. There are generally 3 cases to consider: a. 0;...0, have the
same set of 12 identical annotations as o; and 0,. b. 03...0, do not
have the same set of 12 identical annotations as o; and 0, and

03...0, are presented to MULIC after o; and o0,. ¢. 0;...0, do not
have the same set of I2 identical annotations as 0; and 0, and
03...0, are presented to MULIC before o; and o,.

In case a, 0;...0, are likely to also have another subset of
identical annotations in /-I2. In this case, they will be presented
before o) and 0, to MULIC, so when o, and 0, are presented the
mode will contain all 72 identical annotations and perhaps some
more, so that o0, and o, will have a similarity to the mode >= 72.
In case b, 0;...0, are presented to MULIC after o; and 0,, so when
0; and o, are presented the mode will contain all 72 identical
annotations so that o; and o, will have a similarity to the mode
equal to I2. In case ¢, 0;...0, are presented to MULIC before o,
and o0,, which means that they contain another subset of identical
annotations /3<=[-12, many of which are likely to match
annotations in o; or 0, (since they belong in the same class) so that
0; and o0, will have a similarity to the mode near I12+I3. Thus,
when o; and o, are presented to MULIC the closest cluster mode
will usually contain such values that the similarities of 0; and 0, to
the mode will be near or at least as high as I2.

maini) {
object *p; Sflinked list
read objects_intolp);
order_items inip);
HOLICip)

b

MULIC{object *pi |

mum Cis can differ = 0;

repeat |

cluster o = NULL;

else |

for {(all clusters ac)
if {ac.rnumber of items()

mam Chs can differt+;

Puantil

}

for {all items i in p, from highest-ordered to lowest-ordered) |

find i's claosest cluster o

if (o == NULL OF rnumher of different categorical annotbations
between 1 and c.mode > pum CAs can differ)

{ insert i in a new cluster; }
insert i in co; update c.mode; }

elze { remowe all items in ac from p; }

if {in this loop 0 items were placed in clusters with size = 1)

{p == NULL OFR rnum Chs can differ = stop_threshold);

comparing i with all cluster modes;

1y { rewowe ac; }

Fig. 2 — The MULIC clustering algorithm.

4.3 Merging Clusters to Reduce Their Number

We should generally avoid the situation where the similarity of
the top layers of two different clusters is stronger than the
similarity of the top and bottom layer of the same cluster. To
avoid this, at the end of the process our tool merges pairs of
clusters whose top layers’ modes’ dissimilarity is lower than the
maximum layer depth of the two clusters. For this purpose our

tool preserves the modes of the top layers of all clusters. Besides
increasing the cluster coherence, this process reduces the total
number of clusters, as well as the resulting HA Indexes, as
described later. This process takes little time:
for (¢ = first cluster to last cluster)
for (d = c+1 to last cluster)
if (dissimilarity(c->mode,d->mode) <
max (deepest_layer(c), deepest_layer (d)))
merge (¢, d);

4.4 Optimized version of MULIC

We developed an optimized version of MULIC for runtime
purposes. The optimized version increases the similarity criterion
num_CAs_can_differ by 3 or 5 at a time, while the non-optimized
version increases it by 1 at a time. Sometimes, though not always,
there is a slight loss in accuracy when increasing the criterion by 3
or 5 at a time; but the runtime is significantly better, as discussed
in Section 5.

4.5 Dealing with outliers

MULIC can eventually put all the objects in clusters. When
num_CAs_can_differ = I, an unclassified object can be inserted in
the lowest layer % of any existing cluster. This is undesirable if the
object is an outlier and has little similarity with any cluster. The
user can disallow this situation from happening, by specifying a
maximum value for num_CAs_can_differ — represented as
stop_threshold in Figure 2 - so when this value is reached any
remaining objects are not classified and are treated as outliers.

cluates 1 ocluscer 2

cluster 3

laver 1

layer 2

layer 4

layer 5

layer &

Fig. 3 — Typical MULIC results. Each cluster consists of one
or more different layers representing different coherences and
similarities of the objects attached to the cluster.

5. ACCURACY AND RUNTIME OF MULIC
We compared MULIC to other well-known algorithms -
accuracy-wise and runtime-wise - on data sets of various sizes.
We downloaded the test data sets from the Repository of Machine
Learning Databases of the University of California, Irvine [17].
Table 1 - Characteristics of the categorical test data sets.

Data Set Objects | Attributes | Classes
Soybean-small 47 35 4

Zoo 101 16 7
Soybean-data 307 35 19
Soybean-test 376 35 20
Balance Scale 625 4 3
Contraceptive Method Choice | 1473 10 2
Adult 17884 14 2
Adult-large 32561 14 2

To compare the MULIC accuracy to that of other algorithms, we
used HA Indexes [16]. Suppose we are given a set of n objects

S=10,.,..

represents the true partition known or believed to be present in S.
V is the clustering result by some algorithm. Let a be the number
of pairs of objects that are placed in the same class in U and in the
same cluster in V, b be the number of pairs of objects in the same
class in U but not in the same cluster in V, ¢ be the number of

On} . Suppose that U is the criterion solution that

pairs of objects in the same cluster in V but not in the same class
in U, and d be the number of pairs of objects in different classes
and different clusters in both partitions. Given these values,
Hubert and Arabie defined the HA Index as below [16].

a+d

HA Index= ————
a+b+c+d

We also used a measure of the misclassification rate of objects
in clusters. Our misclassification rate is the classes to clusters
evaluation that is used by the clustering algorithms of the WEKA
package [18,20]. In this mode we first ignore the class attribute
and generate the clustering. Then during the test phase we assign
classes to the clusters, based on the majority value of the class
attribute within each cluster. Then we compute the classification
error, based on this assignment. To evaluate clustering using the
classes to clusters approach we need to know the class values of
the objects belonging to the clusters.

5.1 Accuracy Comparison of MULIC to k-
Modes, AutoClass, ROCK, CLOPE

We compared the misclassification rates of MULIC to those of
k-Modes [14] on data sets of various sizes. Our results are
summarized in figure 4, showing that MULIC produced a
significantly lower misclassification rate for all data sets. On some
data sets of small sizes the misclassification rate was zero. We
also compared the misclassification rate of MULIC to that of
AutoClass [19] and ROCK [10] on data sets of various sizes. As
shown in figure 4, the misclassification rate of MULIC was
significantly lower than that of AutoClass and ROCK.

Comparative misclassification rates for MULIC vs. other
algorithms on data sets of various sizes

0.7 —— ROCK
—=— AutoClass
—— k-Modes
MULIC
—x— MULIC optimized

misclassification rates
(percentages)

/Q

T
. . -— (0] -—
e_ 8 ¢ 2 82 2 3 &
8 N §os & cg § o T
£ 2§ a § =

S5 88 5 88 ¢ =
g @ ° § m @ 3
%] (%] Qa = kel

> < <

o o

(] o

data sets

Fig. 4 — MULIC vs. k-Modes, AutoClass and ROCK. The
missing measurements for ROCK, AutoClass and k-Modes
mean that the algorithm did not finish in a reasonable amount
of time for the corresponding data sets.

We developed a version of MULIC that was optimized for
runtime. There was a slight tradeoff on accuracy for the optimized
MULIC version, as shown in figure 4; the misclassification rate of
the optimized MULIC was slightly higher than that of the non-
optimized MULIC, on most but not all data sets. However, the
misclassification rate of the optimized MULIC was still much
lower than that of k-Modes, ROCK and AutoClass.

We also compared MULIC to all of the clustering algorithms
that are contained in the WEKA data mining package [18,20]. Our
results, shown in Figure 5, indicate that MULIC significantly

outperformed all of the WEKA algorithms. These
misclassification rates are output by WEKA automatically and
represent the number of objects that were misclassified in the trial.

Comparative misclassification rates for MULIC vs.
WEKA algorithms on data sets of various sizes

1.2 —e— SimpleKMeans

14
08 —=—EM
0.6 1 m —— FarthestFirst
0.4 =

; MakeDensityBasedClu

02 W\B‘é sterer

0 —o= T T T T T T —x— CobWeb

misclassification rates
(percentages)

' o ' -) o = (4]
S _ o = @a (S} 2 =} o
g8 N 8g £ g3 § ¢ o
=5 3% § S0 § £ |—e—MULIC
(2] (2] a = ©°
> < <
2 5
@ o —+— MULIC optimized
data sets

Fig. 5 — MULIC vs. WEKA algorithms.

We assessed the accuracy of MULIC using HA Indexes, which
our software computes and outputs [16]. Our results, shown in
figure 6, indicate that all HA indexes were very high - in some
cases near 95%. Furthermore, we compared these to the HA
Indexes of CLOPE [21] and k-Modes on the same data sets. For
this purpose, we modified the CLOPE and k-Modes source code
to output the HA Indexes. Figure 6 shows that MULIC’s HA
Indexes were higher than or comparable to CLOPE and k-Modes.

HA Indexes for MULIC, k-Modes, CLOPE —e— MULIC w hen

applied to various data sets merging clusters
at the end

Figure 7 shows the MULIC misclassification rates when
preprocessing the data sets before clustering by imposing an
ordering on the objects based on the frequency of the annotations
in the data set, as discussed in Section 4.1, versus not
preprocessing the data sets beforehand. As shown, the results
were more accurate when preprocessing the data sets.

We compared the results of different test runs using the
pessimistic error metric introduced in Section 3. Table 2 shows
the error metric for the optimized and non-optimized MULIC
versions with preprocessing, MULIC without preprocessing and
k-Modes, applied to various data sets.

Table 2 — Pessimistic error metric comparison on 4 data sets.

Total objects in data set 47 101 | 307 | 376
MULIC without 78 119 | 898 | 1088
preprocessing

MULIC with preprocessing | 73 110 | 812 | 966

MULIC optimized with 73 110 | 856 | 995
preprocessing
k-Modes 89 135 [991 | 1198

We performed paired two sided t-tests between pairs of
distributions of different annotations amongst the clusters, to
determine whether the distributions of two annotations are likely
to have come from distributions with equal population means. As
shown in table 3, the p-values are low meaning that for most pairs
of annotation distributions it is unlikely that the distributions have
the same mean and the difference in distributions observed is just
a coincidence of random sampling; it is more likely that the

o ; i MULIC w hen not distributions really have different means.
” 83 i merhglng (;Iusters Table 3 - Paired two sided t-test p-values for distributions
506 A attheen amongst all clusters of pairs of annotation.
£05 7 —aa— CLOPE
g 8g 7 & Pairs of annotation Paired two sided t-test p-
0o | A—X distributions amongst all values for the pair of
0-8 —e— k-Modes with clusters annotation distributions
L oL s o o = Ordered object
c_8¢ B80 2 5 raered obiects ‘0 legs’ and ‘5 legs’ 0.04
o8 N g% <+ ga& o 2
o E o® ¢ = R O .
2> o 2 §8% g —¥—k-Modes w ithout ‘0 legs’ and ‘6 legs’ 0.2
@ €N 2 = Ordered objects
3 S ‘0 legs’ and ‘7 legs’ 0.03
Fig. 6 — HA Indexes for MULIC, k-Modes and CLOPE. ‘0 legs’ and ‘8 legs’ 0.04
Comparative misclassification rates for MULIC ‘0 legs’ and ‘4 legs’ 0.4

with and without preprocessing on data sets of
various sizes

0.25
o2 7\
0.15

0.1 1
0.05 4

\P

—e— MULIC without
preprocessing

—=— MULIC with

misclassification rate
(percentages)
o

& o & v @] = 4]
_ 0O 2 o 2 > O .
§a S §% ¢£3%2 2 8 preprocessing
o 2 : o
3 5 2° 3 8@ 8 3 —A—MlULIC OptImIZe.d
a @ g = 2 with preprocessing
Q Q
2 o
data sets

Fig. 7 - The misclassification rates when preprocessing the
data sets before clustering them with MULIC, as discussed in
Section 4.1, versus not preprocessing the data sets beforehand.

To justify the rationale for the top-most layer (e.g. layer O or 1)
objects being the most influential objects in forming a cluster, we
have computed the average annotation difference a between an
object in the fop-most layer of a cluster and all other objects in the
cluster. Then, we compared «a to the average annotation difference
b between an object in the lower layer of the same cluster and all
other objects in the cluster. We repeated this for several clusters in
the results derived from clustering the ‘zoo’ data set. Table 4
shows that a is always lower than b, i.e. top layer objects are more
representative of a cluster than low layer objects.

Table 4 — Top layer objects represent a cluster better.

Clusters | Average difference a Average difference b
between an object in the | between an object in the
top-most layer of a lower layer of a cluster
cluster and all other and all other objects in
objects in the cluster the cluster

1 1.8 2.7

2 1.1 2

3 0.6 1.5

4 0.7 1.3

5 1 1.7

6 0.8 1.3

5.2 Coherence of Clusters and Layers

Figures 8 and 9 show some of the results from clustering the
‘zoo’ data set with MULIC. Figure 8 shows that the resulting
clusters and layers are very coherent. Most clusters have a very
coherent layer 1 and layer 2. As layers decrease in a cluster, the
layers’ coherences also decrease. The overall cluster has a lower
coherence than the layer 1 coherence. Figure 9 shows that most
clusters have uniform annotation values for “number of legs”
occurring at index 13 of the objects.

Coherence of clusters and layers. The
maximum coherence is 16 - meaning that
all 16 annotations have uniform values
across the cluster or layer.

20
O Layer1
15 I 1 mla
yer2
10 OLayer3
5 H O Layer4
0 m Overall
N x
AN S G
F ¥ ¥ ¥ ¥

Fig. 8 - The coherence of each layer in each cluster derived
from clustering the ‘zoo’ data set, as well as the coherence of
each overall cluster. The coherence is measured by counting
how many annotations from the 16 annotations total have
uniform values across all objects in the layer or cluster.

A major advantage of MULIC is that in some data sets such as
z00’, it was able to identify subclusters of extremely similar
animals that had not been pointed out by the developers of the
data set. For the ‘zoo’ data set, the animals ‘porpoise’, ‘dolphin’,
‘sealion’ and ‘seal’ were clustered together by MULIC in a cluster
of their own, even though the developers of the data set had
classified them as belonging to a much larger class consisting of
41 animals. Under this observation, we do not view the merging of
clusters as described in Section 4.3 as a crucial step for
improving the results.

13

Numbers of occurrences of annotations values at
index 13 of the objects in each cluster
121 m8legs
10 o7 legs
8- m6 legs
o5 legs
6 m4 legs
44 03 legs
21 02 legs
mileg
0,

Cluster1 Cluster3 Cluster5 Cluster7 @0 legs
12+ W 8 legs
10+ a7 legs

6 legs

8 W6 leg

o5 legs

61 W4 legs

4+ 03 legs

2 a2 legs

0 m1leg

Cluster8 Clusteri0 Clusteri2 Cluster14 @O0 legs
9, MW 8 legs
81 o7 legs
7,

6 legs
61 moleg
5 m>5 legs
4 W4 legs
31 O3 legs
ff 02 legs
0. m1leg
Cluster15 Cluster17 Cluster19 Cluster21 @O0 legs

Fig. 9a,b,c — Numbers of occurrences of annotation values for
“number of legs” at index 13 of the objects in each cluster
derived from clustering the ‘zoo’ data set.

5.3 Runtime Comparison of MULIC to k-

Modes, AutoClass, ROCK and Scalability

We compared the runtime of MULIC to that of k-Modes [14],
ROCK [10] and AUTOCLASS [19] for data sets of various sizes.
The runtime of MULIC was significantly better than ROCK and
AUTOCLASS, as shown in figure 10. The runtimes of k-Modes
and MULIC were comparable in most cases, as shown in figure
10. We also developed a version of MULIC that was optimized
for runtime; the runtime of the optimized version of MULIC
surpasses that of k-Modes, as shown in figure 10. There was a
slight tradeoff on accuracy for the optimized MULIC version, as

discussed in Section 5.1. However, the misclassification rate of
the optimized MULIC was still much lower than that of k-Modes.

Comparative runtimes for MULIC, k-Modes, ROCK
and AutoClass on data sets of various sizes

0.18
0.16
0.14 - —e— AutoClass
” 0-01$] —=— ROCK
b 0 68 | —a— k-Modes
$ o
0.06 MULIC
0.04 - —*— MULIC optimized
0.02 -
0

. ° . - ® °
5= S & g geo =z
0 @ N o 8 ol s« o
Qe o® c 8 o 5]
>~.w > T (] [) o
g §° 5§ 9 §
> =
Q o
@ o
data sets

Fig. 10 — Comparative runtimes for MULIC, k-Modes, ROCK
and AutoClass on data sets of various sizes. The missing
runtimes for AutoClass and ROCK mean that the algorithm
did not finish in a reasonable amount of time for the
corresponding data sets.

Linear scalability of MULIC runtime to large data sets

0.16

0.14
0.12 /
0.1

0.06
0.04
0.02
0 T T —¢-

47 101 307 376 625 1473

number of items in each data set

Fig. 11 — As MULIC is applied to data sets of increasing sizes,
its runtime increases linearly.

Finally, we tested MULIC on data sets of large sizes, to show
that the MULIC runtime scales up linearly with increasing data set
size. Figure 11 shows the time in seconds that MULIC took to
finish, for data sets of sizes varying from 47 objects to 1,473
objects.

5.4 Computational Complexity Analysis

The computational complexity of MULIC is O(tn). This is
comparable to the complexity of k-Modes [14]. Below we give a
high-level and a more detailed analysis of the complexity of
MULIC.
¢ r=number of categorical annotations (CAs) in each object.
¢ n=number of objects.
e Generally, t << n because the number of objects that we want to
cluster will be much higher than the dimensionality of each
object.
o num_CAs_can_differ is the similarity criterion for assessing if
an object can be placed in the closest cluster for an iteration or
not, based on how many CAs differ between the object and the
cluster's mode. num_CAs_can_differ is incremented gradually
throughout the iterations, to make the criterion more lenient.

In the worst case, objects in the data set to be clustered will be
very dissimilar and MULIC will have difficulty allocating them to
clusters. In this case, at most one object may be allocated to a
cluster at an iteration and there will be many iterations where no
objects are placed in clusters. In the worst case, before all n
objects have been placed in clusters num CAs can_differ will
equal t-1 and t; then MULIC will have no choice but to allocate
all unclassified objects to clusters because the similarity criterion
(num_CAs_can_differ) for classifying objects will have become
very lenient.

We have calculated the complexity for the worst case, where
from num_CAs_can_differ=0 to t-1 no objects are allocated to
clusters. At each iteration all n objects in the set are considered
but an unsuccessful attempt is made to allocate each object to a
cluster.

When num_CAs can_differ=t, then all n objects become
allocated to clusters. However, they are placed one at each
iteration. For example, one object is placed at iteration k, another
is placed at iteration k+/ and so on. At each iteration, we do not
consider the objects that have already been allocated, only those
that do not belong yet in clusters.

Thus, the complexity is:

oé (n—i)+(t—Dn) = O(n+(t—Dn) = O(tn).

Here is a more detailed explanation of how to compute the worst
case time complexity: there will be a finite number of iterations at
which no object is classified in a cluster and then there will be a
finite number of iterations at which one object is placed in a
cluster for each iteration. So to calculate the complexity, we need
to find how many iterations may exist at which no object is placed
in a cluster and the cost of each such iteration and how many
iterations may exist at which a single object is placed in a cluster
and the cost of each such iteration.

If no object is placed in a cluster at an iteration, then
num_CAs_can_differ will be increased so that an object might be
placed at the next iteration. There can be at most t-1 iterations at
which nothing is placed in clusters, because num_CAs_can_differ
will reach t after t-1 such iterations and then some objects will
have to be placed in clusters - in the worst case at the rate of 1
object per iteration. Each such iteration at which nothing is placed
in clusters has cost n because all n objects have to be considered
in an attempt to place each object in a cluster; thus, the cost of this
step willbe O((t —1)n).

Then, in the worst case, all n objects will be placed in clusters
one at each iteration without iterations at which none is placed -
since num_CAs_can_differ = t, even if all CAs differ they will
still be placed somewhere. So there will be a series of n iterations
at which one object is placed in a cluster at each iteration. Each
iteration will be less costly than the previous iteration, because at
each iteration we do not consider the objects that have already
been placed, only the objects that do not belong yet in clusters;

n
thus, the cost of this step will be O(Z (n—1)).
i=0

6. DISCUSSION

MULIC offers many advantages for clustering of categorical
data sets. MULIC allows for a flexible number of clusters to be
produced. A MULIC cluster is much more representative of the
underlying patterns in a data set, because MULIC recognizes that
differing layers of coherence and similarity may exist in a cluster
amongst objects. We have shown that requiring for a strict
number of clusters to be output from the clustering process might
not allow for the clusters to have the maximum coherence.

We have shown that the notion of using a ‘mode’ to summarize
the contents of a cluster benefits from a special preprocessing and
ordering on the input objects. A mode will be more beneficial for
the correctness of the clustering results if the more frequently
occurring annotations in the data set are presented to the process
before the less frequently occurring annotations.

Future work will include extending MULIC to cluster mixed
categorical and numerical data sets [1]. Furthermore, we would
like to incorporate in the clustering process confidence values on
the categorical annotations, indicating our certainty that the
annotations are correct. We have described the incorporation of
confidence values in the clustering process in [2].

7. CONCLUSIONS

We designed and implemented a clustering algorithm, called
MULIC, that deals with many of the problems posed by k-Modes.
Specifically, MULIC does not sacrifice the coherence of the data
sets for the number of clusters, which in k-Modes is defined
strictly before the process. Instead, MULIC finds the clusters that
seem to exist naturally in the data set and forms as many clusters
as required. For each cluster, MULIC can form layers of varying
coherence. It starts by forming a layer of high coherence using
strict criteria concerning which objects to insert in the layer. As
the process continues MULIC relaxes its criteria, forming layers
that may be less coherent than the previous layers. Finally,
MULIC imposes an ordering on the objects presented to the
algorithm, thus ensuring that the results will always be the same.
We have tested MULIC for accuracy on several data sets for
which the correct result was known. On all of these data sets the
MULIC misclassification rate was much lower than the
misclassification rates of k-Modes, ROCK, AutoClass and the
WEKA clustering algorithms. Finally, we compared the runtime
of MULIC to that of k-Modes, ROCK, AutoClass and other
algorithms showing that MULIC was at least as fast or faster.

8. REFERENCES

[1] B. Andreopoulos, A. An and X. Wang. (2005) BILCOM: Bi-
level Clustering of Mixed Categorical and Numerical Biological
Data. Technical Report # CS-2005-01. Department of Computer
Science, York University.

[2] B. Andreopoulos, A. An and X. Wang. (2003) Significance
Metrics for Clusters of Mixed Numerical and Categorical Yeast
Data. Technical Report # CS-2003-12. Department of Computer
Science, York University.

[3] P. Andritsos, P. Tsaparas, R. J. Miller, K. C. Sevcik. LIMBO:
Scalable Clustering of Categorical Data. In 9th International
Conference on Extending DataBase Technology (EDBT), March
2004.

[4] D. Barbara, Y. Li, J. Couto. COOLCAT: an entropy-based
algorithm for categorical clustering. In Proc of CIKM’02, pp. 582-
589, 2002.

[5] Fasulo D. (1999) An Analysis of Recent Work on Clustering
Algorithms, Technical Report # 01-03-02, Department of
Computer Science & Engineering, University of Washington.

[6] V. Ganti, J. Gehrke, R. Ramakrishnan. CACTUS-clustering
categorical data using summaries. In Proc of KDD ‘99, pp. 73-83.
[7] D. Gibson, J. Kleiberg, P. Raghavan. Clustering categorical
data: an approach based on dynamic systems. In Proc of
VLDB’98, pp. 311-323, 1998.

[8] Goebel, M. & Gruenwald, Le (1999). A survey of data mining
and knowledge discovery software tools. ACM SIGKDD
Explorations 1, 20-33.

[9] Grambeier J., Rudolph A. (2002) Techniques of Cluster
Algorithms in Data Mining. Data Mining and Knowledge
Discovery 6: 303-360.

[10] Guha S., Rastogi R., Shim K. (2000). ROCK: A Robust
Clustering Algorithm for Categorical Attributes. Information
Systems 25(5): 345-366.

[11] Hartigan, J. A. (1975) Clustering algorithms. (John Wiley
and Sons, New York, 1975).

[12] Z. He, X. Xu, S. Deng: Squeezer: an efficient algorithm for
clustering categorical data. Journal of Computer Science &
Technology, 2002, 17(5): 611-624.

[13] Huang, Z. (1997) Clustering Large Data Sets with Mixed
Numeric and Categorical Values. Knowledge discovery and data
mining: techniques and applications. World Scientific.

[14] Huang Z. (1998) Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values. Data Mining
and Knowledge Discovery 2(3): 283-304.

[15] Z.Huang, M.K.Ng. (1999). A fuzzy k-modes algorithm for
clustering categorical data. IEEE Transaction on Fuzzy Systems,

1999, 7(4): 446-452.

[16] L. Hubert and P. Arabie, "Comparing partitions", Journal of
Classification, 193-218, 1985.

[17] C.J.Mertz, P.Merphy. UCI Repository of Machine Learning
Databases, 1996.
(http://www.ics.uci.edu/~mlearn/MLRRepositoy.html).

[18] P. Reutemann, B. Pfahringer, E. Frank. (2004) Proper: A
Toolbox for Learning from Relational Data with Propositional and
Multi-Instance Learners. 17th Australian Joint Conference on
Artificial Intelligence (AI12004). Springer-Verlag
[19] Stutz J. and Cheeseman P. (1995) Bayesian Classification
(AutoClass): Theory and results. Advances in Knowledge
Discovery and Data Mining, 153-180, Menlo Park, CA, AAAI
Press.

[20] Ian H. Witten and Eibe Frank. "Data Mining: Practical
machine learning tools with Java implementations". Morgan
Kaufmann, San Francisco, 2000.

[21] Y. Yang, S. Guan, J. You. CLOPE: a fast and effective
clustering algorithm for transactional data. In Proc of KDD’02,
pp. 682-687, 2002.

10

