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Abstract

Dead-path-elimination (DPE) can be viewed as a garbage collection strategy used in the business process
execution language for web services (BPEL4WS). In this paper, we introduce a small language called the
BPE-calculus which contains those constructs of BPEL4AWS that are most relevant to DPE. We present
two models for the BPE-calculus: one without DPE and one with DPE. We formulate a condition, named
SEF, and show that it is sufficient and necessary for DPE being free of side effects. More precisely, we
prove the following two properties. First of all, if the condition is satisfied, then the behaviour of a
BPE-process is the same in both models. Secondly, if the condition SEF is not satisfied, then we can
construct a BPE-process that behaves differently in the two models.

Introduction

Recently, BEA, IBM and Microsoft introduced the business process execution language for web services
(BPEL4WS). This language has been designed to specify interactions between various web services. For an
introduction to web services, we refer the reader to, for example, [BGET02, Que03]. The initial public draft
release of the BPELAWS specification can be found in [CGKt02]. BPEL4WS is XML based, that is, its
syntax is defined in terms of an XML grammar. For example, the BPEL4WS snippet

<invoke partner="producer" operation="sell"
inputContainer="offer" outputContainer="confirmation">
</invoke>

invokes the web service operation sell of the producer.

In BPEL4WS, the basic activities include assignments, invoking web service operations, receiving re-
quests, and replying to requests. These basic activities are combined into structured activities using ordinary
sequential control flow constructs like sequencing, switch constructs, and while loops.

Concurrency is provided by the flow construct. For example, in

<flow>
buy
sell

</flow>

the activities buy and sell, whose behaviour has been left unspecified to simplify the example, are concurrent.
The pick construct allows for selective communication. Consider, for example,

*This research is supported by IBM.



<pick>
<onMessage partner="consumer" container="request'>
sell
</onMessage>
<onMessage partner="producer" container="offer">
buy
</onMessage>
</pick>

On the one hand, if a message from consumer is received then the activity sell is executed. In that case,
the buy activity will not be performed. On the other hand, the receipt of a message from producer triggers
the execution of the buy activity and discards the sell activity. In the case that both messages are received
almost simultaneously, the choice of activity to be executed depends on the implementation of BPEL4WS.
This pick construct is similar to the summation construct found in calculi like the m-calculus [Mil99] and is
also reminiscent to the choose construct of Concurrent ML [Rep99].

Synchronization between concurrent activities is provided by means of links. Each link has a source
activity and a target activity. Furthermore, a transition condition is associated with each link. The latter
is a Boolean expression that is evaluated when the source activity terminates. Its value is associated to the
link. As long as the transition condition of a link has not been evaluated, the value of the link is undefined.
In this paper, we will use, for example

true
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to depict that link £ has source a; and target a; and transition condition true.

Each activity has a join condition. This condition consists of incoming links of the activity combined by
Boolean operators. Only when all the values of its incoming links are defined and its join condition evaluates
to true, an activity can start. As a consequence, if its join condition evaluates to false then the activity never
starts. We will use, for example,

to depict that the join condition of activity a; is ¢1 A £2. In the above example, activity a; can only start
after activities al and a? have finished.
Let us consider the following activities and links.

@ + @
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In the above picture, we use + to depict the pick construct. Note that the choice between the activities a}
and a? determines which of the activities a3, a; and as are performed. For example, if a} is chosen then a3
is executed. In that case neither a4 nor as can ever occur. As a consequence, the activities a4 and as could
be garbage collected. This can be achieved as follows.

- If a pick construct is executed, then we also assign false to all the outgoing links of those branches of
the pick construct that are not chosen.



- If the join condition of an activity evaluates to false, then the activity is garbage collected after assigning
false to its outgoing links.

This garbage collection scheme is named dead-path-elimination (DPE) in [CGK102]. Let us briefly return
to the above example. Assume that activity a} is chosen. Then, as a result of DPE, the value of the link ¢2
becomes false. When activity a2 terminates, the link £2 gets the default value true. At this point, the join
condition of activity a4 can be evaluated. Since its value is false, by DPE, false is assigned to link /3 and
activity a4 is garbage collected. Subsequently, again exploiting DPE, activity a5 can be garbage collected as
well.

Now let us consider another example.

+
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At first sight, one may be tempted to conclude that activity a4 will never be executed. Without DPE
this is indeed the case. However, DPE may trigger the execution of activity a4 as follows. Assume that
activity a] is chosen. By DPE, the value of the link £2 becomes false. Since the value of the link £, is false
as well, the join condition £7 = /5 evaluates to true. Hence, activity a4 can be performed. The above can
be paraphrased as DPE may have side effects. We believe that side effects as in the above example may be
introduced accidentally.

Next, we consider the following example.

+
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On the one hand, if we do not have DPE and the activity al is chosen, then the link ¢2 will be undefined
forever. Since join conditions in BPEL4AWS are only evaluated once all links that are part of the join condition
are defined, the join condition £2 V £5 will never be evaluated in this case and, hence, the activity as will
never be executed. On the other hand, if the activity al is chosen, then DPE may trigger the execution of
activity a4 as follows. When the activity a} is chosen, the value of the link £? becomes false by DPE. After
activity as has been performed, the value of the link /5 is set to true. At this point, the join condition can be
evaluated. Since its value is true, activity a4 is executed in this case. This is another example of a process
that behaves differently with and without DPE.

The above examples show that DPE can have side effects. The formulation of a condition and the proofs
that this condition is sufficient and necessary for DPE to be free of side effects are the main results of this
paper. The condition is named SEF for side effect free. SEF is formulated in terms of the evaluation function
of join conditions. This function determines the value of a join condition, given the values of the links. As we
will see, this evaluation function of BPELAWS does not satisfy SEF. In the concluding section of this paper,
we will discuss how BPEL4WS may be changed so that DPE becomes free of side effects. In particular,
we will outline how this can be accomplished by disallowing negations in join conditions and by making
the evaluation of the remaining join conditions lazy. Below, we describe how our main results are proved.
Furthermore, we mention the other contributions of this paper.

Rather than studying BPEL4WS as a whole, we focus on a small sublanguage that includes all the
concepts we introduced above. Furthermore, we leave unspecified some syntactic categories, like for example
the basic activities. That is, we assume a set of basic activities but we do not specify their syntax. The so
obtained language we call the BPE-calculus, as it is similar in flavour to calculi like, for example, CCS [Mil89)
and the w-calculus [Mil99]. In the BPE-calculus, we abstract from many details that are irrelevant for our
study. This will simplify matters considerably and will make our objectives feasible (it is very difficult, if
not almost impossible, to carry out such a study for BPEL4WS as a whole). For example, the above picture
corresponds to the (considerably simplified) BPEL4WS process




<flow>
<links>
<link name="111"/>
<link name="112"/>
<link name="12"/>
</links>
<pick>
<onMessage partner="client" operation="all" container="request">
<empty>
<source linkName="111" transitionCondition="true"/>
</empty>
</onMessage>
<onMessage partner="client" operation="al2" container="request">
<empty>
<source linkName="112" transitionCondition="true"/>
</empty>
</onMessage>
</pick>
<invoke partner="provider" operation="a2" inputContainer="query" outputContainer="result">
<source linkName="12" transitionCondition="true"/>
</invoke>
<invoke partner="provider" operation="a3" inputContainer="request" outputContainer="reply"
joinCondition="bpws:getLinkStatus(’111’)">
<target linkName="111"/>
</invoke>
<invoke partner="provider" operation="a4" inputContainer="request" outputContainer="reply"
joinCondition="bpws:getLinkStatus(’111’) or bpws:getLinkStatus(’12’)">
<target linkName="112"/>
<target linkName="12"/>
</invoke>
<flow>

In our BPE-calculus, it is expressed as
(a}.07 1 true.0 4+ a3 .02 1 true.0) || ag.ly 1 true.0 || (6} = a3.0) || (£2 V £y = a4.0)

In order to prove our main result, we introduce two models for the BPE-calculus. The predominant
approach to model calculi like our BPE-calculus is to capture the behaviour of BPE-processes in terms
of a labelled transition system, as advocated in, for example, [AFV01]. In this paper, we will follow this
approach as well. An alternative approach to model business processes, namely by means of Petri nets
[AHO02a], is discussed in the concluding section of this paper. The first labelled transition system models the
BPE-calculus in the absence of DPE. The second one captures the BPE-calculus with DPE.

To show that SEF is a sufficient and necessary condition for DPE being free of side effects, we prove the
following two properties. First of all, if the condition SEF is satisfied, then the behaviour of a BPE-process
is the same in both models. Secondly, if the condition SEF is not satisfied, then we can construct a BPE-
process that behaves differently in the two models. In the next two paragraphs, we discuss how we prove
these properties.

To capture that states of a labelled transition system—in our case, these are the BPE-processes—behave
the same, it is common practice to introduce a behavioural equivalence on the states of the system. Many
different behavioural equivalences have been introduced in the literature. For an overview, we refer the
reader to, for example, [G1a90, Gla93]. To prove the first result, we exploit weak bisimilarity which is one
of the strongest weak! behavioural equivalences. We show that if the SEF condition is satisfied, then a
BPE-process in the labelled transition system without DPE is weak bisimilar to the BPE-process in the
system with DPE. We actually prove the following even stronger result. If SEF holds, then a BPE-process
in the labelled transition system without DPE is expanded by the BPE-process in the system with DPE.
Expansion, which we denote by 3, is a behavioural preorder that was first introduced in [AH92]. Since

~)

LA behavioural equivalence that abstracts from internal actions is called weak.



expansion is stronger than weak bisimilarity, the latter result implies the former. To prove the latter result,
we exploit the powerful proof technique of expansion up to X which was introduced in [SM92].

In the proof of the second result, we use weak trace equivalence which is one of the weakest behavioural
equivalences. We show that if the SEF condition is not satisfied then we can construct a BPE-process such
that this process in the labelled transition system without DPE is not trace equivalent to the same process
in the system with DPE.

The rest of this paper is organized as follows. In Section 1, we introduce our BPE-calculus. In Section 2
and 3, we present labelled transition systems that model the BPE-calculus without and with DPE. The
condition SEF is introduced in Section 4. In Section 5 and 6, we show that SEF is a sufficient and necessary
condition. The final section concludes and discusses some related work.

1 The BPE-calculus

The BPE-calculus concentrates on those constructs of BPEL4WS that are key to DPE. It also abstracts
from many details of BPEL4WS that are not relevant for our study of DPE.
Before defining BPE-processes, we first fix

e a set A of basic activities,
e an infinite set L of links and
e a set C of join conditions.
DEFINITION 1 The set P of processes is defined by
P:=0|aP|¢tbP|c—>P|P+P|P| P
where a € A, £ € L, b € {true, false} and c € C. 1

Most operators of the BPE-calculus are very similar to the operators of calculi like, for example, CCS. Let
us focus on the new ingredients of our calculus. In the process £ 1 b.P, the Boolean value b is the value of
the transition condition associated to the link £. In the process ¢ — P, c is the join condition of process P.

In BPEL4WS, each link should have a unique source. We capture this restriction by means of the
following very simple type system. Only if a process satisfies this restriction, it can be typed. Its type will
be the set of its outgoing links.

DEFINITION 2 The relation f} C P x oL is defined by
(NIL) O 0

PHL

(PREF) aP 1L

PHL (gL
(1o P LU{l}

(ouT)

PHL

(o) TS L

P Ly P,y Ly LinLy=40
P +P, L1 UL

(PICK)

P Ly P Ly LinLy=40
P || P,y Ly U Ly

(FLOW)
-
Not every process can be typed. For example, the process £ 1 true.0 || £ 1 true.0 cannot be typed. However,

if a process is well-typed then its type is unique. That is, if P 9} Ly and P 4} Ly then L; = L. Furthermore,
each type is finite. That is, if P f} L then L is a finite set of links.



2 A Model without Dead-Path-Elimination

Since we want to compare the BPE-calculus without DPE and the BPE-calculus with DPE, we introduce
two models: one without DPE and one with DPE. Both models are defined in terms of a labelled transition
system. Below, we present the labelled transition system without DPE. The labelled transition system with
DPE is given in the next section.

In both labelled transition systems, we need to keep track of the values of the links. The value of a link
is either true, false, or undefined. The latter we denote by L. Initially, all links are undefined. As we will
see, at any point only finitely many links are defined, that is, their value is different from L.

DEFINITION 3 The set A of links status is defined by
A={XeL - {true, false, L} | A\(£) #L for finitely many £ € L }.

.

The initial link status A, assigns L to each link. To model the evaluation of join conditions, we fix an
evaluation function C : C — A — {true, false, L }. We assume that this evaluation function C satisfies

if C(c)(A[+/d) #L then C(c)(A) = C(c)(A[+/d) 1)

for all c € C, A € A and ¢ € L. This is a very natural assumption (compare with, for example, [Win93,
Lemma 9.3], where the evaluation of expressions is shown to be continuous).

Next, we define the labelled transition system without DPE. The states of the system are pairs, each
consisting of a process P and a link status A. To distinguish the process P with link status A in the labelled
transition system without DPE and from the process P with link status A in the system with DPE, we
denote the former by (P, \) and the latter by (P, \).

There are two types of labels. A transition is either labelled by a basic activity or by ¢. The former
captures the execution of a basic activity whereas the latter models an internal action. Whether these
internal actions modelled by ¢ are observable or not has no impact on our results. We use a to denote the
labels of the system. That is, « is either a basic activity or it is ¢.

The transitions of the system are defined in

DEFINITION 4 The labelled transition relation - C P x A x (AU {¢}) x P x A is defined by
(PREF) (a.P,)\) == (P, \)
(out) (£1b.P,)) = (P, A[Yd])

C(c)(N) = true
(c = P,\) = (P,)\)

(JoINy)

(P1,\y == (P, ')
(PL+ Py, \) = (P, \)

(P2, A) = (P, )
(Pl +p_),)\> = <P_§)\l>

(PICKg) (PICK,)

(P1,A) = (P, )) (FLOW,) (Py, ) == (P53 \)

(FLOWY) = =
(Pr[| Poy A) = (P || P2, X) (Pu|| Py A) = (P1 || P2, X)

J

The rules (PREF), (PICK), (PICK,), (FLOW;) and (FLOW,) are very similar to the rules that are used to
model prefixing, summation and composition in CCS. The rule (OUT) captures that process £ 1 b.P sets the
value of link ¢ to Boolean value b. Process ¢ — P evaluates the join condition ¢, given the values of the
links represented by the link status A. If this evaluation results in true, then the process ¢ — P can make a
transition.

Next, we show that if a process is well-typed, then all processes reachable from that process by means of
a transition are well-typed as well. This property is known as subject reduction.

PROPOSITION 5 If (P, )\) = (P’ )\') and P f L then P' ¢ L' for some L' C L.



PROOF We prove this proposition by transition induction.

e Consider the transition (a.7, \) - (P, )\). Assume that a.P {t L. Then P { L.
e Consider the transition (/ 1 b.2,\) = (P, A\[%/¢]). Assume that £1 b.P {} L. Then P {} L\ {£}.
o Consider the transition (¢ — P, \) = (P, \). Assume that ¢ = P {} L. Then P {} L.
e Consider the proof
(P, \) = (P, X))
(PL+ Py, A) = (P, \)

Furthermore, assume the proof
PiffLy  PoffLy  LinLy=0
P+ Py fy Ly UL,
By induction, P| {t L} for some L} C Ly. Obviously, Lj C Ly U L,.
e Consider the proof
(P, ) = (PN
(Pl Py, X) = (P{ || P2, ')

Furthermore, assume the proof
P Ly P Ly LiNnLy; =0
P || P>t LU Ly

By induction, P| f L} for some Lj C L;. Hence, L} U Ly C L; U Ly. Furthermore, L} N Ly = 0.
Therefore, P| || P> {t L U Ls.

O

If process P makes a transition to process P’ and the processes have types L and L', respectively, then
only the values of links in the set L\ L' may have changed as the result of the transition.

PROPOSITION 6 If (P, )\) = (P’ \') and Pt L and P' {t L' then A\ | (L\L)UL' =X | (L\ L)U L.
PROOF We prove this proposition by transition induction.

e Consider the transition (a.P, )) = (P, )). Obviously, the proposition is vacuously true in this case.

e Consider the transition (£ 1 b.P, \) = (P, A[/]). Assume that £1 b.P ft L. Then P} L\ {¢} and £ € L.
Note that (L \ L) U (L \ {£}) =L\ {£}. Obviously, A [ L'\ {£} = A[%] [ L\ {¢}.

e Consider the transition (¢ — P, )\) = (P, ). Obviously, the proposition is vacuously true in this case.
e Consider the proof
<P11)‘> i) <P1/*)‘l>
(Py + Py, \) = (P, \)

Furthermore, assume the proof
P Ly P { Ly LinLy =0
Pi+P{yLiULs

Assume P| {t L. By induction, A [ (L\ L;)UL]; =X | (L\ L1)UL]. Hence, A [ (L\ (L1 ULy))UL, =
AL\ (Ly ULy)) U Li.




e Consider the proof
(Plv)‘> — <P1/=)‘,>
(Py || P2, A) = (P || P, X)

Furthermore, assume the proof
P Ly Py Ly LiNLy, =0
Pi|| Py L1 ULy

Assume P| {t L. Then P| || P, {t L U Ly. By induction, A [ (L\ L;) UL} = X' [ (L\ L;) ULj. Hence,
AT (LA (B U L)) U(F U L) = X [ (L\ (L3 U L)) U (L} U L),

g
We restrict our attention to (P, \)’s with P f} L and A({) =L for all £ € L. We will call them valid.
PROPOSITION 7 If (P, )) % (P’ )} and (P, )\) is valid then (P’ )\') is valid.

PRrROOF Assume P f} L. Hence, by Proposition 5, P’ ) L' for some L' C L. Let £ € L'. Then

NW) = X0 1 @\L)uL =X | (L\L)UL according to Proposition 6]
= L1 [(P)) is valid]

Since A(f) #.L for finitely many £ € L and A [ (L\L)UL' = X [ (L'\ L)U L' according to Proposition 6 and
the set L \ L' is finite (since the sets L and L' are finite), we can conclude that A'(£) #L for finitely many
Lel. O

We conclude this section by showing that the behavioural equivalence strong bisimilarity, which we denote
by ~, is a congruence with respect to the pick and flow constructs.

PROPOSITION 8 If (P, \) ~ (P[,)\") then
1. (P, + Py, \) ~ (P + P, )\') and
2. (P[] Poy A) ~ (PL| P2, X)),

PROOF The proof of this proposition is a straightforward modification of the proof that bisimilarity is a
congruence with respect to summation and composition in CCS as shown in, for example, [Mil89, Proposi-
tion 4.10]. For example, to prove 2., one shows that { ((Pi || P2, A), (P || P, \')) | (Pi,A) ~ (P, )N)}is a
bisimulation. a

3 A Model with Dead-Path-Elimination

In the previous section, we modelled the BPE-calculus without DPE. Next, we present a labelled transition
system for the BPE-calculus with DPE.

The states of the labelled transition system are of the form (P, \), where P is a process and A is a link
status. Besides basic activities and ¢, a transition can also be labelled by 7. The 7-transitions correspond to
the garbage collection caused by DPE. These transitions are therefore not observable. The transitions are
given in
DEFINITION 9 The labelled transition relation — C P x A x (AU{¢,7}) xP x A is defined by (PREF), (OUT),

(JoinNg), (FLOW,), (FLOW,.) and

C(c)(X) = false PAHL
(¢ = P,X) = (0, Alfalse/r])

(JOINy)

(Pr,)) S (PLN) Pyt Ly
(Py + Py, \) = (P, )\’[false/Lz])

(P, )) S (P, N) P L
(Py + Py, \) =2 (Py, )\’[false/Ll])

(PICKY) (PICK?)



<P17)‘>L)<P117)‘I> <P27/\>L><lea/\l>

(PICK7) 7 (PrOK}) 7
(PL+ Py, A) — (P{ + Py, \') (P + Py, \) — (P + Py, X')
(rLowy) — P = (P, ) (rLowr) P2 d) = (P, X)
PP, D (P P, ) TP Py X) D (P PN

-

Note that the rule (PICK,) and (PICK,) of Definition 4 are replaced with the rules (PIcK$) and (P1CK?). They
capture the first ingredient of DPE:

If a pick construct is executed, then we assign false to all the outgoing links of the branch of the
pick construct that is not chosen.

Recall the second ingredient of DPE:

If the join condition of a process evaluates to false, then the process is garbage collected after
assigning false to all its outgoing links.

This is captured by the rule (JOINy). If (a part of) process P; can be garbage collected, then (that part
of) process P; can also be garbage collected in the processes P; + P> and P; || P.. This is captured by the
rules (PICK}), (PICK] ), (FLOW}) and (FLOW] ). Garbage collection should not resolve nondeterminism. For

example, we want (false — 0+ a.0,\) — (0 + a.0, \) but definately not (false — 0+ a.0,\) = (0, \). This
is modelled by means of the rules (PICK]) and (PICK]). These rules are very similar to the rules for CSP’s
external choice [Plo82].

The properties formulated in Proposition 5, 6 and 7 also hold for the above introduced labelled transition
system.

PROPOSITION 10 If (P,\) = (P',\') and P { L then P' ¢ L' for some L' C L.

ProoF We prove this proposition by transition induction. Most cases are the same as in the proof of
Proposition 5.
e Consider the transition (c — P,\) — (0, A[fals¢/1]). Since 0 1} §, this case vacuously holds.
e Consider the proof
(P, ) = (P, X)
(P, 4+ Py, \) = (Pl + Py, \')
Assume that
P Ly P q) Ly LinLy, =0
P +P,{y Ly ULy

By induction, P| f L} for some Lj C L;. Hence, L} U Ly C L; U Ly. Furthermore, L} N Ly = §.
Therefore, P + P, f L} U La.

]
PROPOSITION 11 If (P,\) = (P',\') and Py L and P' {y L' then A | (L\L)UL' = X [ (L\L)UL'.

PrRoOF We prove this proposition by transition induction. Most cases are the same as in the proof of
Proposition 6.

e Consider the transition (¢ — P, \) — (0, A\[fals¢/r]) where P {} L. Since 0 1} 0, it suffices to show that
AT (L\ L) = M[false/r] T (IL\ L) which is vacuously true.



e Consider the proof
(P, A) = (P, X)
(Py + Py, \) = (Pl + Py, \')
Assume that
PftLi PoffLy LinLy=0
P+ Py L1 UL,

Assume that P/ f L]. Then P + P> ff Lj U Ly. By induction, A [ (L\ L) UL} =X | (L\ Ly) U L].
Hence, A | (L\ (L1 UL2)) U(LyULe) =X | (L\ (L1 ULg))U (L} ULy).

0
PROPOSITION 12 If (P, \) == (P, \') and (P, )\) is valid then (P', \') is valid.

PROOF Similar to the proof of Proposition 7. O

4 The Side Effect Free Condition

Next, we present the condition which exactly captures when DPE is free of side effects. In the following two
sections, we show that this condition, named SEF for side effect free, is sufficient and necessary for DPE
being free of side effects.

To formulate the condition SEF, we introduce the following preorder on the values of links and extend it
to a preorder on link status.

DEFINITION 13 The relation C C {true, false, L} x {true, false, L } is defined by

1L C false

true £ true

false T false
1 C 1

The relation C C A x A is defined by

At E Ao if Ag (£) C Xp (€) for all £ € L.

Now we are ready to formulate the condition SEF:
if C(c)(A2) = true and Ay C Ay then C(c)(A1) = true. (2)

In the concluding section of this paper, we discuss this condition in the context of BPEL4WS.

5 SEF is Sufficient

Below, we show that if the evaluation function C satisfies the SEF condition (2) and condition (1), then
DPE is free of side effects. More precisely, we prove that if both conditions hold, then DPE has no impact
on the behaviour of a process. That is, we show that (P, A\, ) and (P, A1) are behaviourally equivalent. The
stronger the behavioural equivalence, the stronger the result. We prove it for weak bisimilarity, which is
one of the strongest behavioural equivalences that abstracts from 7-transitions. In fact, we prove an even
stronger result. We show that (P, A1) expands (P, A\,). Expansion, introduced in [AH92] and denoted
by =%, is a behavioural preorder derived from weak bisimilarity by, essentially, comparing the number of
T-transitions performed by the processes. It enjoys the powerful proof technique of expansion up to X which
was introduced in [SM92].

For the rest of this section, we assume that (1) and (2) both hold. For the definition of expansion, we
refer the reader to, for example, [SM92, Definition 3.1]. Below, we do not rely on the definition on expansion.
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We only make use of a few simple properties of expansion. We also do not present the definition of expansion
up to 3. It can be found in [SM92, Definition 3.4]. In Theorem 18, we prove that

&= {(<P~)‘]>a<P7AZ>) | A1 E)\Q}
is an expansion up to 3. According to the definition of expansion up to 3, it suffices to show that

Loif (P A) == (P',0) and A\; © Xy then (P, )\s) = (P’ \,) for some M, such that (P',)\;) ~ & 3
(P, A3);

2. if (P, Xa) — (P', M) and Ay C Mg then (P, )\;) — (', )\}) for some A} such that (P',\}) 3 & 3
(P', X5);
3. if (P, Xs) == (P, \y) and A\; C Ag then (P, );) 3 & 3 (P, \,).
To prove 1, 2, and 3, we use the following tree lemmas.
LEMMA 14 If (P, ) = (P',)\}) and A\; C Ay then (P, ;) == (P', \,) for some A}, such that \| T \,.
ProOOF We prove this lemma by transition induction.

e Consider the transition (a.7, A1) == (P, )\;). Then (a.P,\s) — (P, \2).

e Consider the transition (¢ 1 5.2, \;) = (P, \;[0/d]). Then (/1 b.P, o) = (P, \s[V/]). Since Ay E g, we
also have that Ay [¥/] T Ao[v/e].

e Consider the transition (¢ — P, \;) = (P, \;). Since C(c)(A\1) = true and A\; C Az, we can conclude
from (1) that C(c)(X2) = true and, hence, (¢ = P, Xy) = (P, \s).
e Consider the proof
(P, M) = (P, M)
(P14 Py, M) = (P, M)

Assume that
P Ly Py Ly LinLy=9
P +P,{y Ly ULy

By induction, (P, \s) — (P}, \}) for some X, such that \j C ;. Then (P + Py, \o) — (P], M [false/r,]).
Since (P, + P, \;) is valid and Py + P, ft L1 U Ly, we have that A\;(£) =L for all £ € L,. Assume
P/ f+ L. According to Proposition 11, Ay [ (L\ L) UL} = X [ (L'\ L1) U L}. Since L1 N Ly = (), we
can conclude that A (£) =L for all £ € Ly. Therefore, A T Xj[fals¢/r,).

e Consider the proof
(Pr, A1) = (P, \7)
(Pu || Py A) == (P || P2, Ay)

By induction, (P;, Xs) = (P}, \b) for some X, such that \] T \,. Hence, (P || P2, A2) — (P] || P, \b).
a

LEMMA 15 If (P, )\y) == (P, \,) and A1 T Ao then (P, )\;) = (P, \|) for some X such that A} T \j.

PROOF We prove this lemma by transition induction. Most cases are the same as in the proof of Lemma, 14.

e Consider the transition (¢ — P, X\2) — (P, X2). Since C(c)(\2) = true and A\; C A2, we can conclude
from (2) that C(c)(A1) = true and, hence, (c — P, \;) = (P, \).

11



e Consider the proof
(P1, A2y = (P, Ny) Py Lo
(Pr+ Py, o) = (P, Xy[false/r,])
Assume that

P Ly Py Ly LiNnLy=1
P1+P2'ﬂL1UL2

By induction, (P, \;) == (P}, \}) for some | such that A} T X,. Hence, (P, + P», A1) — (P/,)\}).
Since (P + P, \;) is valid and Py + P, ft L1 U Ly, we have that A\ (£) =L for all £ € Ly. Assume
P| ¢ Lj. According to Proposition 6, Ay [ (L\ L) UL, =X [ (L\ Ly) UL}. Since Ly N Ly = (), we
can conclude that A (£) =L for all £ € L,. Therefore, \| C X, [fals¢/r,).

d
LEMMA 16 If (P, )\2) L) <Pl,)\lz> and /\1 C )\2 then <P,/\1> ~ <P/.)\l>.

ProOF We prove this lemma by transition induction.

e Consider the transition (¢ — P,\2) — (0, \2[f45¢/z]). Then C(c)
conclude from (1) that C(c)(A\2) # true. Hence, (¢ — P, A1) ~ (0, A

e Consider the proof
(P, Xo) = (P],\y)
(Pl +P27)‘2> L) <Pll +P27)‘12>
By induction, (P, A1) ~ (P!, ;). According to Proposition 8, (P; + Py, \;) ~ (P] + Ps, \1).
e Consider the proof
(Pr,Aa) = (P, )
(Py |l P2y A2) = (P || P2, Ap)
By induction, (P, A1) ~ (P[, A1). According to Proposition 8, (P || P, A1) ~ (P || P>, \1).

A2) = false. Since Ay C A2 we can
1)

In the proof of 3, we also exploit
PROPOSITION 17 If (P, \) — (P',\') then AC \'.

PROOF We prove this proposition by transition induction.

e Consider the transition (¢ — P, \) - (0, A[fals¢/L]) where P 4} L. Since (¢ — P, ) is valid, A(¢) =L for
all £ € L. Hence, \ C A[false/r].
e Consider the proof
(P, A) = (P, X)
<P1 + PQ,)\) = <P1I + PQ,)\I)
By induction, A C X'.

Now we are ready to prove

THEOREM 18 & is an expansion up to 3.

12



ProOF Obviously, the identity relation = is a bisimulation and an expansion and, hence, = C ~ and = C 3.
Consequently, 1 and 2 follow from Lemma 14 and 15, respectively. Next, we prove 3. As shown in [SM92,
Theorem 3.3], ~ C 3. Assume that (P, \o) — (P’,\5) and A\; C Ag. Then,

(P, A1) (P',))\) [~ C 3 and Lemma 16]

<
E (P',))) [M C X2 and A2 C X, by Proposition 17]
3 (PLA) [=cd]

which proves 3. O
This brings us to our first main result: (P, A\, ) and (P, A\ ) are weak bisimilar.
COROLLARY 19 (P, A ) ~ (P, AL).

PROOF Since £ is an expansion up to 3, we know that £ C 3 according to [SM92, Theorem 3.5]. As shown
in [SM92, Theorem 3.3], we have that 3 C =. Hence, £ C ~. Since (P, A\, ) & (P, )\, ), we can conclude that
(P,AL) = (PAL). O

6 SEF is Necessary

Next, we prove that if the evaluation function C does not satisfy the SEF condition (2), then DPE may
have side effects. We show this by constructing a BPE-process P such that (P, A,) and (P, A, ) behave
differently. In this case, the weaker the behaviour equivalence, the stronger the result. We prove it for weak
trace equivalence, which is one of the weakest behavioural equivalences.

Assume that the evaluation function C does not satisfy the SEF condition (2). That is,

C(c)(A2) = true and \; C X2 and C(c)(A\1) # true. (3)

for some A1, A2 € A and ¢ € C. Given this assumption, we can prove our second main result.
THEOREM 20 There exists a process P such that (P, )\ ) and (P, A ) are not weak trace equivalent.

PROOF Assume that Ay C Ay. Without loss of generality, we can assume that
A(4;) #L and Ao (€;) #L and Ay (€;) = A2 (4;)

forall1 <¢<nand
AM(lnyi) =L and A2 (£,4;) = false

for all 1 <i<m and
A1(£) =L and A2(¢) =L

for all other ¢ € .. Now consider the processes

P = L1t A(l) Lt (le).. Ly T A(6n).Q
Q (a1.c = a2.0) + (Lyq1 1 truely ot true.. . £y, T true0)

Since (3), we have that

(PAL) =S5 (Q, M) -2 (c = a2.0,\1) A
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and
(PAL) 55 (Q, M) 25 (e = a.0, Xa) - (a2.0, Aa) =225 (0, Xa) A

Therefore, (P, A ) and (P, X ) are not weak trace equivalent. O

Conclusion

Let us first summarize our contributions. We introduced a new calculus, named the BPE-calculus, that
contains those constructs of BPEL4WS that are key to DPE. We modelled our BPE-calculus, both in the
absence and in the presence of DPE. We formulated a condition that exactly captures when DPE has side
effects. We proved that this condition is sufficient and necessary for DPE to be free of side effects.

Next, let us consider the implications of our main results for BPEL4AWS. According to [CGKT02], the join
conditions of BPEL4WS consist of links combined by means of the Boolean operators of XPath [W3C99].
Roughly, this set of join conditions is defined by

cu=truel false| L] cAc|cVelec=c|c#ec

Consider the join condition £2 = £, that we already saw in the introductory section of the paper. Assume
that Ay (€2) =1, A\ (fa) = false, \o(£2) = false and X2(2) = false. Obviously, A\; T A. Furthermore,
C(2 = £3)(\1) # true and C(£2 = £3)()\2) = true. Hence, SEF is not satisfied. The fact that these join
conditions give rise to an evaluation function C that does not satisfy SEF is caused by the presence of
negative occurrences of links in the join conditions. For example, the join condition 2 = {5 is equivalent
to the Boolean expression (£2 A £3) V (—€2 A —€s). The links £? and /> both have a negative occurrence in
the disjunctive normal form of this join condition. These negative occurrences can be eliminated from join
conditions by removing ¢ = ¢ and ¢ # ¢ from the above definition of the set of join conditions. However,
note that not every negative occurrence is problematic. For example, in

both the links ¢; and /> have a negative occurrence in the join condition ¢; = ¢35, but DPE has no side
effects.

In BPEL4WS, a join condition is only evaluated if all links that are part of the join condition are defined.
For example, if A1 (¢2) =L and \;(f2) = true then C(£2 V £2) =1, and if A\ (£2) = false and \; (€) = true
then C(£2 V €2) = true. Clearly, Ay C X2 and, hence, SEF is not satisfied. This kind of violation of SEF
can be addressed by using lazy evaluation of join conditions. In that case, if A\;(£3) =L and \;(f2) = true
then C(¢3 V £3) = true. This approach is supported in, for example, the web services flow language (WSFL)
[Ley01].

In conclusion, DPE may have side effects in BPELAWS. From time to time, these side effects may be
introduced accidentally. Therefore, we believe that it is important that one is aware of the fact that DPE
may have side effects.

In our study, we used labelled transition systems to model the BPE-calculus. Petri nets provide an alter-
native approach to model business processes. For an overview, we refer the reader to, for example, [AH02a].
We believe that there are at least two major advantages of labelled transition systems over Petri nets to
address the question whether DPE has side effects. First of all, in our proofs we fruitfully exploited induction
on the structure of BPE-processes and transition induction. Such proof techniques are less applicable to
Petri nets. Secondly, as also pointed out in [AH02b], advanced synchronization patterns like DPE cannot
easily be captured by means of Petri nets.
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