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Abstract

ACHIEVING SOFTWARE QUALITY THROUGH HEURISTIC
TRANSFORMATIONS: MAINTAINABILITY AND PERFORMANCE

Bill Andreopoulos

This report proposes a general framework for evaluating and improving the quality of a
software system. To illustrate how the methodology works, the report focuses on the soft-
ware qualities of maintainability and performance. The Non-Functional Requirements
(NFR) framework is adopted to represent and analyse the software qualities of maintain-
ability and performance. Specifically, it analyses the software attributes that affect either
quality, the heuristics that can be implemented in source code to achieve either quality,
and how the two qualities conflict with each other. Experimental results are discussed to
determine the effect of various heuristics on maintainability and performance. A method-
ology is described for selecting the heuristics that will improve a system’s software quality

the most.
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Chapter 1
Introduction

Software quality has become a topic of major concern in the field of software engineering.
As organizations rely increasingly upon software to perform their vital functions, build-
ing software of high quality becomes a critical issue. The technical quality of software
may seriously affect various organizational activities, such as the delivery of services,
the administration, or even the amount of software maintenance required. The cost of
organizational operations can increase substantially as software quality decreases. Thus,
it is necessary to be able to represent and analyze software quality effectively throughout

the entire software life-cycle.

1.1 Objective and Methodology

The main goal of this report is to propose a general framework for evaluating and im-
proving the quality of a software system. To illustrate how the methodology works, we
focus in this report on the maintainability and performance software qualities, since soft-
ware development experience has shown that these are two extremely important quality
requirements for any software system. Furthermore, the research that has been put into
understanding these qualities has failed to eliminate controversy over how to achieve

them. More specifically, we examined:

1. the software attributes (or characteristics) that affect one or both qualities,

2. the heuristic transformations (or heuristics) that can be implemented in a software

system at the source code level to achieve one or both desired qualities, and

3. how the two qualities conflict with each other.



CHAPTER 1. INTRODUCTION 2

Section 1.2.1 discusses software qualities in general, and section 1.2.2 describes how
qualities can be represented and analysed using the NFR framework. [1]

Most of the information presented in this report was gathered from various research
experiments on software quality, which focused on a single software attribute or heuristic.
A thorough description of the sources consulted in this report is given in Section 1.3.

Chapter 2 adopts the NFR Framework to represent the qualities of maintainability
and performance and their inter-dependencies. The results of our research were also
encoded in XML files, and made available on the World Wide Web (WWW) for use by
software developers. The URL is:

http://www.cs.yorku.ca/"billa/SIG/SIG.xml

The purpose of this URL is to provide a tool that can be used by software developers for
optimizing a software system at the source code level. This URL can be used to select
the set of heuristics that will benefit the system’s maintainability and/or performance
the most, while minimizing the negative side-effects.

In many cases, the relevant literature contained gaps in explaining how maintain-
ability and performance conflict with each other, or how they are affected by different
heuristics. In such cases we conducted experiments ourselves, to justify our claims on the
basis of empirical data. A thorough description of our experiments is given in Chapter
3.

Chapter 4 presents how this methodology can be used to select the heuristic trans-
formations that will improve the system’s software quality the most.

Finally, the Glossary (Appendiz A) gives precise definitions for most of the terms

mentioned throughout this report.

1.1.1 Software Qualities

In requirements engineering, a requirement can be described as a condition or capability
to which a system must conform, and which is either derived directly from user needs,
or stated in a contract, standard, specification, or other formally imposed document.

Requirements can be classified into:

e Functional requirements, which are externally visible behaviors, showing what the

system must do, and
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e Non-functional requirements (or software qualities), which are constraints on the

design and/or implementation of the solution.

Software qualities describe not what the software will do, but how the software will
do it, by specifying constraints on the system design and/or implementation. Some types

of qualities are:

Process requirements: development requirements, delivery requirements, organiza-

tion standards (e.g. Use VB v6.0, conform to D0-178B).

Product requirements: usability, capacity, reliability, availability, maintainability, porta-

bility, etc.

Real-time constraints: both periodicity and response times. Under some circum-

stances, these might be considered to be functional requirements.
External requirements: legislative requirements cost constraints, inter-operability.

Unfortunately, software qualities are usually specified briefly and vaguely for a par-
ticular system, since no exact techniques for representing them have been standardized
yet by the software engineering community. When it comes to modelling qualities, it is

common to simply use natural language.

1.1.2 The NFR Framework

The NFR framework for representing software qualities was developed by Lawrence
Chung, Brian Nixon, Eric Yu and John Mylopoulos at the University of Toronto. [1]
The NFR framework represents quality requirements as softgoals. Softgoals are goals
with no clear-cut criterion for their fulfilment. Instead, a softgoal may only contribute
positively or negatively towards achieving another softgoal. By using this logic, a softgoal
can be satisficed or not. In the NFR framework, satisficing refers to satisfying at some
level a goal or a need, but without necessarily producing the optimal solution. [1]

The NFR framework represents information about softgoals using primarily a graphi-
cal representation, called the softgoal interdependency graph. A softgoal interdependency
graph records all softgoals being considered, as well as the interdependencies between

them. [1] An example of a softgoal interdependency graph is given in Figure 1.1.
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In a softgoal interdependency graph each softgoal is represented as an individual node
(or cloud). A developer can construct an initial softgoal interdependency graph by identi-
fying the top-level quality requirement that the system is expected to meet and sketching
a softgoal for it. Figure 1.1 shows the maintainability quality requirement as a softgoal
at the top of the graph. The softgoal interdependency graph provides a hierarchical ar-
rangement of all the different softgoals; more general parent softgoals are shown above
more specific offspring softgoals. In Figure 1.1 the general high maintainability softgoal
gets decomposed into the more specific high source code quality and high documentation
quality softgoals.

Softgoals are connected by interdependency links, which show decompositions of par-
ent softgoals downwards into more specific offspring softgoals. In some cases the interden-
dency links are grouped together with an arc; this is referred to as an AND contribution
of the offspring softgoals towards their parent softgoal, and means that both offspring
softgoals must be satisficed to satisfice the parent. Figure 1.1 shows that both softgoals
for high source code quality and high documentation quality must be satisficed to satisfice
the high maintainability softgoal. In other cases the interdendency links are grouped
together with a double arc; this is referred to as an OR contribution of the offspring soft-
goals towards their parent softgoal, and means that only one offspring softgoals needs to
be satisficed to satisfice the parent. Figure 1.1 shows that either low span of data or high
data consistency needs to be satisficed to satisfice the high information structure quality
softgoal.

The bottom of the graph consists of the heuristic transformations (or heuristics) that
can be directly implemented in the system, to achieve one or more parent softgoals.
Figure 1.1 illustrates the dead code elimination, minimization of the response set and
minimization of the number of direct children heuristics. Like other softgoals, heuristics
(or operationalizing softgoals) also make a contribution towards one or more parent
softgoals. Interdependency links show these contributions. In this case, a heuristic’s
contribution towards satisficing a parent softgoal can be positive ("4”7 or "++7) or
negative (”-7 or 7-"). [1]

The softgoal interdependency graph is incrementally constructed, analysed and re-
visioned at each step of development (e.g. requirements specification, implementation,
etc), to record the developer’s consideration of softgoals at that step. Thus, at each step
of development the developer can look at information concerning softgoals relevant only

to that step of the process. [1]
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Chapter 2 illustrates how the NFR framework can be used, to create a detailed

decomposition of the maintainability and performance qualities into softgoals.

Selecting the Heuristic Transformations to be Implemented in the Target

System

When choosing a set of heuristic transformations (or heuristics) to be implemented in
the target system, an evaluation procedure can be used to determine the degree to which
each top-level quality requirement (i.e. maintainability) will be achieved.

In the NFR framework achieving a quality requirement is thought to be a matter of
degree, not a binary true-false condition. The set of heuristics selected must be the one
which will benefit the system the most, by maximizing the ratio of gains to losses. Thus
when evaluating alternative sets of heuristics, one has to consider all gains and losses for
each set.

Our goal is to briefly illustrate the evaluation procedure which the NFR framework
provides for selecting among alternatives.

In the softgoal interdependency graph, the heuristics that are chosen to be imple-
mented (or satisficed) in the target system are indicated by ”,/”. On the other hand,
rejected candidates are represented as ” X”. Heuristics for which a decision has not been
made are simply left blank.

Suppose the developer selects the dead code elimination heuristic, for satisficing high
control flow consistency and high data consistency. Suppose the developer also selects
the minimization of the number of direct children and minimization of the response set
heuristics to satisfice low control flow complexity. All these selections are represented in
Figure 1.2 as check-marks (”/”) inside the nodes.

After the developer selects the heuristics to be implemented, he/she has to evaluate
the precise impact of these selections on top-level quality requirements (i.e. maintain-
ability). This will indicate whether the top-level quality requirements are achieved or
not.

The evaluation process can be viewed as working bottom-up, starting with bottom
leaves of the graph representing heuristics. The evaluation process works towards the
top of the graph, determining the impact of offspring softgoals on parent softgoals. This
impact is represented by assigning labels (”y/” and ” X”) to the higher-level parent soft-

goals.
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The impact upon a parent softgoal is computed from the contributions that all the
offspring softgoals make towards it. Roughly speaking, when there is a single offspring, a
positive contribution ”"propagates” the offspring’s label to the parent. Thus a satisficed
offspring results in a satisficed parent, and a denied offspring results in a denied parent.
On the other hand, a negative contribution will take the offspring’s label and "invert” it
for the parent’s label. Thus a satisficed offspring results in a denied parent, and a denied
offspring results in a satisficed parent.

This is shown in Figure 1.2. The heuristic minimization of the number of direct
children which is satisficed (”7,/”), makes a negative contribution towards its parent
softgoal high module reuse. The result is that softgoal high module reuse is denied (” X7).
On the other hand, the heuristic dead code elimination which is satisficed (”,/”), makes a
positive contribution towards its parent softgoals high control flow consistency and high
data consistency. Thus, both softgoals are satisficed (71/”).

Suppose a softgoal receives contributions from more than one offspring. Then the
contribution of each offspring towards the parent is determined, using the above approach,
and the individual results are then combined. For example, low control flow complexity
has two offsprings that are satisficed, and both make a positive contribution towards
satisficing the parent. Thus, the combination of their individual positive results is to
satisfice the parent softgoal low control flow complexity. This is shown in Figure 1.2.

In cases where there is a combination of positive and negative contributions towards
a parent softgoal, it is hard to assign a precise value to it. The parent softgoal could
be satisficed, denied, or something in between, depending on the specific situation. In
these cases, a designer can decide whether the parent softgoal is satisficed or not, by
considering the rationale recorded as underlying the positive and negative contributions
to the parent.

To complete this example, we need to show how all these contributions propagate
upwards towards the top-level quality requirements. High control flow consistency, low
control flow complexity and high module reuse participate in an OR contribution towards
their parent, high control structure quality. Since at least one of the offspring softgoals is
satisficed, high control structure qualily is automatically evaluated to be satisficed (74/”).

In this example we have shown how a set of heuristics would contribute towards the
maintainability quality only. In order to assess how well the target system would meet
all qualities of interest, it would also be necessary to consider the contributions of the

selected heuristics towards the performance quality.
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1.2 Review of Literature

This Section gives an overview of the literature that provided us with information on
the software qualities of maintainability and performance. We tried to ensure that this
literature would cover relevant past work as extensively as possible.

It is important to note that the maintainability-related literature was much broader
than the performance-related literature. Two reasons can be identified to justify this

discrepancy:

1. It is much more difficult to measure maintainability precisely than it is to measure
performance. Performance metrics have been accepted and used with confidence.
However, researchers have failed to agree on a set of metrics to measure maintain-

ability effectively.

2. It is difficult to identify heuristics that can be implemented in source code at a
low-level to improve maintainability. Maintainability itself is a qualitative concept;
many experimental studies are required before one can argue with confidence about

the effects of a heuristic upon software maintainability.

The definition of terms given throughout the report were adopted from [2, 3, 4, 5.

1.2.1 Maintainability

The most comprehensive source of ideas for decomposing maintainability into softgoals
was the Master’s thesis ”A Metric Approach to Assessing the Maintainability of Soft-
ware” | written by Jack Hagemeister at the University of Idaho in 1992 [6]. In this work,
a hierarchical tree structure of software attributes that affect maintainability is defined.
This hierarchical tree structure is refined through successive subtrees until a leaf node
representing a low-level software attribute is identified and defined. Hagemeister anal-
ysed many published works on software maintainability to define this hierarchical tree
structure.

The main source of information on the effects of inheritance on maintainability was
the paper ”A Study on the Effect of Architecture on Maintainability of Object-Oriented
Systems” by P. Hsia, A. Gupta, C. Kung, J. Peng and S. Liu [7]. This paper presents
a study indicating that the structure of the inheritance hierarchy of an object-oriented

system affects its maintainability. Another similar paper is ”The Effect of Inheritance on
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the Maintainability of Object-Oriented Software: An Empirical Study” by J. Daly, A.
Brooks, J. Miller, M. Roper and M. Wood [8]. This paper presents a series of experiments
to show the effect of inheritance on the maintainability of object-oriented software.

The main source of information on the effects of modularity on maintainability was
the paper ”An Experiment of Legacy Code Segmentation to Improve Maintainability”
by R. Panteado, P. Masiero and M. Cagnin [9]. This paper reports an experiment whose
purpose is to segment procedural code into modules, to improve system maintainability.

The main source of information on the effects of encapsulation on maintainability was
the paper ”A Modified Inheritance Mechanism Enhancing Reusability and Maintainabil-
ity in Object-Oriented Languages” by L. XuanDong and Z. GuoLiang. This paper de-
scribes encapsulation problems that may result from use of inheritance. It also presents
a modified inheritance mechanism which overcomes these encapsulation problems.

The main source of information on the effects of coupling and cohesion on maintain-
ability was the paper "Measuring and Assessing Maintainability at the End of High Level
Design” by L. Briand, S. Morasca and V. Basili [10]. This paper presents a measurement
approach for cohesion and coupling, based on object-oriented design principles. A similar
paper is ”System Architecture Metrics for Controlling Software Maintainability” by M.J.
Shepperd. This paper reports the results of an investigation into the relationship between
information flow based metrics and software maintainability. It shows that there exists
a strong correlation between module maintainability and module information flow.

It was necessary to examine work on software maintainability metrics models. Nu-
merous papers were found on this subject. The most important paper for our work was
”Constructing and Testing Software Maintainability Assessment Models” by F. Zhuo, B.
Lowther, P. Oman and J. Hagemeister [11]. This paper presents and compares seven soft-
ware maintainability assessment models. These models are mostly based on Halstead’s
effort, extended cyclomatic complexity, lines of code, and number of comments. A similar
paper is " Using Software Maintainability Models to Track Code Health” by D. Ash, J.
Alderete, L. Yao, P. Oman and B. Lowther [12]. This paper also describes mechanisms
for software maintainability assessment.

Finally, it was necessary to examine related work that has been done in the area of
software reengineering. A good paper on this subject was ”A study on the Effect of
Reengineering upon Software Maintainability” by H. Sneed and A. Kaposi [13]. This pa-
per examines how restructuring and reengineering can be applied to software to improve

maintainability. It shows that restructuring the program (e.g. by eliminating GOTO
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statements) reduces the maintenance effort. Another similar paper is "Effect of Object
Orientation on Maintainability of Software” by G. Aditya Kiran, S. Haripriya and P.
Jalote [14]. This paper describes an experimental study about the effect of object ori-
entation on maintenance. It shows that object oriented software generally has better

maintainability.

1.2.2 Performance

Many ideas for developing the performance decomposition were taken from the textbook
”"Computer Architecture: A Quantitative Approach” written by David Patterson and
John Hennessy. [15] This book explains that performance can be defined in terms of speed
(time performance) or in terms of storage requirements (space performance), depending
on our purposes. [15]

Furthermore, most of the performance optimization heuristics were provided by the
Ph.D. thesis "Fast and Effective Optimization of Statically Typed Object-Oriented Lan-
guages”, written by D.F.Bacon at the University of California, Berkeley, in 1997. [16].
Bacon’s Ph.D. thesis was found to be the most comprehensive source of information on
this subject.

Finally, Brian Nixon’s work on performance requirements [17, 18] has many similar-
ities to our work and contributed many ideas to our research. Nixon applied the NFR
framework to represent and organize performance requirements. The result of his work
was a specialization of the NFR framework, the Performance Requirements Framework.
This framework represents the basic performance softgoals, such as time and space, and

provides a notation for describing performance requirements. [17, 18]



Chapter 2
Maintainability and Performance

This chapter can be viewed as an analysis of the maintainability and performance qual-
ities for a system, followed by a synthesis of heuristic transformations (or heuristics) to
improve these qualities. Specifically, we use the NFR framework presented in Chapter 1
to examine in detail the maintainability and performance qualities.

Sections 2.1 and 2.2 describe the softgoal interdependency graphs built for maintain-
ability and performance respectively, by systematically decomposing the general qualities
into specific softgoals. Section 2.3 explains how the qualities of maintainability and per-
formance can be satisficed in a system, by implementing specific heuristics at a low-level.
The Glossary (Appendiz A) gives precise definitions for most of the terms mentioned in

this section.

2.1 Decomposing Maintainability into Softgoals

Maintainability is defined as the characteristics of the software, its history, and associated
environments that affect the maintenance process and are indicative of the amount of
effort necessary to perform maintenance changes. It can be measured as a quantification
of the time necessary to make maintenance changes to the product. [3, 6]

The initial maintainability quality is quite broad and abstract. Researchers have de-
termined numerous and varied attributes of software which might affect maintainability.
To effectively deal with such a broad quality, we treat it as a softgoal (see Section 1.2)
and then decompose it down into more specific softgoals.

It is important to note that in this work we only describe softgoals relevant to the

source code of the target system. It is possible to identify softgoals irrelevant to source

12
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code, that contribute towards satisficing maintainability. Such softgoals may be related
to other environmental factors, such as ‘Management’ or the ‘Operational Environment’.
[6] However, identifying such heuristics would require knowledge about the specific envi-
ronment in which the software system is embedded, and thus describing them is outside
the scope of our work.

Figure 2.1 shows the full softgoal interdependency graph for maintainability. This
graph attempts to illustrate the specific software attributes that affect maintainability.
In cases where there exist conflicting views of how attributes affect the maintainability

of software, these cases are noted throughout our descriptions.

High
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— High source High documentation —
ode quality quality
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/A\ structure quallty structure quality > naming and commenting
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> structured of data
LOW nesti ng constructs

Figure 2.1: Maintainability softgoal interdependency graph
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The maintainability quality can be decomposed into softgoals
e high source code quality [6], and
e high documentation quality [19].

This decomposition is shown in Figure 2.1.

Both softgoals of high source code and documentation quality must be satisficed for
a system to have high maintainability. This is referred to as an AND contribution of the
offspring softgoals towards their parent softgoal, and is shown by grouping the interdepen-
dency lines with an arc. The rationale behind this AND contribution is that a software
system with clear source code but bad documentation will be hard to maintain, since
maintainers will need to study requirements and design documents in order to understand
how the system works. A software system with clear documentation but badly-written
code will also be hard to maintain, since maintainers will need to understand how the
source code works in order to make changes to it. Thus, software developers must try to
satisfice both softgoals in a system.

The high source code quality softgoal can be further decomposed into the sub-softgoals
e high control structure quality [6],

¢ high information structure quality [6], and

e high code typography, naming and commenting quality [20, 21].

This decomposition is shown in Figure 2.1. As shown, this is also an AND contribution,
i.e. all three sub-softgoals must be satisficed to achieve the high source code quality
softgoal. The rationale behind this AND contribution is that source code will be hard
to understand if it is badly commented, or is laid out in a bad manner (typography
qualities). But source code will also be hard to understand if characteristics such as
modularity, encapsulation or cohesion have not been achieved (control structure and
information structure qualities).

Now we want to focus on each of these sub-softgoals individually. The high control
structure quality softgoal can further be decomposed into the sub-softgoals that source

code must be characterized by the following attributes:
e high modularity [22, 23, 24, 25] ,

e high control flow consistency [6],
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e low control flow coupling [26, 10, 27] ,

high cohesion [26, 10, 27],
e low control flow complexity [25],

low nesting [6],

low span of control structures [28, 29],

high encapsulation [30],

high module reuse [6],

e low use of unconditional branching [6],

high use of structured constructs [28, 29].

This decomposition is shown in Figure 2.1. As shown, this is an OR contribution, i.e.
it is not necessary for all of the sub-softgoals to be satisficed to achieve the high control
structure quality softgoal. This is shown with the interdependency lines grouped by a
double arc. The rationale behind this OR contribution is that the softgoals which affect
a system’s control structure often overlap with each other, and satisficing all of them
simultaneously may be impossible to achieve. For example, by satisficing Low use of
unconditional branching one may affect negatively Low control flow complexity. Thus,
it would not make sense to claim that all softgoals which affect the control structure
need to be satisficed. Instead, by satisficing some of these softgoals a developer can feel
confident that the system is characterized by high control structure quality.

The high information structure quality softgoal can further be decomposed into the

sub-softgoals that source code must be characterized by the following attributes:
e high data consistency [6, 28, 29],

e low data coupling [6, 28, 29],

low 1/O complexity [6, 28, 29],

low nesting [6, 28, 29],

low span of data [6, 28, 29].
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This decomposition is shown in Figure 2.1. As shown, this is also an OR contribution,
i.e. it is not necessary for all of the sub-softgoals to be satisficed to achieve the high
information structure quality softgoal. The rationale behind this OR contribution is that
the softgoals which affect a system’s information structure often overlap with each other,
and satisficing all of them simultaneously may be impossible to achieve. Thus, it would
not make sense to claim that all softgoals which affect the information structure need to
be satisficed. Instead, by satisficing a reasonable number of these softgoals a developer
can feel confident that the system is characterized by high information structure quality.

The high code typography, naming and commenting quality softgoal can further be
decomposed into the sub-softgoals that source code must be characterized by the following

attributes:
e good overall program formatting [21, 20],
e good overall program commenting [31, 21, 20],
e good overall naming [21, 20].

This decomposition is shown in Figure 2.1. As shown, this is also an OR contribution,
i.e. it is not necessary for all of the sub-softgoals to be satisficed to achieve the high
code typography, naming and commenting qualily softgoal. The rationale behind this
contribution is that the softgoals which affect a system’s typography often overlap with
each other, and satisficing all of them simultaneously may be impossible to achieve.
Thus, it would not make sense to claim that all softgoals which affect typography need
to be satisficed. Instead, by satisficing a reasonable number of these softgoals a developer
can feel confident that the system is characterized by high code typography, naming and

commenting quality .

2.2 Decomposing Performance into Softgoals

As with maintainability, we also view performance as a softgoal (see Section 1.2) that
can be broken down into more specific softgoals. Figure 2.2 shows the full softgoal
interdependency graph for performance.

The high performance quality can be decomposed into softgoals

e good time performance [15], and
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e good space performance [15].

This decomposition is shown in Figure 2.2. As shown, this is an AND contribution,
i.e. both softgoals must be satisficed to achieve the performance softgoal. The rationale
behind this AND contribution is that both softgoals of good time and space performance
must be satisficed for a system to achieve good performance. It is inconceivable for
a system which is fast but makes bad memory-utilization to be characterized by good
performance. It is also inconceivable for a system which makes good memory-utilization
but is slow to be characterized by good performance. Thus, software developers must try
to satisfice both softgoals in a system. If there is a tradeoff involved between achieving
both of them then that tradeoff must be balanced.

In turn, the good space performance softgoal can be decomposed into the following

sub-softgoals:
e low main memory utilization, and
e low secondary storage utilization.

This decomposition is shown in Figure 2.2. As shown, this is also an AND contribution,
i.e. both sub-softgoals must be satisficed to achieve the good space performance softgoal.
The rationale behind this AND contribution is that the system may be stored either in
main memory or in secondary storage, and the term ”space” is used interchangeably to
refer to both types of storage.

The good time performance softgoal can be decomposed into the following sub-softgoals:
e low response time, and
e high throughout.

This decomposition is shown in Figure 2.2. As shown, this is an OR contribution. The
rationale behind this OR contribution is that in most cases a developer will focus on either
response time or throughput in an attempt to improve time performance. Throughput
and response time are related to each other, because decreasing response time almost
always improves throughput. Furthermore, the goal of achieving low response time or
high throughput usually depends on the specific situation being considered. For example,
if a program is running on two different workstations, then the faster workstation would

be the one that gets the job done first, i.e. the one with the lowest response time.
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However, if jobs were submitted by many users to each of these workstations, then the
faster workstation would be the one that completed the most jobs during a day, i.e. the
one with the highest throughput. [15]

In turn, the low response time softgoal can be decomposed into the following sub-

softgoals:
e low CPU time,
e low I/O activities, and
e low time running other programs.

This decomposition is shown in Figure 2.2. As shown, this is an OR contribution. The
rationale behind this OR contribution is that a program’s response time can be improved
by decreasing either the time spent running other programs, or time spent for I/0O ac-
tivities, or the CPU time. Thus, it is not necessary to achieve all of the sub-softgoals in
order to achieve low response time.

The low CPU time softgoal can be decomposed into the following sub-softgoals:
e low user CPU time, and
o low system CPU time.

This decomposition is shown in Figure 2.2. As shown, this is also an OR contribution.
The rationale behind this OR contribution is that a program’s CPU time can be improved
by decreasing either the user CPU time or the system CPU time. Thus, it is not necessary
to achieve all of the sub-softgoals in order to achieve low CPU time. Furthermore, the
distinction between user CPU time and system CPU time is often blurry, and in such
cases it might not make sense to speak of achieving both softgoals.

The low system CPU lime softgoal can be decomposed into the following sub-softgoals:
e low disk access, and
e low memory access.

This decomposition is shown in Figure 2.2. As shown, this is also an OR contribution.
The rationale behind this OR contribution is that a program’s system CPU time can be
improved by decreasing either disk accesses or memory accesses. Thus, it is not necessary

to achieve all of the sub-softgoals in order to achieve low system CPU time.
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2.3 Identifying Heuristic Transformations to Achieve

Software Quality

Up to now we have been providing more precise definitions for the broad qualities of
maintainability and performance. However, we have not yet described the means by
which one could achieve high maintainability and performance in a system.

At this point we have reached our original destination, which is to identify the heuristic
transformations (or heuristics) that actually satisfice the quality requirements of high
maintainability and performance, and then to select the best combination of heuristics
for the target system. In Section 1.2.2 we showed how the NFR framework could be used
to select the best combination of heuristics.

The NFR framework treats these heuristics as softgoals (see Section 1.2), because this
allows developers to decompose heuristics into more specific ones. Heuristics are often
referred to as operationalizing softgoals.

Like other softgoals, heuristics also make a contribution towards one or more parent
softgoals. In this case the contribution types are positive/negative. This is represented

Wlth a ” _I_ 777 2 _I_ _|_777 or ” 777 » o_ 7" Symbol [1]

2.3.1 Identifying Heuristics to Satisfice Maintainability

In this section we briefly describe some of the heuristics that can be implemented in
a system’s source code to contribute towards satisficing the maintainability quality re-
quirement. Appendix B provides a full description of all the maintainability heuristics
as well as their contributions, and should be consulted for further details.

The softgoal interdependency graph given in Figure 2.3 illustrates a subset of these
heuristics as well as their contributions towards their parent softgoals. A more complete
version of this graph illustrating the entire set of heuristics can be found in Figure B.1.

As shown in Figure 2.3, an example of a maintainability heuristic is dead code elim-
ination. This means to eliminate code that is unreachable or that does not affect the
program (e.g. dead stores). Implementing this heuristic makes a ”++4” contribution
towards meeting the high control flow consistency and high data consistency softgoals.
Dead code elimination may also affect performance in various ways. We discuss these
contributions in the next section.

As shown in Figure 2.3, another example of a maintainability heuristic is elimination
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of GOTO statements. This means to minimize the number of GOTO statements in the
source code. Implementing this heuristic makes a "4+ contribution towards meeting
the low use of unconditional branching softgoal. Implementing this heuristic also makes

7-7 contribution towards meeting the low control flow complexity softgoal. Elimination

a
of GOTO statements may also affect performance in various ways. We discuss these
contributions in the next section.

As shown in Figure 2.3, another example of a maintainability heuristic is elimination
of global data types and data structures. This means to make global data types and
data structures local. Implementing this heuristic makes a ”4++” contribution towards
meeting the low data coupling softgoal.

A full discussion of the rest of the maintainability heuristics and their contributions

towards their parent softgoals can be found in Appendix B.
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2.3.2 Identifying Heuristics to Satisfice Performance

In this section we briefly describe some of the heuristics that can be implemented in
a system’s source code to satisfice the performance quality requirement. Appendix C
provides a full description of all the performance heuristics as well as their contributions,
and should be consulted for further details.

The softgoal interdependency graph given in Figure 2.4 illustrates a subset of these
heuristics as well as their contributions towards their parent softgoals. A more complete
version of this graph illustrating the entire set of heuristics can be found in Figure C.1.

As shown in Figure 2.4, an example of a performance heuristic is dead code elimi-
nation. This means to eliminate code that is unreachable or that does not affect the
program (e.g. dead stores). Implementing this heuristic makes a ”+” contribution to-
wards meeting the low main memory utilization softgoal, because dead code elimination
will cause the size of the program to decrease. Implementing this heuristic makes a ”+”
contribution towards meeting the low secondary storage utilization softgoal, because dead
code elimination will cause the size of the program to decrease. Dead code elimination
may also affect maintainability in various ways. We discussed these contributions in the
previous section.

As shown in Figure 2.4, another example of a performance heuristic is elimination
of GOTO statements. This means to minimize the number of GOTO statements in the

7.7 contribution towards meeting the

source code. Implementing this heuristic makes a
low main memory utilization and low secondary storage utilization softgoals. Elimination
of GOTO statements may also affect maintainability in various ways. We discussed these
contributions in the previous section.

As shown in Figure 2.4, another example of a performance heuristic is integer di-
vide optimization. This means to replace integer divide instructions with power-of-two
denominators and other bit patterns with faster instructions, such as shift instructions.
Implementing this heuristic makes a 747 contribution towards meeting the low user CPU
time softgoal.

A full discussion of the rest of the performance heuristics and their contributions

towards their parent softgoals can be found in Appendix C.
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Chapter 3

Maintainability and Performance

Measurements

In this Chapter we perform maintainability and performance optimization activities, by
implementing different heuristics at the source code level. Each optimization activity we
have performed corresponds directly to a specific heuristic that is described in Appendices
B and C.

In each case we evaluated the effect of applying an optimization heuristic on the
overall maintainability and performance of the source code, or the overall ”code health”.
In order to estimate the effect of a specific optimization heuristic on the health of source
code, a set of metrics were extracted from the code before and after the heuristic was
applied. !

The C++ source code of two different software systems was modified for our experi-
ments; WELTAB, an election tabulation system, and the AVLL GNU tree and linked list
libraries. Both systems were originally written in C,; but a reengineering tool was used
to migrate the procedural C code to the object-oriented C++ language. The primary
reason for reengineering WELTAB and AVL from C to C+4 was our desire to produce
object-oriented code that was of very low quality. This low quality was desirable for
our experiments, because it gave us many opportunities to improve the source code by
implementing optimization heuristics. Below we provide more details about WELTAB
and AVL.

The WELTAB Election Tabulation System was created in the late 1970s to support

!Credit is given to Ladan Tahvildari from the University of Waterloo, for her efforts in extracting
these source code metrics.

25
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the collection, reporting, and certification of election results by city and county clerks’
offices in US. It was originally written in an extended version of Fortran on IBM and
Amdahl mainframes under the University of Michigan’s MTS operating system. At
various times through the 1980s, it was run on Comshare’s Commander II time- sharing
service on a Xerox Sigma machine, and on IBM 4331 and IPL (IBM 4341 clone) machines
under VM /CMS. Each move caused inevitable modifications in the evolution of the code.
Later, the system was converted to C and run on PCs under MSDOS (non-GUI, pre-
Windows). The latest version of the system is composed of 4.25 KLOC and 35 batch
files. Specifically, there are 26 header files, 39 source code files, and the rest are data files
for a total of 190 files. For more details on WELTAB, see:

http://www.darpa.mil/ito/psum1998/D882-0.html

The GNU AVL Libraries is a public domain library written in C for sparse arrays,
AVL, splay trees, and binary search trees. The library also includes code for implement-
ing single and double linked lists. The original system was organized around C structs
and a quite elaborate collection of macros for implementing tree traversals, and simulat-
ing polymorphic behavior for inserting, deleting and tree re-balancing operations. The
system is composed of 4KLOC of C code, distributed in 6 source files and 3 library files.

For more details on AVL, see:
http://ftp.cs.stanford.edu/gnu/avl/

It is important to note that in this chapter we only discuss a subset of these metrics.

A full discussion of all extracted metrics can be found in Appendix D.

3.1 Maintainability Measurements

In order for maintenance processes to be improved and for the amount of effort expended
in software maintenance activities to be reduced, it is first necessary to be able to measure
software maintainability. [32] In this Section we demonstrate how software maintainabil-
ity metrics can be used to evaluate the effects of optimizations in the source code. A
number of different maintenance and performance optimization activities were applied
to the WELTAB and AVL object-oriented C++ software systems.

For each optimization activity, a set of maintainability metrics models were applied to

the object-oriented C+4+ source code, both before and after the optimization activity took



CHAPTER 3. MAINTAINABILITY AND PERFORMANCE MEASUREMENTS 27

place. This analysis of the differences in maintainability measures, before and after some

maintainability or performance optimization activity took place, serves two purposes:

1. To evaluate the effect of the maintenance or performance optimization activity on

the maintainability of the source code, and

2. To determine how sensitive a particular maintainability metrics model is, to the

type of maintenance or performance optimization activity that was performed.

3.1.1 Maintainability Metrics Models

In this section, the most important maintainability metrics that were extracted from the
WELTAB and AVL C++ source code are described. It is important to note that for
readability purposes, we only describe a subset of the maintainability metrics extracted.
A full description of all maintainability metrics can be found in Appendix D. The MI1,
MI2 and MI3 metrics were extracted at both the file level and function level for each
optimization heuristic.

In each case the metrics were extracted automatically using DATRIX, a tool for
assessing the software quality of C and C++ systems. DATRIX can automatically extract
approximately 110 different metrics on a system’s source code, to evaluate how well the

system satisfies various software characteristics. For more details on DATRIX, see:

http://www.iro.umontreal.ca/labs/gelo/datrix/prodinfo/prodinfo.htm

Maintainability Indexes
MI1

This is a single maintainability index, based on Halstead’s metrics. It is computed using

the following formula:
MI1 =125 -10* LOG(avg — F)
The term avg — F is defined as follows:

o avg-E = average Halstead Volume V per module
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MI2

This is a single maintainability index, based on Halstead’s metrics, McCabe’s Cyclomatic
Complexity, lines of code and number of comments. It is computed using the following

formula:

MI2 =171 — 544 * In(avg — E) — 0.23 *x avg — V(G) — 16.2 * In(avg — LOC)

+50 * sin(sqrt(2.46  (avg — CMT/avg — LOC)
The coefficients are derived from actual usage.The terms are defined as follows:
e avg-E = average Halstead Volume V per module
e avg-V(G) = average extended cyclomatic complexity per module
e avg-LLOC = the average count of lines of code (LOC) per module

o avg-CMT = average percent of lines of comments per module

MI3

This is a single maintainability index, based on Halstead’s metrics, McCabe’s Cyclomatic
Complexity, lines of code and number of comments. It is computed using the following

formula:

MI3 =171 —3.42 x In(avg — F) — 0.23 x avg — V(G) — 16.2 x [n(avg — LOC)

+0.99 *x avg — CMT
The coefficients are derived from actual usage.The terms are defined as follows:
o avg-E = average Halstead Volume V per module

e avg-V(G) = average extended cyclomatic complexity per module

avg-1.LOC = the average count of lines of code (LOC) per module

o avg-CMT = average percent of lines of comments per module
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3.1.2 A study of the optimization activities

In this section we describe how we conducted pre-post analyses of the maintainability
metrics for each of the optimization heuristics.

The pre-post analysis of the maintainability metrics was performed on nine different
code optimization heuristics; four of these heuristics focused on improving performance
and the other five focused on improving maintainability. Following is a brief description

of the performance and maintainability optimization heuristics:

Hoisting and Unswitching - The FOR loops were optimized, so that each iteration

executed faster (performance optimization).

Address Optimization - References to global variables that used a constant address

were replaced with references using a pointer and offset (performance optimization).

Integer Divide Optimization - Integer divide instructions with power-of-two denom-
inators were replaced with shift instructions, which are faster (performance opti-

mization).

Function Inlining - When a function was called in the program, the body of the func-

tion was expanded inline (performance optimization).

Elimination of GOTO statements - The number of GOTO statements in the source

code was minimized (maintainability optimization).

Dead Code Elimination - Code that was unreachable or that did not affect the pro-

gram was eliminated (maintainability optimization).

Elimination of Global Data Types and Data Structures - Global data types and

data structures were made local (maintainability optimization).

Maximization of Cohesion - Classes with low cohesion were split into many smaller

classes, when possible (maintainability optimization).

Minimization of Coupling Through ADTs - Variables declared within a class, which
have a type of ADT which is another class definition, were eliminated (maintain-

ability optimization).
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Some of these activities were applied to WELTARB only, others to AVL only, and others
to both systems. We first extracted file level and function level maintainability metrics
on the original WELTAB and AVL C++ source code before any of the optimization
activities took place. For each distinct performance and maintainability optimization
activity, we then extracted file level and function level maintainability metrics on either
WELTAB or AVL or both, after the activity took place.

It is important to note that for both WELTAB and AVL there exist many other
optimization activities that could have been applied to the source code. However, the
C++ source code of both systems was of such low quality, that it did not allow us to apply
many other optimizations that we would have liked to. It was difficult to understand
and modify both WELTAB and AVL, since even slight changes could affect other parts
of the system in undesirable ways.

The reason for this low quality is that the C++ code was the result of a reengineering
effort to migrate the original C version to an object-oriented language. The reengineer-
ing tool used for this purpose focused on producing code that was correct rather than
readable. Thus, although the resulting C++ versions of WELTAB and AVL executed
properly, it was difficult to understand and maintain the new systems.

We now provide a detailed analysis of these performance and maintainability opti-

mization activities, by explaining the pre-post changes in the maintainability metrics.

Hoisting and Unswitching

The objective of this performance optimization activity was to optimize run-time perfor-
mance by minimizing the time spent during FOR loops.

Hoisting refers to cases where loop-invariant expressions are executed within FOR
loops. In such cases, the loop-invariant expressions can be moved out of the FOR loops,
thus improving run-time performance by executing the expression only once rather than
at each iteration. [16]

For example, in the code fragment below, the expression (x+y) is loop invariant, and

the addition can be hoisted out of the loop.

for (1 = 0; i < 100; i++) {
ali]

X+y’;
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Below is the code fragment after the invariant expression has been hoisted out of the

loop.
t=x+y,;
for (1 = 0; i < 100; i++) {
alil] = t;
t

Unswitching refers to transforming a FOR loop containing a loop-invariant IF state-
ment into an IF statement containing two FOR loops. [16]
For example, in the code fragment below, the IF expression is loop-invariant, and can

be hoisted out of the loop.

for (1 = 0; i < 100; i++)

if (%)

alil = 0;
else

b[i] = 0;

After unswitching, the TF expression is only executed once, thus improving run-time

performance.
if (x)
for (1 = 0; 1 < 100; i++)
ali] = 0;
else
for (1 = 0; 1 < 100; i++)
b[i] = 0;

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new
optimized version of WELTAB are shown in Table 3.1.

All the Maintainability Indexes (MIs) decreased. These descreases can be attributed
to the fact that all Halstead’s metrics and lines of code (variables that affect the MlIs)
increased (see Appendix D for details). Thus, Hoisting and Unswitching had as a result

that maintainability was affected negatively in the optimized system.
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Metric Pre-Value Post-Value
MI1 71.9263 71.9256
MI2 36.6910 36.6757
MI3 61.3768 61.3618

Table 3.1: File level maintainability metrics on the WELTAB system before and after

hoisting /unswitching

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.2. All those measurements also show a decrease in maintainability

after hoisting /unswitching.

Function Metric Pre-Value Post-Value
report-canv MI1 63.18 63.18

MI2 -16.50 -16.50

MI3 12.26 12.26
Baselib-smove | MI1 86.55 85.36

MI2 75.09 70.87

MI3 92.97 89.31

Table 3.2: Function level maintainability metrics on the WELTAB system before and

after hoisting/unswitching

Integer Divide Optimization

The objective of this performance optimization activity was to replace integer divide
expressions with power-of-two denominators with faster integer shift instructions. [16]
For example, the integer divide expression in the code fragment below can be replaced

with a shift expression:

int £ (unsigned int i)
{

return i / 2;
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Below is the code fragment after the integer divide expression has been replaced with

a shift expression:

int £ (unsigned int i)
{

return i >> 1;

b

This heuristic was implemented in both WELTAB and AVL. In WELTAB measure-
ments were taken at both the file level and the function level. In AVL measurements
were taken at the function level only. The file level measurements taken on the new

optimized version of WELTAB are shown in Table 3.3.

Metric Pre-Value Post-Value
MI1 71.9263 71.9256
MI2 36.6910 36.6902
MI3 61.3768 61.3763

Table 3.3: File level maintainability metrics on the WELTAB system before and after

integer divide optimization

It is interesting to observe that most of the metrics did not change at all, and even
those that did changed only slightly. These measures alone show that the new optimized
system is almost as maintainable as the original one. However, we know that the new
system is less maintainable because some divide instructions of the original system got
replaced with shift instructions which are less intuitive.

All the Maintainability Indexes (Mls) decreased slightly. Thus, Integer Divide Opti-
mization had as a result that maintainability was affected negatively in the optimized
system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.4, and on the optimized version of AVL in Table 3.5. All those

measurements also show a decrease in maintainability after integer divide optimization.

Address Optimization

The objective of this performance optimization activity was to fit all the global scalar

variables of WELTAB in a global variable pool. Then, each of the global scalar variables
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Function Metric Pre-Value Post-Value
were- MI1 70.05 69.90
showdone MI2 22.44 22.25

MI3 48.00 47.88
weltab- MI1 70.05 69.91
showdone MI2 22.44 22.27

MI3 48.00 47.89

Table 3.4: Function level maintainability metrics on the WELTAB system before and

after integer divide optimization

Function Metric Pre-Value Post-Value
ubi_cacheGet | MI1 88.40 88.04

MI2 87.16 86.71

MI3 104.19 103.90

Table 3.5: Function level maintainability metrics on the AVL system before and after

integer divide optimization

gets accessed via one pointer and an offset, instead of via constant address. This way,
more expensive load and store sequences are avoided and code size is reduced. [16]

This is an example of how the global variables were declared and referenced in the

original WELTAB system:

int nwrite;

int untspilt;
int untavcbs;
int untstart;
int untnprec;
int untwards;

int unitno;

void f (void)
{

unitno = 10;
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return;

Below is the new code fragment after the global variables got mapped into a global
memory pool. As we can see, the global variable unitno is now referenced by adding an

offset 6 to the pointer AddressOpt.

int Addr0Opt[7];
int *AddressOpt = &AddrOpt[0];

void f (void)
{
* (AddressOpt+6) = 10;

return;

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new

optimized version of WELTAB are shown in Table 3.6.

Metric Pre-Value Post-Value
MI1 71.9263 71.8982
MI2 36.6910 36.6559
MI3 61.3768 61.3547

Table 3.6: File level maintainability metrics on the WELTAB system before and after

address optimization

All the Maintainability Indexes (Mls) decreased. These descreases can be attributed
to the fact that all Halstead’s metrics (variables that affect the MIs) increased (see Ap-
pendix D). Thus, Address Optimization had as a result that maintainability was affected
negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.7. All those measurements also show a decrease in maintainability

after address optimization.
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Function Metric Pre-Value Post-Value
cmprec-xfix MI1 62.39 62.37
MI2 -18.10 -18.13
MI3 11.03 11.01
cmprec-prec MI1 67.49 67.46
MI2 11.60 11.55
MI3 38.35 38.32
cmprec-vedt MI1 62.29 62.26
MI2 -18.78 -18.81
MI3 10.39 10.37
cmprec-vset MI1 75.88 75.89
MI2 41.99 42.00
MI3 64.84 64.84
cmprec-viix MI1 62.45 62.42
MI2 -17.06 -17.09
MI3 12.04 12.02
files-rsprtpag | MI1 65.23 65.22
MI2 1.74 1.73
MI3 29.54 29.54
files-prtpag MI1 65.20 65.19
MI2 1.62 1.60
MI3 29.43 29.42
report-fixw MI1 75.56 75.57
MI2 40.88 40.89
MI3 63.87 63.88
report-cmut MI1 70.77 70.78
MI2 21.93 21.93

continued on next page
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continued from previous page

Function Metric Pre-Value Post-Value
MI3 47.15 47.15
report-chead | MI1 81.41 81.41
MI2 62.78 62.78
MI3 83.05 83.05
report-rsum MI1 68.48 68.48
MI2 13.74 13.75
MI3 40.03 40.03
report-lans MI1 67.99 67.99
MI2 11.23 11.23
MI3 37.75 37.75
report-cnvla | MI1 64.20 64.13
MI2 -10.32 -10.41
MI3 17.96 17.91
report-canv MI1 63.18 63.12
MI2 -16.50 -16.58
MI3 12.26 12.21
weltab-sped MI1 68.32 68.25
MI2 9.82 9.74
MI3 36.19 36.14
weltab-poll MI1 64.70 64.66
MI2 -4.10 -4.15
MI3 23.95 23.92
weltab-spol MI1 63.64 63.60
MI2 -10.60 -10.64
MI3 17.94 17.91
weltab- MI1 79.08 78.63
getprec MI2 56.93 56.36

continued on next page
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continued from previous page
Function Metric Pre-Value Post-Value
MI3 78.29 77.93
weltab-pget MIl 64.15 63.73
MI2 -6.30 -6.82
MI3 22.00 21.67
weltab- MI1 67.49 67.36
showpoll MI2 15.32 15.16
MI3 42.07 41.97
weltab- MI1 70.05 69.91
showdone MI2 22.44 22.27
MI3 48.00 47.89
weltab- MI1 73.18 73.12
allowcard MI2 34.66 34.59
MI3 58.77 58.72

Table 3.7: Function level maintainability metrics on the WELTAB system before and

after address optimization

Function Inlining

The objective of this performance optimization activity was to eliminate the overhead
associated with calling and returning from a function, by expanding the body of the
function inline.

For example, in the code fragment below, the function add() can be expanded inline

at the call site in the function sub().

int add (int x, int y)
{

return x + y;

int sub (int x, int y)
{
return add (x, -y);
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Expanding add() at the call site in sub() yields:

int sub (int x, int y)
{

return x + -y,

Function inlining usually increases code space, which is affected by the size of the
inlined function, and the number of call sites that are inlined.

This heuristic was implemented in both WELTAB and AVL. In WELTAB measure-
ments were taken at both the file level and the function level. In AVL measurements
were taken at the function level only. The file level measurements taken on the new

optimized version of WELTAB are shown in Table 3.8.

Metric Pre-Value Post-Value
MI1 71.9263 71.4982
MI2 36.6910 35.5612
MI3 61.3768 60.4460

Table 3.8: File level maintainability metrics on the WELTAB system before and after

function inlining

All the Maintainability Indexes (MIs) decreased. These descreases can be attributed
to the fact that all Halstead’s metrics and lines of code (variables that affect the MlIs)
increased (see Appendix D). Thus, Function Inlining had as a result that maintainability
was affected negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.9, and on the optimized version of AVL in Table 3.10. All those

measurements also show a decrease in maintainability after function inlining.

Function

Metric

Pre-Value

Post-Value

weltab-poll

MI1

64.70

64.19

continued on next page
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continued from previous page

Function Metric Pre-Value Post-Value
MI2 -4.10 -4.33
MI3 23.95 20.95
weltab-spol MI1 63.64 63.21
MI2 -10.60 -11.56
MI3 17.94 15.18
report-cand MI1 80.68 80.68
MI2 56.09 56.09
MI3 76.71 76.71
report.rsum MI1 68.48 67.94
MI2 13.74 12.00
MI3 40.03 38.54
report-cnvla | MI1 64.20 61.66
MI2 -10.32 -11.30
MI3 17.96 16.16
report-canvw | MI1 77.14 75.11
MI2 46.06 39.07
MI3 68.32 62.27
report-dhead | MI1 78.83 73.16
MI2 52.48 44.72
MI3 73.96 68.83
report-canv MI1 63.18 61.48
MI2 -16.50 -17.20
MI3 12.26 9.34
Baselib- MI1 88.86 71.99
setdate MI2 85.25 64.20
MI3 102.06 72.86
Baselib-cvec MI1 79.81 76.68

continued on next page
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continued from previous page

Function Metric Pre-Value Post-Value
MI2 56.15 48.85
MI3 77.16 66.33

41

Table 3.9: Function level maintainability metrics on the WELTAB system before and

after function inlining

Function Metric Pre-Value Post-Value
ubi_btInsert MI1 77.85 77.73
MI2 47.39 47.24
MI3 69.32 69.22
ubi_cache MI1 91.18 90.59
Delete MI2 94.48 93.76
MI3 110.22 109.76
ubi_cache MI1 91.96 91.32
Reduce MI2 93.33 92.53
MI3 108.70 108.19
ubi_cacheSet | MI1 92.79 87.15
MaxEntries MI2 101.13 88.93
MI3 116.14 106.58
ubi_cacheSet | MI1 92.79 87.15
MaxMemory | MI2 101.16 88.98
MI3 116.14 106.58
ubi_cachePut | MI1 91.44 84.88
MI2 91.20 79.57
MI3 106.81 98.23

Table 3.10: Function level maintainability metrics on the AVL system before and after

function inlining

Elimination of GOTO statements

The objective of this maintenance optimization activity was to minimize the number of
GOTO statements in WELTAB. This optimization falls into the category of perfective
maintenance since the software environment was not changed, no new functionality was

added, and no defects were fixed.
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It is important to note that the original WELTAB C++ source code contained a
very large number of GOTO statements. It was not possible to eliminate all GOTO
statements, since in many cases removing them would have altered the source code’s
control flow. Fach GOTO statement that was eliminated got replaced with a block of
executable statements, ending with a return statement. Thus, it was ensured that the
control flow in the optimized version was exactly the same as in the original version of
WELTAB.

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new

optimized version of WELTAB are shown in Table 3.11.

Metric Pre-Value Post-Value
MI1 71.9263 71.6085
MI2 36.6910 35.4542
MI3 61.3768 60.2877

Table 3.11: File level maintainability metrics on the WELTAB system before and after
eliminating GOTO statements

It is important to note that maintainability did get improved by eliminating GOTO
statements. Elimination of GOTO statements is the only way to minimize the number of
unconditional branches in source code. Decreasing the number of unconditional branches
is a key factor in improving maintainability, as it can assist a maintainer in understanding
the source code of a system. [6] In our measurements, the number of unconditional
branches is shown by the metric RtnGotoNbr, which decreased significantly after GOTO
statements were eliminated.

However, elimination of GOTO statements also affects other characteristics of source
code in varying ways, and thus maintainability may get affected in different ways. After
eliminating GOTO statements many of the DATRIX measurements showed that source
code became slightly less maintainable. These measurements are shown in Table 3.11.

All the Maintainability Indexes (Mls) decreased. These descreases can be attributed
to the fact that all Halstead’s metrics, McCabe’s Cyclomatic Complexity and lines of
code (variables that affect the Mls) increased (see Appendix D).

The function level measurements taken on the new optimized version of WELTAB

are shown in Table 3.12. All those measurements show a decrease in maintainability.
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Function Metric Pre-Value Post-Value
weltab-sped MI1 68.32 67.44
MI2 9.82 5.22
MI3 36.19 31.99
weltab-poll MI1 63.64 63.87
MI2 -10.60 -6.72
MI3 17.94 21.72
weltab-spol MI1 63.64 62.85
MI2 -10.60 -13.07
MI3 17.94 15.83
weltab- MI1 73.18 72.83
allowcard MI2 34.66 33.70
MI3 58.77 57.96
cmprec-xfix MI1 62.45 62.04
MI2 -17.06 -19.00
MI3 12.04 10.28
cmprec-viix MI1 62.45 62.09
MI2 -17.06 -18.01
MI3 12.04 11.24
cmprec-vset MI1 75.88 75.11
MI2 41.99 39.24
MI3 64.84 62.45
cmprec-vedt MI1 62.29 61.94
MI2 -18.78 -19.72
MI3 10.39 9.61
cmprec-prec MI1 67.49 67.36
MI2 11.60 10.81
MI3 38.35 37.62
report-cnvla | MI1 64.20 63.96

continued on next page
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continued from previous page
Function Metric Pre-Value Post-Value
MI2 -10.32 -10.72
MI3 17.96 17.67
report-cmut MI1 70.77 70.62
MI2 21.93 21.46
MI3 47.15 46.75
report-fixw MI1 75.56 74.94
MI2 40.88 39.25
MI3 63.87 62.53

Table 3.12: Function level maintainability metrics on the WELTAB system before and
after eliminating GOTO statements

Dead Code Elimination

The objective of this maintenance optimization activity was to eliminate dead code that
was unreachable or that did not affect the program. This optimization falls into the
category of perfective maintenance since the software environment was not changed, no
new functionality was added, and no defects were fixed.

It is important to note that the original WELTAB C++ source code contained a
large amount of dead code. It cannot be certain that all dead code was eliminated. How-
ever, after dead code was eliminated on some source files, the size of the files decreased
by almost half their original size. This fact alone points out the importance of dead
code elimination, not only for maintainability purposes, but also for space performance
purposes.

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new
optimized version of WELTAB are shown in Table 3.13.

All the Maintainability Indexes (Mls) increased significantly, by nearly 30%. These
increases can be attributed to the fact that all Halstead’s metrics (variables that affect
the Mls) decreased (see Appendix D). Thus, Dead Code Elimination had as a result that
maintainability was affected positively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB

are shown in Table 3.14. All those measurements also show an increase in maintainability
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Metric Pre-Value Post-Value
MI1 71.9263 77.2713
MI2 36.6910 56.6653
MI3 61.3768 78.8650

Table 3.13: File level maintainability metrics on the WELTAB system before and after

eliminating dead code

after eliminating dead code.

Elimination of Global Data Types and Data Structures

The objective of this maintenance optimization activity was to turn global data types
and data structures to local. This optimization falls into the category of perfective
maintenance since the software environment was not changed, no new functionality was
added, and no defects were fixed.

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new
optimized version of WELTAB are shown in Table 3.15.

All the Maintainability Indexes (Mls) increased. These increases can be attributed
to the fact that all Halstead’s metrics (variables that affect the Mls) decreased (see
Appendix D). Thus, Elimination of Global Data Types and Data Structures had as a
result that maintainability was affected positively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.16. All those measurements also show an increase in maintainability

after eliminating global data types and data structures.

Maximization of Cohesion

The objective of this maintenance optimization activity was to split a class with low
cohesion into many smaller classes, each of which has higher cohesion. This optimization
falls into the category of perfective maintenance since the software environment was not
changed, no new functionality was added, and no defects were fixed.

This heuristic was implemented in AVL only, and measurements were taken at the

function level only. The function level measurements taken on the new optimized version
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Function Metric Pre-Value Post-Value
report MI1 70.43 76.32
MI2 36.22 55.32
MI3 61.43 73.67
card MI1 72.76 73.23
MI2 38.32 49.23
MI3 62.78 71.06
weltab MI1 70.23 75.98
MI2 39.03 49.32
MI3 61.43 77.32
files MI1 69.45 74.32
MI2 40.01 56.98
MI3 62.67 78.02
cmprec MI1 68.04 72.76
MI2 36.43 51.56
MI3 64.98 77.32

Table 3.14: Function level maintainability metrics on the WELTAB system before and

after eliminating dead code

of AVL are shown in Table 3.17. All those measurements show an increase in maintain-

ability after maximizing cohesion.

Minimization of Coupling Through ADTs

The objective of this maintenance optimization activity was to eliminate variables de-
clared within a class, which have a type of ADT that is another class definition. This
optimization falls into the category of perfective maintenance since the software environ-

ment was not changed, no new functionality was added, and no defects were fixed.

This heuristic was implemented in AVL only, and measurements were taken at the
function level only. The function level measurements taken on the new optimized version
of AVL are shown in Table 3.18. All those measurements show an increase in maintain-

ability after minimizing coupling through ADTs.
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Metric Pre-Value Post-Value
MI1 71.9263 71.9391
MI2 36.6910 36.7616
MI3 61.3768 61.4414

Table 3.15: File level maintainability metrics on the WELTAB system before and after

eliminating global data types and data structures

Function Metric Pre-Value Post-Value
report MI1 71.92 81.02

MI2 36.69 38.91

MI3 61.38 62.04
weltab MI1 73.18 74.56

MI2 38.55 39.76

MI3 65.44 65.59

Table 3.16: Function level maintainability metrics on the WELTAB system before and

after eliminating global data types and data structures

3.1.3 Some conclusions on measuring maintainability

In this study, we have studied the maintainability of a software system by extracting a
variety of metrics using the DATRIX tool. We did not follow the traditional approach to
measuring maintainability, which is to use a single metrics model (such as the MI). One of
the disadvantages associated with this traditional approach is that it gives a single index
of maintainability. This single index may not represent maintainability as accurately
as all the individual metrics taken together do. Thus, examining only a single index
could be a mistake. By looking only at a single value you miss the detailed information
provided by the variety of metrics we have taken, which permit you to understand the
nature of the maintenance activities that took place. [32]

It appears from the results of our experiments that a single index would not have been
sensitive to the types of changes that took place. For example, in the case of Elimination
of GOTO statements most of the metrics did not measure any improvements, although
it is well known that this heuristic improves the maintainability of software systems.

Another case where metrics failed to represent maintainability accurately was in the
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Function Metric Pre-Value Post-Value
SampleRec MI1 93.65 94.66
MI2 103.03 105.01
MI3 119.21 121.89

Table 3.17: Function level maintainability metrics on the AVL system before and after

maximizing cohesion

case of the Integer Divide Optlimization heuristic. One could argue that metrics did
not change significantly because the maintainability of the source code did not change.
However, maintainability got affected negatively, since we replaced divide instructions

with shift instructions.

Some studies in this section showed the failings of using a single measure of maintain-
ability. Obviously there is more to source code maintainability than just lines of code and
number of comments. These results suggest that a good maintainability assessment tool
should not only provide a simplistic index of maintainability, but it should also provide
other raw metrics that are necessary to interpret and understand that index. A single
maintainability index may serve only as a rough estimate of the maintainability of the
source code under study. [32] In order for someone to keep track of a good combination
of all software attributes that affect maintainability, it is necessary to examine a separate

metric for each attribute. [6]

3.2 Performance Measurements

In order for the performance of a software system to be improved, it is first necessary to be
able to measure software performance. [32] In this section we demonstrate how software
performance measurements were used to evaluate the effects of specific changes to a
system’s source code. A number of different maintenance and performance optimization
heuristics were applied to one or both of the WELTAB and AVL C++ software systems.
For each activity, performance measurements were taken at the function-level both before

and after the planned activity took place.
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Function Metric Pre-Value Post-Value
ubi_cacheRoot | MI1 76.86 79.31
MI2 98.77 102.67
MI3 108.44 111.45
ubi_idbDB MI1 83.46 85.18
MI2 88.67 93.63
MI3 99.46 106.32
ubi_btNode MI1 92.76 96.17
MI2 92.49 93.25
MI3 116.21 117.38
ubi_idb MI1 81.07 88.93
FuncRec MI2 107.33 117.43
MI3 127.32 139.87

Table 3.18: Function level maintainability metrics on the AVL system before and after

minimizing coupling through ADTs

3.2.1 A study of the optimization activities

In this section we describe the pre-post analysis of the performance measurements for

each of the optimization activities.

The pre-post analysis of performance measurements was performed on most of the
optimization heuristics that were presented in Section 3.1. For each distinct optimization
heuristic, we extracted performance measurements on WELTAB and/or AVL both before
and after the heuristic was applied. Performance measurements were taken only at the

function-level.

There exist many other performance optimization activities that could have been
implemented in WELTAB as well. However, the C4++ source code was of such low
quality that it did not allow us to implement many of the other performance activities
that we would have liked to. It was difficult to understand and modify WELTAB, since

even slight changes could affect other parts of the system in undesirable ways.

We next describe for each optimization activity the pre-post changes in the perfor-

mance measurements that took place.
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Hoisting and Unswitching

The objective of this performance optimization activity was to optimize run-time perfor-
mance by minimizing the time spent during FOR loops. For more details on the actual
heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.19. As we can see, this heuristic was applied to 2 different locations
of the source code. In both cases, performance was improved because of the heuristic.

Thus, we can say with confidence that this heuristic affected time performance positively.

Function in | Performance | Performance
WELTAB of the original | after  hoist-
system function ing and
unswitching
report-canv 0.32 0.28
Baselib-smove | 0.83 0.69

Table 3.19: Function level performance metrics on the WELTAB system before and after

hoisting and unswitching

Integer Divide Optimization

The objective of this performance optimization activity was to replace integer divide
expressions with power-of-two denominators with faster integer shift instructions. For
more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.20, and on the new optimized version of AVL in Table 3.21. As we
can see, in all cases performance was improved because of the heuristic. Thus, we can

say with confidence that this heuristic affected time performance positively.

Address Optimization

The objective of this performance optimization activity was to fit all the global scalar
variables of WELTAB in a global variable pool. Then, each of the global scalar variables

gets accessed via one pointer and an offset, instead of via constant address. This way,
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Function in | Performance | Performance

WELTAB of the original | after inte-

system function ger divide
optimization

wcre- 0.76 0.65

showdone

weltab- 0.33 0.28

showdone

Table 3.20: Function level performance metrics on the WELTAB system before and after

integer divide optimization

Function in | Performance Performance

AVL system | of the original | after inte-

function ger divide
optimization
ubi_cacheGet | 0.45 0.43

Table 3.21: Function level performance metrics on the AVL system before and after

integer divide optimization

more expensive load and store sequences are avoided and code size is reduced. [16] For
more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.22. As we can see, this heuristic was applied to many different
locations of the source code. Performance was improved in all cases. Thus, we can say

with confidence that this heuristic affected time performance positively.

Function Inlining

The objective of this performance optimization activity was to eliminate the overhead
associated with calling and returning from a function, by expanding the body of the
function inline. For more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB are

shown in Table 3.23, and on the new optimized version of AVL in Table 3.24. As we can
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see, this heuristic was applied to many different locations of the source code. Performance
was improved in all cases. Thus, we can say with confidence that this heuristic affected

time performance positively.

Elimination of GOTO statements

The objective of this maintenance activity was to minimize the number of GOTO state-

ments in WELTAB. For more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table 3.25. As we can see, this heuristic was applied to multiple different
locations of the source code. Performance was improved in some case, and was affected
negatively in other cases. Thus, the results do not provide sufficient evidence that elim-
ination of GOTO statements affects performance in a specific way. Performance may be

affected differently, depending on the method used to eliminate GOTO statements.

Dead Code Elimination

The objective of this maintenance optimization activity was to eliminate dead code that
was unreachable or that did not affect the program. For more details on the actual

heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB are
shown in Table 3.26. As we can see, this heuristic was applied to 5 different locations of
the source code. In almost all cases, performance was improved because of the heuristic.

Thus, we can say with confidence that this heuristic affected performance positively.

Elimination of Global Data Types and Data Structures

The objective of this maintenance optimization activity was to turn global data types

and data structures to local. For more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of WELTAB are
shown in Table 3.27. As we can see, this heuristic was applied to 2 different locations of
the source code. In both cases, performance was hurt. Thus, we can say with confidence

that this heuristic affected performance negatively.



CHAPTER 3. MAINTAINABILITY AND PERFORMANCE MEASUREMENTS 53

Maximization of Cohesion

The objective of this maintenance optimization activity was to split a class with low
cohesion into many smaller classes, each of which has higher cohesion. For more details
on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of AVL are
shown in Table 3.28. As we can see, this heuristic was applied to 1 source code location

and performance was affected negatively.

Minimization of Coupling Through ADTs

The objective of this maintenance optimization activity was to eliminate variables de-
clared within a class, which have a type of ADT that is another class definition. For
more details on the actual heuristic, see Section 3.1.2.

The function level measurements taken on the new optimized version of AVL are
shown in Table 3.29. As we can see, this heuristic was applied to 4 source code locations
and performance was hurt in all cases. Thus, we can say with confidence that this

heuristic affected performance negatively.
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Function in | Performance | Performance
WELTAB on the origi- | after address
system nal function optimization
cmprec-xfix 0.32 0.31
cmprec-prec 0.76 0.71
cmprec-vedt 0.11 0.07
cmprec-vset 0.19 0.18
cmprec-viix 0.98 0.87
files-rsprtpag | 0.32 0.26
files-prtpag 0.41 0.35
report-fixw 0.32 0.29
report-cmut 0.41 0.39
report-chead | 0.76 0.63
report-rsum 0.44 0.45
report-lans 0.87 0.86
report-cnvla | 0.54 0.53
report-canv 0.32 0.27
weltab-sped 0.65 0.61
weltab-poll 0.32 0.31
weltab-spol 0.98 0.97

weltab- 0.87 0.85

getprec

weltab-pget 0.43 0.41

Table 3.22: Function level performance metrics on the WELTAB system before and after

address optimization
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Function in

Performance

Performance

WELTAB on the origi- | after function
system nal function inlining
weltab-poll 0.81 0.42
weltab-spol 0.32 0.23
report-cand 0.87 0.78
report-rsum 0.43 0.32
report-cnvla | 0.99 0.88
report-canvw | (.28 0.23
report-dhead | 0.76 0.65
report-canv 0.87 0.73
Baselib- 0.54 0.41
setdate

Baselib-cvec 0.87 0.72

3D

Table 3.23: Function level performance metrics on the WELTAB system before and after

function inlining

Function in

AVL system

Performance

on the origi-

Performance

after function

nal function inlining
ubi_btInsert 0.03 0.02
ubi_cache- 0.13 0.10
Delete
ubi_cache- 0.21 0.19
Reduce
ubi_cacheSet- | 0.32 0.31
MaxEntries
ubi_cacheSet- | 0.77 0.73
MaxMemory
ubi_cachePut | 0.58 0.55

Table 3.24: Function level performance metrics on the AVL system before and after

function inlining
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Function in

Performance

Performance

WELTAB on the origi- | after elimina-
system nal function tion of GOTO
statements

weltab-sped 0.12 0.23
weltab-poll 0.13 0.17
weltab-spol 0.03 0.04

weltab- 0.32 0.33
allowcard

cmprec-xfix 0.23 0.24
cmprec-viix 0.31 0.35
cmprec-vset 0.12 0.32
cmprec-vedt 0.51 0.50
cmprec-prec 0.76 0.81
report-cnvla | 0.43 0.42
report-cmut 0.21 0.35
report-fixw 0.41 0.39

elimination of GOTO statements

Function in | Performance | Performance

WELTAB on the origi- | after

system nal function dead code
elimination

report 0.45 0.44

card 0.33 0.31

weltab 0.69 0.61

files 0.32 0.28

cmprec 0.76 0.77

dead code elimination
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Table 3.25: Function level performance metrics on the WELTAB system before and after

Table 3.26: Function level performance metrics on the WELTAB system before and after
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Function in

Performance

Performance

WELTAB on the origi- | after elimina-

system nal function tion of global
data types
and data
structures

report 0.21 0.22

weltab 0.78 0.79

57

Table 3.27: Function level performance metrics on the WELTAB system before and after

elimination of global data types and data structures

Function  in | Performance | Performance
AVL system | on the origi- | after max-
nal function imizing
cohesion
SampleRec 0.67 0.69

Table 3.28: Function level performance metrics on

maximizing cohesion

the AVL system before and after

Function in

AVL system

Performance
on the origi-

nal function

Performance
after minimiz-

ing coupling

ubi_cacheRoot
ubi_idbDB
ubi_btNode
ubi_idbFuncRe

0.67
0.56
0.45
¢ 0.73

0.68
0.58
0.49
0.74

Table 3.29: Function level performance metrics on

minimizing coupling

the AVL system before and after



Chapter 4
Selecting a Heuristic Transformation

During the course of our experiments, we realised that the effectiveness of an optimiza-
tion heuristic in improving a system’s quality depends upon some of the system’s specific
characteristics. When using the NFR framework to select a set of optimization heuris-
tics, such characteristics are not being taken into account. However, a developer should
take these software characteristics into account, when choosing the set of optimization
heuristics to be implemented in a system.

Specifically, for any candidate optimization heuristic a software developer should ex-

amine:
e the number of source code locations to which the heuristic can be applied, and
o the chances that these source code locations will be maintained during the main-

tenance process (for a maintainability optimization heuristic) or executed during

run-time (for a performance optimization heuristic).
For example, a performance optimization heuristic may be very effective if:

e it can be applied to many source code locations, or

e it can be applied to source code locations that get executed frequently during run-

time.

The 80 — 20 rule is often used to describe such situations [15]. This rule states that
20% of the source code will be executed 80% of the time; and similarly that 20% of the
source code will be maintained 80% of the time. Thus, in selecting the best combination
of optimization heuristics, a developer should attempt to select heuristics that can be

applied to many source code locations falling under the 80 — 20 category.
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The following formula, which we will refer to as Andre formula, should be used in

conjunction with a softgoal interdependency graph for a particular software quality:

(z1 + logzs) * improvement
where

x1 1s the number of source code locations that fall under the 80 — 20 category, to which

the heuristic under consideration can be applied.

x5 1s the number of source code locations that do not fall under the 80 — 20 category, to

which the heuristic under consideration can be applied.

improvement is an integer representing the developer’s subjective estimation of the
heuristic’s quality, leaving aside any system characteristics that may affect the

heuristic’s effectiveness.

The purpose of the Andre formula is to assist a developer in selecting the optimization
heuristics that will improve software quality the most. It allows for a developer to
take into consideration the software characteristics that will affect the optimization’s
effectiveness in a particular situation. Such software characteristics include the number
of source code locations to which the optimization heuristic can be applied, that fall
under the 80 — 20 category. Of course there is some subjectivity involved in using this
formula; but such subjectivity is unavoidable because it is impossible to draw a clear-cut

line between the source code locations falling under the 80 — 20 category and those not.

4.1 Validation of the Andre Formula

We tested the Andre formula to show that it gives a reliable indication of the best set
of optimization heuristics. The formula was tested on the maintainability optimization
heuristics that were implemented in WELTAB during our experiments.

The results of our tests are shown in Table 4.1. The first step was to apply Andre
formula on the dead code elimination heuristic, because all our measurements showed
that this heuristic had the best overall effect on the maintainability of WELTAB. The
next step was to apply Andre formula on other maintainability optimization heuristics

that resulted in a smaller benefit for WELTAB.
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As shown in Table 4.1, the formula resulted in a higher value for the heuristics that

truly had the best overall effect on the maintainability of WELTAB.

Optimization heuristic Ty T Improvement | Result
Dead Code Elimination 2 3 3 7.4313638
Elimination of Global Data | 1 1 1 1

Types and Data Structures

Maximization of Cohesion 0 1 2 0
Minimization of Coupling 2 2 2 4.60206

Table 4.1: Testings that show the reliability of Andre formula



Chapter 5
Conclusions

The main goal of this report was to propose a framework for driving the software reengi-
neering process on the basis of quality requirements. This framework defines and guides
the migration of legacy procedural code to an object-oriented language, while maintain-
ing certain qualities to a desirable level. Our framework can also be viewed as a generic
methodology for selecting the set of optimization heuristics that will improve the system’s
software quality the most, while minimizing negative side-effects.

The major contributions of this report include using the NFR framework to model
two particular software qualities, maintainability and performance. We identified and
described many heuristic transformations that affect these software qualities and that
can be implemented in a target system’s source code.

We also presented an evaluation procedure for experimentally evaluating the effect of
heuristic transformations on software quality. This evaluation procedure can be used to
determine the set of optimization heuristics that will maximize the benefit on the system,
while minimizing negative side-effects.

Finally, we conducted experiments by implementing some of the heuristic transfor-
mations in two medium-sized software systems and then collecting measurements. The
experimental results justify our proposed contributions of heuristic transformations to-

wards software quality.

5.1 Future Work

The most important problem faced is the lack of standardized software metrics, to assess

the degree to which a quality requirement is satisficed by a set of heuristics. As DeMarco
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pointed out, "you cannot control what you cannot measure.” The quality of software
products cannot be controlled, unless that quality can first be measured; and software
metrics are the only means known to measure software quality. [28, 29]

Unfortunately, software metrics have not been studied adequately, especially in the
object-oriented paradigm. Few metrics have been proposed to measure object-oriented
systems, and even those have not been validated properly. Thus, software quality can not
be measured precisely and more research is still required in the field of software metrics.

A research direction for further investigation, is the possibility to use our NFR models
for maintainability and performance as software metrics models. This could provide a
big advantage over the metrics models that already exist, because our NFR models
allow one to consider software characteristics that previous metrics models ignored. For
example, our NFR models permit one to assign different weights to the various software
characteristics that affect maintainability. The weighted contributions of all software
characteristics could then be summed in a formula, to create a measurement indicating
the degree to which maintainability has been achieved in a system.

Furthermore, our NFR models for maintainability and performance could be used for
the purpose of validating the existing software metrics models. Our NFR models provide
an understanding of what ranges of measurements can be considered reasonable for a
specific system. For example, maintainability metrics could be extracted from different
versions of a software system, both before and after maintainability optimization heuris-
tics have been applied to the system; if the results of the measurements are consistent
with what our NFR models tell us to expect, then we can consider those software metrics

to be reliable.
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Appendix A
Glossary

Cohesion : "module strength; the manner and degree to which the tasks performed by a
single software module are related to one another.” [6]

Control flow complexity : "the degree to which a system has a design or implemen-
tation that is difficult to understand and verify.” [6]

Control flow consistency : ”the degree of uniformity, standardization, and freedom
from contradiction of the logical process flow within the parts of a system or component.”
[6]

Control flow coupling : "the manner and degree of interdependence between software
modules. Types include common-environment, content, control, data, hybrid, patholog-
ical.” [6]

Control Structure : ”characteristics affecting the choice and use of control flow con-
structs, the manner in which the system or program is decomposed into algorithms, and
the method in which those algorithms are implemented.” [6]

CPU time : the component of response time which the CPU spends working on our
behalf; the time since a program started, during which the program was using the CPU;
the total direct CPU cost of executing the program. CPU time is composed of user CPU
time and system CPU time. CPU time excludes time spent waiting for I/O or time
running other programs; it also excludes the CPU costs of parts of the kernel that run
on behalf of the program. For example, the cost of stealing page frames to replace the
page frames taken from the free list when the program started is not reported as part of
the program’s CPU time. [15]

Data consistency : ”"the degree of uniformity, standardization, and freedom from

contradiction among the intermodular data types and structures of a system.” [6]
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Data coupling : "the manner and degree of interdependence between software mod-
ules. Types include common-environment, content, control, data, hybrid, pathological.”
[6]

Encapsulation : ”a software development technique that consists of isolating a system
function or a set of data, and operations on those data, within a module and providing
precise specifications for the module.” [6]

Information Structure : ”characteristics affecting the choice and use of data structure
and data flow techniques. The manner in which information is stored and manipulated
throughout the system or program.” [6]

I/O activity : Abbreviation of input/output activity; an activity of transferring data
to and from peripheral devices such as hard disks, tape drives, the keyboard, and the
screen. During the execution of a program, /O activities may be required to bring in
the program’s text and data, or to acquire real memory for the program’s use.

I/O complexity : "the degree of complication of a system component, determined
by factors such as the number and intricacy of interfaces, the number and intricacy of
conditional branches, the degree of nesting, the types of data structures, and other local
characteristics.” [6]

Maintainability: ”The characteristics of the software, its history, and associated envi-
ronments that affect the maintenance process and are indicative of the amount of effort
necessary to perform maintenance changes. It can be measured as a quantification of the
time necessary to make maintenance changes to the product.” [3, 6]

Maintenance: ”The process of implementing corrective, adaptive, or perfective soft-
ware changes.” [6]

Modularity : "the degree to which a system or program is composed of discrete com-
ponents such that a change to one component has minimal impact on other components.”
[6]

Module reuse : "the degree to which a software module can be used in more than one
location in a program or system.” [6]

Nesting : "to place subroutines/data in other subroutines/data at a different hierar-
chical level so that subroutines/data can be executed/accessed recursively; to incorporate
program constructs into other constructs.” [6]

Overall naming : "the name, address, label, or distinguishing index of objects in a
computer program.” [6]

Overall program commenting: "information embedded within a computer program
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that provides clarification to human readers but does not affect machine interpretation.”
[6]

Overall program formatting: ”the use of typography and commenting to make a
program appear more elegant and easier to read.” [6]

Performance: can be defined in terms of speed (time performance) or it can be defined
in terms of storage capacity (space performance). [15]

Response time: the total time to complete a task; the elapsed time from beginning
to end of a program. Response time is composed of CPU time, [/O activity time, and
time consumed by other programs. [15]

Space performance: a general term referring to the storage requirements of a program.
15

Span of control structures : "the number of statements contained within a given
control statement in which operations are performed.” [6]

Span of data : "the number of statements between the first and last references of that
variable.” [6]

Structured construct : ”a control structure having one entry and one exit. May be
a sequence of two or more instructions, a conditional selection of one of two or more
sequences of instructions, or a repetition of a sequence of instructions.” [6]

System CPU time : the CPU time spent in the operating system performing tasks
on behalf of the program; the time used by system calls invoked by a program (directly
or indirectly). [15]

Throughput: ”the total amount of work done by a computer in a given time.” [15]

Time performance: a general term referring to the speed of a program; can be defined
in terms of throughput or response time. [15]

Typography, Naming, and Commenting : ”characteristics affecting the typographic
layout, naming and commenting of code. These characteristics have no effect on program
execution, but they affect program comprehension and, therefore, maintenance.” [6]

Unconditional branching : "a jump that takes place regardless of execution condi-
tions.” [6]

User CPU time : the CPU time spent in the program; time used by a program itself

and any library subroutines it calls. [15]
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Description of Maintainability

Optimization Heuristics

Tables B.1-B.33 give all the heuristics that we are aware of, that can be implemented
in a system’s source code to contribute towards satisficing the maintainability quality
requirement. These tables explain the heuristics (if necessary), and also discuss the
contributions that each heuristic makes towards satisficing its parent softgoals. Fach
table also gives the rationale underlying the heuristic’s contributions towards parent
softgoals.

The softgoal interdependency graph given in Figure B.1 illustrates all these heuristics

and their contributions towards their parent softgoals.
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Figure B.1: Maintainability softgoal interdependency graph, including heuristics

embedded spacing
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Heuristic Explanations | Contributions and Rationale

(if required)
Minimization | Minimize the | Implementing this heuristic makes a 7+”
of the depth | position of a | contribution towards meeting the low con-
of the in-|class in the | trol flow complexity softgoal, because the
heritance inheritance less decendants a class has, the less classes
lree hierarchy. it may potentially affect because of inheri-

tance (for example, by modifying methods
or instance variables defined in the super-
class).

Implementing this heuristic also makes a
747 contribution towards meeting the high
encapsulation softgoal, because the lower
a class is in the inheritance tree, the more
superclass properties this class may access
because of its inheritance. If the subclass
accesses the inherited properties from the
superclass without using the methods de-
fined in the superclass, then encapsulation
of the superclass is violated.

However, implementing this heuristic

7-7 contribution towards meeting

makes a
the high module reuse softgoal, because the
higher a class is in the inheritance tree, the
less superclass properties this class may ac-
cess because of its inheritance. Thus, it

may need to redefine properties defined in

other classes.

Table B.1: Minimization of the depth of the inheritance tree
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Heuristic

Explanations

(if required)

Contributions and Rationale

Minimization
of the num-
ber of direct
children for a

class

Implementing this heuristic makes a 747
contribution towards meeting the low con-
trol flow complexity softgoal, because the
more direct children a class has, the more
classes it may potentially affect because
of inheritance. For example, if there are
many subclasses of the class that are de-
pendent on some methods or instance vari-
ables defined in the superclass, any changes
to these methods or variables may affect
the subclasses. Then complexity will be
affected negatively.

However, implementing this heuristic

7.7 contribution towards meet-

makes a
ing the high module reuse softgoal, because
the less direct children a class has, the less
classes will reuse the properties that have
already been defined. Then module reuse

will be affected negatively.

Table B.2: Minimization of the number of direct children
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Heuristic Explanations | Contributions and Rationale

(if required)
Minimization | This means to | Implementing this heuristic makes a 7+”
of the re- | minimize for | contribution towards meeting the low con-

sponse set for

a class.

each class the
number of its
local  meth-
ods, as well as
the  number
of calls to
other  meth-
ods from local

methods.

trol flow complexity softgoal, because the
larger the response set for a class, the
larger are the number of methods that get
called in response to a message. Then com-
plexity (which is defined as "the degree to
which a system has a design or implemen-
tation that is difficult to understand and
verify, determined by factors such as the
number and intricacy of interfaces” [6]) will
be affected negatively.

One may also intuit that a class with a
high response set is hard to maintain, be-
cause calling a large number of methods
in response to a message makes tracing an

error difficult.

Table B.3: Minimization of the response set
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Heuristic

Explanations (if required)

Contributions and Rationale

Mazximization
of  cohesion

for a class.

The cohesion of a class is
characterized by how closely
the local methods are re-
lated to the local instance
variables in the class. A
class has low cohesion if it
has many disjoint sets of lo-
cal methods. A disjoint set
of local methods is a collec-
tion of local methods that
do not intersect with each
other. Any two local meth-
ods

each other, if they access at

do not intersect with

least one common local in-

stance variable. [3]

Implementing this heuristic
makes a ”"4”7 contribution
towards meeting the high co-
hesion and high encapsula-
tion softgoals. The rationale
behind these contributions is
that if all the methods de-
fined in a class access many
independent sets of data
structures encapsulated in
the class, then encapsula-
tion could be increased by
splitting the class into many
other Thus, a

class with low cohesion is

classes.

not well partitioned and de-
signed and thus is hard to

maintain.

Table B.4: Maximization of cohesion
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Heuristic

Explanations (if required)

Contributions and Rationale

Minimaization
of the
mation of

McCabe’s

cyclomatic

sum-

complexity
over all local
methods for a

class.

This can be done either by
minimizing the number of
local methods of a class,
or by minimizing the Mc-
Cabe’s cyclomatic complex-
ity of each individual local

method.

Implementing this heuris-
tic makes a ”+4” contri-
bution towards meeting the
low control flow complexity
softgoal, because the com-
plexity for a system can
be measured, among other
things, by "McCabe’s cyclo-
matic complexity averaged
over all modules.” [6] The
more methods a class has,
the higher McCabe’s cyclo-
matic complexity for that
class will be. Similarly, the
more control flows a class’s
methods have, the higher
McCabe’s cyclomatic com-
plexity for that class will be.
Thus, it will be harder to
understand the classes and

harder to maintain them.

local methods
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Heuristic Explanations | Contributions and Rationale

(if required)
Dead code | This  means | Implementing this heuristic makes a 744"
elimination to eliminate | contribution towards meeting the high con-

code that is
unreachable

or that does
not affect the
program (e.g.

dead stores).

trol flow consistency softgoal, because con-
trol flow consistency is measured by the
"percent of code anomalies, where percent
of code anomalies is the number of lines of
dead code divided by the size of the sys-
tem.” [6]

Implementing this heuristic also makes a
7++7 contribution towards meeting the
high data consistency softgoal, because
data consistency is measured by the "per-
cent of data flow anomalies, where per-
cent of data flow anomalies is the number
of data flow anomalies (used before defi-
nition, definition without use, redefinition
without use) divided by the total number

of data structures”. [6]

Table B.6: Dead code elimination
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Heuristic Explanations | Contributions and Rationale
(if required)
FElimination This  means | Implementing this heuristic makes a 7 ++"
of GOTO | to  minimize | contribution towards meeting the low use
statements the number | of unconditional branching softgoal, be-
of GOTO | cause both unconditional branches and
statements GOTO statements can be defined as "a

in the source

code.

jump that takes place regardless of execu-
tion conditions”. [6]

Implementing this heuristic also makes a
7-7 contribution towards meeting the low
control flow complexity softgoal, because it
was proved in our experiments that elim-

inating GOTO statements may make the

source code more complex.

Table B.7: Elimination of GOTO statements
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Heuristic

Explanations

(if required)

Contributions and Rationale

Elimination
of global data
types and data

structures

Implementing this heuristic makes a ”+4”
contribution towards meeting the low data
coupling softgoal. The rationale behind
this contribution is that data coupling is
measured, among other things, by ”the
number of global structures and passed pa-
rameters divided by the total number of
data structures.” [6] More specifically, a
global data type or data structure can be
accessed by two or more modules of a pro-
gram without being explicitly passed as pa-
rameters between the modules. Thus, the
degree of interdependence between mod-
ules increases, and then data coupling in-

creases as well.

Table B.S8:

Elimination of global data types and data structures

Heuristic Explanations (if required) Contributions and Rationale
Initialization | This means to initialize a | Implementing this heuristic
integrity variable, register, or other | makes a ”+” contribution

storage location to a start- | towards meeting the high

ing value prior to use. [3] data consistency softgoal.

Table B.9: Initialization integrity
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Heuristic

Explanations (if required)

Contributions and Rationale

1/0 integrity

This means to verify input
data items before processing
them and to confirm the va-
lidity of output data before
it is transmitted to the ex-

ternal environment. [33]

Implementing this heuristic
makes a 7+-+"7 contribution
towards meeting the low [/0
complexity softgoal.

Table B.10: 1/0O integrity
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Heuristic

Explanations (if required)

Contributions

and Rationale

Minimization
of  coupling
between

classes.

Two objects are coupled if they act on each
other. Certain types of object coupling are
provided by the object-oriented paradigm.
The types of object coupling are coupling
through message passing, coupling through
inheritance, and coupling through abstract
data types. In cases like this one, the ini-
tial heuristic may not be specific enough.
In these cases, it needs to be further re-
fined and elaborated. Since in the NFR
framework we treat heuristics as softgoals,
we are able to decompose these heuris-
tics into more specific heuristics, using the
same systematic framework that we used
for top-level quality requirements. This
heuristic can be detailed by decomposing
it into any one of the following heuris-
tics: minimize coupling through message
passing, minimize coupling through inher-
itance, minimize coupling through abstract
data types This decomposition is shown in
Figure 2.3 . The OR contribution joining
these three softgoals means that any of the
offspring heuristics can be implemented to

achieve the parent softgoal.

Table B.11: Minimization of coupling between classes
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Heuristic

Explanations (if required)

Contributions and Rationale

Minimization
of  coupling
through mes-

sage passing

This means to eliminate lo-
cal methods of a class calling
methods or instance vari-

ables of other classes.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the low
control flow coupling soft-
goal, because if a local
method calls many meth-
ods or instance variables of
other classes, then the im-
plementation of that local
method is very dependent on
the methods of other classes.
Implementing this heuristic
also makes a 7+”7 contri-
bution towards meeting the
high modularity softgoal, be-
cause if a local method calls
many methods or instance
variables of other classes,
then the modularity rule
that ”every module should
communicate with as few
others as possible” [4] is

violated.

Table B.12: Minimization of coupling through message passing
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Heuristic

Explanations (if required)

Contributions and Rationale

through

heritance

Minimization

of  coupling

mn-

This

local methods

means to eliminate
of a class
at-

accessing nonprivate

tributes of its superclasses.

Implementing this heuristic
makes a ”"4”7 contribution
towards meeting the high
encapsulation softgoal. The
rationale behind this con-
tribution is that if proper-
ties which are encapsulated
in a superclass are exposed
to a subclass for less restric-
tive access, then encapsula-
tion and information hiding
are violated. The use of
inheritance that is not well
designed makes the system

more complex.

Table B.13: Minimization of coupling through inheritance

Heuristic

Explanations (if required)

Contributions and Rationale

through
stract

lypes

Minimization

of  coupling

ab-
data

This

variables declared within a

means to eliminate

class, which have a type of
ADT which is another class

definition.

Implementing this heuristic
77_|_77
towards meeting the high

makes a contribution
encapsulation softgoal. The
rationale behind this contri-
bution is that if the pro-
gramming language permits
direct access to the private
properties of the ADT, then

encapsulation is violated.

Table B.14: Minimization of coupling through abstract data types
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Heuristic

Explanations (if required)

Contributions and Rationale

Mazximization
of embed-
ded  spacing
within the

modules.

This means to increase the
percent of blank lines within

the modules of the program.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
good overall program format-
ting softgoal. The rationale
behind this contribution is
that overall program for-
matting is measured, among
other things, by the ”"per-
cent of blank lines in the
whole program, percent of
modules with blank lines,
percent of modules with em-
bedded spacing.” [6]

However, this heuristic also

7.7 contribution to-

makes a
wards meeting the low main
memory utilization and low
secondary storage utilization
softgoals, because increasing

the blank lines may result in

a larger program.

Table B.15: Maximization of embedded spacing
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proach to the manner in
which modules are visu-
ally delineated for a reader.
One approach is to put
white-space before/after the
first /last line of each mod-

ule. [3]

Heuristic Explanations (if required) Contributions and Rationale
Good module | This means to prescribe | Implementing this heuris-
separation a disciplined uniform ap- | tic makes a "+”7 contribu-

tion towards meeting the
good overall program format-
ting softgoal. The rationale
behind this contribution is
that overall program for-
matting is measured, among
other things, by the ”per-
cent of blank lines in the
whole program, percent of
modules with blank lines,
percent of modules with em-
bedded spacing.” [6]

However, this heuristics

?.7 contribution to-

makes a
wards meeting the low main
memory utilization and low
secondary storage utilization
softgoals, because increas-
ing the separation between
modules will result in a

larger program.

Table B.16: Good module separation
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Heuristic

Explanations (if required)

Contributions and Rationale

Glood wvertical

spacing

This means to use blank
lines or page breaks to
act as separators which dis-
tinguish different program
statements or parts of the

program. [5]

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
good overall program format-
ting softgoal. The rationale
behind this contribution is
that overall program for-
matting is measured, among
other things, by the ”per-
cent of blank lines in the
whole program, percent of
modules with blank lines,
percent of modules with em-
bedded spacing.” [6]

However,  this  heuristic

?.7 contribution to-

makes a
wards meeting the low main
memory utilization and low
secondary storage utilization
softgoals, because increasing
the spacing between parts

of the program will result in

a larger program.

Table B.17: Good vertical spacing
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Heuristic

Explanations (if required)

Contributions and Rationale

Glood horizon-

tal spacing

This means to use inden-
tation, embedded spacing,
tabbing and alignment to
act as separators which dis-
tinguish different parts of
the program or parts of a

statement. [5]

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
good overall program format-
ting softgoal. The rationale
behind this contribution is
that overall program for-
matting is measured, among
other things, by the ”per-
cent of blank lines in the
whole program, percent of
modules with blank lines,
percent of modules with em-
bedded spacing.” [6]

However,  this  heuristic

?.7 contribution to-

makes a
wards meeting the low main
memory utilization and low
secondary storage utilization
softgoals, because increasing
the spacing between parts

of the program will result in

a larger program.

Table B.18: Good horizontal spacing
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Heuristic

Explanations (if required)

Contributions

and Rationale

Mazimization
of comment
lines  within

the modules

This means to maximize the information
embedded within all modules, that pro-
vides clarification to human readers but
does not affect machine interpretation.
The initial heuristic is not specific enough.
In these cases, it needs to be further refined
and elaborated. Since in the NFR frame-
work we treat heuristics as softgoals, we
are able to decompose these heuristics into
more specific heuristics, using the same
systematic framework that we used for top-
level quality requirements. This heuristic
can be detailed by decomposing it into any
one of the following heuristics: Comment
vague code, Comment each variable, type,
or constant declaration, Appropriate length
of comments. The AND contribution join-
ing these three softgoals means that all
of the offspring heuristics must be imple-

mented to achieve the parent softgoal.

Table B.19: Maximization of comment lines within the modules

88



APPENDIX B. DESCRIPTION OF MAINTAINABILITY OPTIMIZATION HEURISTICS

Heuristic

Explanations (if required)

Contributions and Rationale

Comment

vague code

This means to use descrip-
tive comments to clarify
vague code, when the pro-
grammer’s thinking is not
obvious from the code (es-
pecially when vague code
is necessary for performance
reasons, to take advantage of
machine or operating system
features, to maintain con-

sistency within code being

modified, etc.)

Implementing this heuristic
makes a ”++"7 contribution
towards meeting the good
overall program comment-
ing softgoal. The rationale
behind this contribution is
that overall program com-
menting is measured, among
other things, by the ”per-
cent of comment lines in the
whole program”. [6]

However,  this  heuristic

” N

makes a contribution

towards meeting the low

main memory utilization

and low secondary stor-

age utilization  softgoals,
because maximization of
comments will result in a

larger program.

Table B.20: Comment vague code
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Heuristic Explanations | Contributions and Rationale

(if required)
Comment Implementing this heuristic makes a ”+4”
each Vari- contribution towards meeting the good
able, Type, overall program commenting softgoal. The

or (Constant

Declaration

rationale behind this contribution is that
overall program commenting is measured,
among other things, by the "percent of
comment lines in the whole program”. [6]

However, this heuristic makes a ”-”

con-
tribution towards meeting the low main
memory utilization and low secondary
storage utilization softgoals, because maxi-
mization of comments will result in a larger

program.

Table B.21: Comment each Variable, Type, or Constant Declaration

Heuristic Explanations (if required) Contributions and Rationale
Appropriate This means to mak the | Implementing this heuristic
Length of | length of the comments ap- | makes a 7”4”7 contribution
Comments propriate for the complexity | towards meeting the good

of the code being described.

overall program comment-
ing softgoal. The rationale
behind this contribution is
that overall program com-
menting is measured, among
other things, by the ”per-
cent of comment lines in the

whole program”. [6]

Table B.22: Appropriate Length of Comments
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Heuristic

Explanations (if required)

Contributions

and Rationale

Mazimizalion
of the modules
with  header
(prologue)

comments

This means to maximize the information
outside all modules, that describes the in-
dividual modules but does not affect ma-
chine interpretation. The initial heuris-
tic is not specific enough. In these cases,
it needs to be further refined and elabo-
rated. Since in the NFR framework we
treat heuristics as softgoals, we are able to
decompose these heuristics into more spe-
cific heuristics, using the same systematic
framework that we used for top-level qual-
ity requirements. This heuristic can be de-
tailed by decomposing it into any one of
the following heuristics: Include a header
comment for each procedure, Include a
header comment for each file, Include a
header comment for each logical block or
module. 'This decomposition is shown in
Figure 2.3 . The AND contribution joining
these three softgoals means that all of the
offspring heuristics must be implemented

to achieve the parent softgoal.

Table B.23: Maximization of the modules with header (prologue) comments

91



APPENDIX B. DESCRIPTION OF MAINTAINABILITY OPTIMIZATION HEURISTICS

Heuristic

Explanations

(if required)

Contributions and Rationale

Include a
header com-
ment for each

procedure

Implementing this heuristic makes a ”++4”
contribution towards meeting the good
overall program commenting softgoal. The
rationale behind this contribution is that
overall program commenting is measured,
among other things, by the ”percent
of modules with header (prologue) com-
ments.” [6]

However, this heuristic makes a ”-”

con-
tribution towards meeting the low main
memory utilization and low secondary
storage utilization softgoals, because in-
creasing the comments will result in an in-

crease in the total size of the program.

Table B.24: Include a header comment for each procedure
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Heuristic

Explanations

(if required)

Contributions and Rationale

Include a
header com-

ment for each

file

Implementing this heuristic makes a ”++4”
contribution towards meeting the good
overall program commenting softgoal. The
rationale behind this contribution is that
overall program commenting is measured,
among other things, by the ”percent
of modules with header (prologue) com-
ments.” [6]

However, this heuristic makes a ”-”

con-
tribution towards meeting the low main
memory utilization and low secondary
storage utilization softgoals, because in-
creasing the comments will result in an in-

crease in the total size of the program.

Table B.25: Include a header comment for each file
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Heuristic

Explanations

(if required)

Contributions and Rationale

Include a
header  com-
ment for each
logical  block

or module

Implementing this heuristic makes a ”++4”
contribution towards meeting the good
overall program commenting softgoal. The
rationale behind this contribution is that
overall program commenting is measured,
among other things, by the ”percent
of modules with header (prologue) com-
ments.” [6]

However, this heuristic makes a ”-”

con-
tribution towards meeting the low main
memory utilization and low secondary
storage utilization softgoals, because in-
creasing the comments will result in an in-

crease in the total size of the program.

Table B.26: Include a header comment for each logical block or module
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Heuristic

Explanations (if required)

Contributions

and Rationale

Good naming

conventions

This means to prescribe a uniform ap-
proach to assigning the name, address, la-
bel, or distinguishing index of an object in
a program. [3] The initial heuristic is not
specific enough. In these cases, it needs to
be further refined and elaborated. Since in
the NFR framework we treat heuristics as
softgoals, we are able to decompose these
heuristics into more specific heuristics, us-
ing the same systematic framework that
we used for top-level quality requirements.
This heuristic can be detailed by decom-
posing it into any one of the following
heuristics: Meaningful names, Reasonable
length of names. This decomposition is
shown in Figure 2.3 . The AND contribu-
tion joining these two softgoals means that
all of the offspring heuristics must be im-

plemented to achieve the parent softgoal.

Table B.27: Good naming conventions
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Heuristic Explanations (if required) Contributions and Rationale
Meaningful This means to make | Implementing this heuristic
names names of files, procedures, | makes a "+4” contribution
variables, parameters, | towards meeting the good
constants, types, etc. | overall naming softgoal, be-
descriptive and meaningful. | cause meaningful naming is
necessary for prescribing a
uniform approach to nam-
ing throughout the program;
and prescribing a uniform
approach is necessary for
naming to be consistent

throughout the program.

Table B.28: Meaningful names

Heuristic Explanations (if required) Contributions and Rationale
Reasonable This means to avoid names | Implementing this heuris-
length of | longer than 20 characters. tic makes a "4+4+7 contri-
names bution towards meeting the

good overall naming soft-
goal, because names that
are too long are difficult to

understand.

Table B.29: Reasonable length of names
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bols in identifiers and mixing upper and
lower case characters in identifiers). [20, 3]
The initial heuristic is not specific enough.
In these cases, it needs to be further re-
fined and elaborated. Since in the NFR
framework we treat heuristics as softgoals,
we are able to decompose these heuris-
tics into more specific heuristics, using the
same systematic framework that we used
for top-level quality requirements. This
heuristic can be detailed by decomposing
it into any one of the following heuristics:
Form procedure names with words or ab-
breviations separated by underscores and
use mized case (e.g., Get_Temp), Form
variable names, class names, and object
names with words and abbreviations using
mized case bul no underscores (e.qg., Sen-
sorTemp), Form names of constants and
type definitions using all upper case and
using underscores as word separators. This
decomposition is shown in Figure 2.3 . The
AND contribution joining these three soft-
goals means that all of the offspring heuris-
tics must be implemented to achieve the

parent softgoal.

Heuristic Explanations (if required) Contributions
and Rationale

Good wuse of | This means to prescribe a uniform ap-

symbols  and | proach to the use of visual beacons in iden-

case tifiers (e.g. embedding ” — 7 or 7”7 sym-

Table B.30: Good use of symbols and case
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Heuristic

Explanations

(if required)

Contributions and Rationale

Form  proce-
dure  names
with words or
abbreviations
separated by
underscores

and use mized
case (e.g.,
Get_Temp)

Implementing this heuristic makes a ”++4"
contribution towards meeting the Good
overall naming softgoal, because visual
beacons will ease comprehension of the

identifiers.

and use mixed case (e.g., Get_Temp)

Heuristic

Explanations

(if required)

Contributions and Rationale

Form variable

names, class
names,  and
object names
with words
and  abbrevi-
ations  using
mized case

but no under-
scores  (e.g.,

SensorTemp)

Implementing this heuristic makes a ”+4”
contribution towards meeting the Good
overall naming softgoal, because visual
beacons will ease comprehension of the

identifiers.

viations using mixed case but no underscores (e.g., SensorTemp)
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Table B.32: Form variable names, class names, and object names with words and abbre-



APPENDIX B. DESCRIPTION OF MAINTAINABILITY OPTIMIZATION HEURISTICS 99

Heuristic Explanations | Contributions and Rationale

(if required)
Form names Implementing this heuristic makes a ”++4"
of constants contribution towards meeting the Good
and type overall naming softgoal, because visual
definitions beacons will ease comprehension of the
using all up- identifiers.

per case and
using under-
scores as word

separators

Table B.33: Form names of constants and type definitions using all upper case and using

underscores as word separators



Appendix C

Description of Performance

Optimization Heuristics

Tables C.1-C.30 give all the heuristics that we are aware of, that can be implemented in
a system to contribute towards satisficing the performance quality requirement. These
tables explain the heuristics (if necessary), and also discuss the contributions that each
heuristic makes towards satisficing its parent softgoals. Each table also gives the rationale
underlying each heuristic’s contributions towards its parent softgoals.

The softgoal interdependency graph given in Figure C.1 illustrates all these heuristics

and their contributions towards their parent softgoals.
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Heuristic

Explanations (if required)

Contributions and Rationale

Address opti-

mization

This
global

means to reference

variables using a
pointer and offset, rather
than using a constant ad-

dress. [16]

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
Low user CPU time soft-
goal. The rationale behind
this contribution is that ref-
erencing a global variable
by constant address requires
two instructions, while ref-
erencing the same variable
through a pointer requires
only one.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
Low main memory utiliza-
tion and Low secondary
storage utilization softgoals.
It was shown in our exper-
iments that Address Opti-
mization may reduce the size
of the program, because less

space is taken up for variable

declarations.

Table C.1: Address optimization
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adjacent bitfields into one,
keeping bitfields in regis-
ters, and performing con-
stant propagation through
bitfields. [16]

Heuristic Explanations (if required) Contributions and Rationale
Bitfield opti- | This means to implement | Implementing this heuristic
mizalion various bitfield optimiza- | makes a "+”7 contribution

tions, such as combining | towards meeting the Low

user CPU time softgoal, be-
cause accessing and storing
bitfields is expensive, since
most architectures do not
support bit memory oper-
ations and require a series
of load/shift /mask/store in-
structions.

Implementing this heuristic

also makes a 7+”7 contri-
bution towards meeting
the Low memory access

softgoal, because most ar-
chitectures do not support
bit

and

memory  operations

require a series of
load /shift /mask /store
instructions.
this  heuristic

” N

However,
makes a contribution
towards meeting the high
data consistency softgoal,
because implementing bit-
field optimizations may hurt
the degree of uniformity
among the data types and

structures.

Table C.2: Bitfield optimization
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Heuristic Explanations | Contributions and Rationale
(if required)

Block merging | This  means | Implementing this heuristic makes a 7+”
to rearrange | contribution towards meeting the Low user
small  blocks | CPU time softgoal. The rationale behind

of code to

create one
large basic
block. [16]

this contribution is that some compilers
limit optimizations to basic blocks, and
benefit if the program graph can be trans-
formed into a small number of large basic
blocks.

Implementing this heuristic also makes a
747 contribution towards meeting the Low
main memory utilization and Low sec-
The

rationale behind these contributions is that

ondary storage utilization softgoals.

the size of the program may get reduced by
replacing many small blocks of code by one
large basic block.

Implementing this heuristic also makes a
747 contribution towards meeting the Low
disk access and Low memory access soft-
goals. The rationale behind these contri-
butions is that some compilers limit opti-
mizations to basic blocks, and benefit if the
program graph can be transformed into a

small number of large basic blocks.

Table C.3: Block merging
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ecution. In cases like this one, the ini-
tial heuristic is not specific enough, and
thus needs to be further refined and elabo-
rated. This heuristic can be detailed by de-
composing it into any one of the following
heuristics: Code compression in secondary
storage or Code compression in main mem-
ory. This decomposition is shown in Fig-
ure 2.4. The OR contribution joining these
two softgoals means that any of the off-

spring heuristics can be implemented to

achieve the parent softgoal.

Heuristic Explanations (if required) Contributions and Rationale
Branch elimi- | This means to replace a se- | Implementing this heuristic
nalion quence of two (or more) | makes a ”"+” contribution
continuous branches to one | towards meeting the Low
branch. [16] user CPU time softgoal.
The rationale behind this
contribution is that with
branch elimination less in-
structions will need to be ex-
ecuted in the program.
Table C.4: Branch elimination
Heuristic Explanations (if required) Contributions
and Rationale
Code com- | This means to store the executable in com-
pression pressed form and decompress it during ex-

Table C.5: Code compression
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Explanations (if required)

Contributions and Rationale

Heuristic

Code com-
pression mn
secondary
storage

This means to store the exe-
cutable in compressed form
in secondary storage and

then decompress it as it is

being loaded into RAM.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
Low secondary storage wuti-
lization softgoal. The ra-
tionale behind this contri-
bution is that secondary
storage requirements are re-
duced, since the executable
is stored in compressed form

in secondary storage.

Table C.6: Code compression in secondary storage
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Heuristic Explanations | Contributions and Rationale

(if required)
Code com- | This means to | Implementing this heuristic makes a 747
pression  in | store the text | contribution towards meeting the Low sec-

main memory

portion of the
executable 1in
compressed

form in RAM,
and then
decompress it
when fetching
lines into the

instruction

cache.

ondary storage utilization softgoal. The ra-
tionale behind this contribution is that sec-
ondary storage requirements are reduced,
since the executable is stored in com-
pressed form in secondary storage.

Implementing this heuristic also makes a
747 contribution towards meeting the Low

The

rationale behind this contribution is that

main memory utilizalion softgoal.

program load time and RAM usage are
reduced, since the executable is stored in
compressed form in RAM.

However, this heuristic also makes a 7-”
contribution towards meeting the Low user
CPU time and Low tlime running other
programs softgoals. The rationale behind
these contributions is that this heuristic re-
quires carefully crafted load-time decom-

pression steps, and special software sup-

port may be required.

Table C.7: Code compression in main memory
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operands at compile time.

[16]

Heuristic Explanations (if required) Contributions and Rationale
Constant fold- | This means to evaluate | Implementing this heuristic
ing expressions with constant | makes a "4+”7 contribution

towards meeting the Low
user CPU time softgoal, be-
cause if run-time evalua-
tion of expressions is avoided
then run-time performance
will be improved.

Implementing this heuris-
tic also makes a "+” con-
tribution towards meeting
the Low main memory uti-
lization and Low secondary
storage utilization softgoals.
The rationale behind these
contributions is that if run-
time evaluation of expres-

sions is avoided then code

size will be reduced.

Table C.8: Constant folding
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whose operands’ values have
not changed ever since), by
using the values of the pre-

vious computations. [16]

Heuristic Explanations (if required) Contributions and Rationale
Constant This means to propagate a | Implementing this heuris-
propagation constant that is assigned to | tic makes a 74”7 contribu-
a variable through the flow | tion towards meeting the
graph and substitute it at | Low wuser CPU time and
the use of the variable. [16] | Low memory access soft-
goals. The rationale behind
these contributions is that
by substituting constants
with variables at compile-
time, less expressions will
need to be computed at
run-time and less variables
will need to get accessed in

memory.

Table C.9: Constant propagation
Heuristic Explanations (if required) Contributions and Rationale
Common This means to avoid recom- | Implementing this heuris-
subexpression | puting expressions that were | tic makes a 747 contribu-
elimination previously computed (and | tion towards meeting the

CPU time and
soft-

Low wuser
Low memory access
goals. The rationale behind
these contributions is that
by computing less expres-
sions at run-time less arith-
metical operations will occur
and less variables will need

to get accessed in memory.

Table C.10: Common subexpression elimination
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Heuristic Explanations (if required) Contributions and Rationale
Dead code | This means to eliminate | Implementing this heuris-
elimination code that is unreachable or | tic makes a "+” contribu-
that does not affect the pro- | tion towards meeting the
gram (e.g. dead stores). low main memory utilization
softgoal, because dead code
elimination will cause the
size of the program to de-
crease. Implementing this
heuristic also makes a 74”7
contribution towards meet-
ing the low secondary stor-
age utilization softgoal, be-
cause dead code elimination
will cause the size of the pro-

gram to decrease.

Table C.11: Dead code elimination

Heuristic Explanations (if required) Contributions and Rationale
Elimination This means to minimize the | Implementing this heuris-
of GOTO | number of GOTO state- | tic makes a ”-” contribu-
statements ments in the source code. tion towards meeting the

low main memory utiliza-
tion and low secondary stor-
age utilization softgoals, be-
cause it was proved in our
experiments that eliminat-
ing GOTO statements may
cause the size of source code

to increase.

Table C.12: Elimination of GOTO statements
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Heuristic Explanations (if required) Contributions and Rationale
FExpression This means to simplify ex- | Implementing this heuris-
simplification | pressions by replacing them | tic makes a 747 contribu-
with an equivalent expres- | tion towards meeting the
sion that is more efficient. | Low wuser CPU time and
[16] Low memory access soft-
goals.  The rationale be-
hind these contributions is
that by simplifying expres-
sions less arithmetical oper-
ations will occur and thus
less variables will need to get

accessed in memory.

Table C.13: Expression simplification

Heuristic Explanations (if required) Contributions and Rationale

Forward store

This means to move stores
to global variables in loops
out of the loop, to reduce
memory bandwidth require-

ments. [16]

Implementing this heuristic
makes a ”"+7 contribution
towards meeting the em-
phLow memory access soft-
goal. The rationale behind
this contribution is that by
moving loads and stores to
global variables out of a loop
(and keeping values in reg-
isters within the loop), less

variables will need to get ac-

cessed in memory.

Table C.14: Forward store
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when a function is called in

the program. [16]

Heuristic Explanations (if required) Contributions and Rationale
Function This means to expand the | Implementing this heuris-
inlining body of a function inline, | tic makes a "+” contribu-

tion towards meeting the
Low wuser CPU time and
Low memory access soft-
goals. The rationale behind
these contributions is that
function inlining eliminates
the overhead associated with
calling and returning from a
function.

Implementing this heuristic

?.7 contribution to-

makes a
wards meeting the Low main
memory utilization and Low
secondary storage utilization
softgoals. The rationale be-
hind these contributions is
that function inlining usu-
ally increases code space,
which is affected by the
size of the inlined function

and the number of inlined

functions.

Table C.15: Function inlining
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Heuristic Explanations | Contributions and Rationale
(if required)

Hoisting This  means | Implementing this heuristic makes a ”+”
to hoist loop- | contribution towards meeting the Low user
invariant CPU time softgoal, because it will improve
expressions run-time performance by executing an ex-
out of loops. | pression only once rather than at each it-
[16] eration.

Implementing this heuristic makes a 747
contribution towards meeting the Low
memory access softgoal, because it will de-
crease the number of memory accesses by
evaluating an expression only once rather
than at each iteration.
Table C.16: Hoisting
Heuristic Explanations (if required) Contributions and Rationale

This

nested If statements when

If  optimiza- means to simplify | Implementing this heuristic

lion makes a ”"47 contribution

the value of their condi- | towards meeting the Low

CPU time and Low

memory Aaccess

tional expressions are known | user
beforehand.  In addition,

two adjacent If statements

softgoals,
because less conditional ex-
with the same conditional | pressions of If statements

expressions can be combined | will need to be evaluated.

into one If statement. [16]

Table C.17: If optimization
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variable elim-

alion

to combine
two or more
induction
variables
within loops,
into one
induction

variable. [16]

Heuristic Explanations | Contributions and Rationale
(if required)
Induction This  means | Implementing this heuristic makes a ”+”

contribution towards meeting the Low user
CPU time softgoal, because by reducing
the number of additions or subtractions in
a loop run-time performance will improve.
Implementing this heuristic makes a 747
contribution towards meeting the Low
memory access softgoal, because by reduc-
ing the number of additions or subtractions
in a loop the number of variables that need
to get fetched from memory will decrease.
Implementing this heuristic makes a 747
contribution towards meeting the Low
main memory utilization and Low sec-
ondary storage utilization softgoals, be-
cause by reducing the number of additions
or subtractions in a loop code space re-

quirements will decrease.

Table C.18: Induction variable elimination
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Heuristic

Explanations (if required)

Contributions and Rationale

Instruction

combining

This means to combine two
statements into one state-
ment, at the source code
level. Many operators are
candidates for instruction
combining, including addi-
tion, subtraction, multipli-
cation, left and right shift,
boolean operations, and oth-

ers. [16]

Implementing this heuristic
makes a ”"4”7 contribution
towards meeting the Low
user CPU time softgoal, be-
cause by reducing the num-
ber of arithmetical opera-
tions run-time performance
will improve.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
Low memory access soft-
goal, because by reducing
the number of arithmetical
operations the number of
variables that need to get
fetched from memory will
decrease.

Implementing this heuris-
tic makes a "+” contribu-
tion towards meeting the
Low main memory utiliza-
tion and Low secondary
storage utilization softgoals,
because by reducing the
number of arithmetical op-
erations code space require-

ments will decrease.

Table C.19: Instruction combining
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with power-of-two operands

with faster instructions,
such as conditional and shift

instructions. [16]

Heuristic Explanations (if required) Contributions and Rationale
Integer divide | This means to replace inte- | Implementing this heuristic
oplimization ger divide instructions with | makes a ”+” contribution
power-of-two denominators | towards meeting the Low
and other bit patterns with | user CPU time softgoal, be-
faster instructions, such as | cause on most architectures
shift instructions. [16] integer divide instructions
are slower than integer shift

instructions.

Table C.20: Integer divide optimization

Heuristic Explanations (if required) Contributions and Rationale
Integer  mod | This means to replace in- | Implementing this heuris-
oplimization teger modulus instructions | tic makes a ”+”7 contribu-

tion towards meeting the
Low user CPU time soft-
be-

contribution is

goal. The rationale
hind this
that the divide and multi-
ply (very slow on most ar-
chitectures) which are as-
sociated with modulus ex-
pressions are avoided, and

thus run-time performance

is increased.

Table C.21: Integer mod optimization
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Heuristic

Explanations (if required)

Contributions and Rationale

Integer multi-

ply optimiza-

This means to replace in-

teger multiply expressions

Implementing this heuris-

tic makes a "+”7 contribu-

tion with power-of-two constant | tion towards meeting the
multiplicands and other bit | Low user CPU time soft-
patterns with faster instruc- | goal. The rationale be-
tions, such as shift instruc- | hind this contribution is
tions. [16] that on most architectures
integer multiply instructions
are slower than integer shift
instructions.
Table C.22: Integer multiply optimization
Heuristic Explanations | Contributions and Rationale
(if required)
Loop collaps- | This  means | Implementing this heuristic makes a 7+”
ing to collapse | contribution towards meeting the Low user
nested loops | CPU time softgoal, because by reducing

into a single-
nested

[16]

loop.

loop overhead run-time performance will
improve.

Implementing this heuristic makes a 747
contribution towards meeting the Low
memory access softgoal, because by reduc-
ing loop overhead the number of variables
that get accessed will also be reduced.
Implementing this heuristic makes a 747
contribution towards meeting the Low
main memory utilization softgoal, because
by reducing loop overhead the total size of

loops will be reduced.

Table C.23: Loop collapsing
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Heuristic

Explanations

(if required)

Contributions and Rationale

Loop fusion

This means to
fuse adjacent
loops into one

loop. [16]

Implementing this heuristic makes a 747
contribution towards meeting the Low user
CPU time softgoal, because by reducing
loop overhead run-time performance will
improve.

Implementing this heuristic makes a 747
contribution towards meeting the Low
memory access softgoal, because by reduc-
ing loop overhead the number of variables
that get accessed will also be reduced.
Implementing this heuristic makes a 747
contribution towards meeting the Low
main memory utilization softgoal, because
by reducing loop overhead the total size of

loops will be reduced.

Table C.24: Loop fusion
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loop by replicating the body
of a loop. [16]

Heuristic Explanations (if required) Contributions and Rationale
Loop un- | This means to reduce the | Implementing this heuristic
rolling number of iterations of a | makes a "+4” contribution

towards meeting the Low
user CPU time softgoal, be-
cause by reducing loop over-
head run-time performance
will improve.

Implementing this heuristic
makes a ”"47 contribution
towards meeting the Low
memory access softgoal, be-
cause by reducing loop over-
head the number of variables
that get accessed will also be
reduced.

However, it makes a ”-”

con-
tribution towards meeting
the Low main memory uti-
lization and Low secondary
storage utilization softgoals,
because replicating the bod-

ies of loops will result in a

larger program.

Table C.25: Loop unrolling
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Heuristic

Explanations (if required)

Contributions and Rationale

Narrowing

This means to use the lim-
ited range of small inte-
gers to simplify some expres-

sions. [16]

Implementing this heuristic
makes a ”"+”7 contribution
towards meeting the Low
user CPU time softgoal, be-
cause by simplifying expres-
sions less arithmetical oper-

ations will occur.

Table C.26: Narrowing

Heuristic

Explanations (if required)

Contributions and Rationale

Peephole opti-

mization

This

replace short sequences of

means to seek to
instructions within a given

program with equivalent

smaller/faster  instruction
sequences.  This heuristic
is typically used only in
the final stages of the op-
which

means that it operates on

timization process,

actual  machine instruc-
tions as opposed to some
higher-level representation
of the program. Thus, an
implementation of  such
a heuristic must contain
detailed knowledge about
the

instruction set and machine

target architecture’s

parameters.

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
Low user CPU time soft-
goal. The rationale behind
this contribution is that by
replacing instructions with
faster instructions, less CPU
time will be required during

execution.

Table C.27: Peephole optimization
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Heuristic

Explanations (if required)

Contributions and Rationale

Tail recursion

This means to replace a tail-

recursive call with a GOTO
statement. [16]

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the
CPU lime and
soft-
be-

Low wuser
Low memory access
goals.  The rationale
hind these contributions is
that tail recursion avoids the
overhead of a call and return

and also reduces stack space

usage.

Table C.28: Tail recursion

Heuristic

Explanations (if required)

Contributions and Rationale

Unswitching

This means to transform
a loop containing a loop-
invariant IF statement into
an [F statement containing

two loops. [16]

Implementing this heuris-
tic makes a "+”7 contribu-
tion towards meeting the

CPU time and
soft-

Low user
Low memory access
goals. The rationale behind
these contributions is that
since the conditional expres-
sion of the IF statement will
only be evaluated once, run-
time performance will be im-
proved and less variables will
need to get fetched from

memory.

Table C.29: Unswitching
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possible range of values of a

variable. [16]

Heuristic Explanations (if required) Contributions and Rationale
Value  range | This means to perform op- | Implementing this heuris-
oplimization timizations using the known | tic makes a ”+” contribu-

tion towards meeting the
Low user CPU time soft-
goal. The rationale behind
this contribution is that if
the value range optimiza-
tion involves eliminating ex-
pressions, then less arith-
metical operations will be

performed.

Table C.30: Value range optimization
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Appendix D

Maintainability Measurements

This appendix provides a full description of all extracted maintainability metrics. !

D.1 Maintainability Metrics Models

In this section, all the maintainability metrics that were extracted from the WELTAB
and AVL C4+4 source code are described in detail. All of these metrics were extracted at
the file level for each optimization heuristic. In addition, the M1, MI2 and MI3 metrics
were also extracted at the function level for each optimization heuristic.

In each case the metrics were extracted automatically by using the DATRIX tool. The
DATRIX tool is a tool used for assessing the software quality of C and C++ systems.
DATRIX can automatically extract approximately 110 different metrics on a system’s
source code, to evaluate how well the system satisfies various software characteristics.
The following descriptions of the extracted metrics were taken from the "DATRIX Metric

Reference manual - Version 47.

D.1.1 Documentation Metrics

RtnComNbr:

The number of comment sections in the routine’s scope (between the routine brackets

!Credit is given to Ladan Tahvildari from the University of Waterloo, for her efforts in extracting
these source code metrics.
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RtnComVol:

The size in characters of all comments in the routine.

D.1.2 Expression Metrics

RtnCtlCplAvg:

The mean control predicate complexity.

It is computed as the ratio

RinCtCplSum/(Rtnl f Nbr + RtnSwitchNbr + RinLopNbr)

(Rtnl f Nbr+ RtnSwitch Nbr+ RtnLopNbr) represents the number of control transfer

statements (decision and loop statements) in the routine.

RtnCtlCplSum:

The sum of the complexities of the control predicates composing the control transfer

statements (decision and loop statements) within the routine.

RtnCtlCplMax:

The maximal control predicate complexity.

RtnExeCplAvg:

The mean executable statement complexity.

It is computed as the ratio
RinExeCplSum/RinFExeStmNbr

RinFExeStmNbr represents the number of executable statements in the routine.

RtnExeCplSum:

The sum of the complexities of the executable statements within the routine.

RtnExeCplMax:

The maximal executable statement complexity.
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D.1.3 General Statement Metrics
RtnStmNbr:

The number of statements in the routine.

RtnXpdStmNbr:

The number of statements after having performed a limited loop unfolding operation
where each statement within a loop is taken twice into account (each loop content has

been duplicated).

D.1.4 Control-Flow Statement Metrics
RtnCtlStmNbr:

The number of control-flow statements in the routine.

RtnIfNbr:

The number of if statements in the routine.

RtnSwitchNbr:

The number of C-language switch-like constructs in the routine.

RtnLabelNbr:

The number of label statements in the routine.

RtnCaseNbr:

The number of C-language case-like statements in the routine. A C-language case-like

statement can only be encountered in a C-language switch-like statement.

RtnDefaultNbr:

The number of default statements in the routine. A default statement can only be

encountered in a C-language switch-like statement.
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RtnLopNbr:

The number of loop statements in the routine. Loop statements include loop constructs

such as for, while, do..while and repeat..until.

RtnReturnNbr:

The number of return statements in the routine.

RtnGotoNbr:

The number of GOTO statements in the routine.

RtnContinueNbr:

The number of continue statements in the routine.

RtnBreakNbr:

The number of break statements in the routine.

D.1.5 Executable Statement Metrics
RtnExeStmNbr:

The number of executable statements in the routine.

RtnSysExitNbr:

The number of system exit call statements in the routine.

D.1.6 Declaration Statement Metrics
RtnDecStmNbr:

The number of declarative statements in the routine.

RtnTypeDecNbr:

The number of type/class declaration statements in the routine.
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RtnObjDecNbr:

The number of variable/object declaration statements in the routine.

RtnPrmNbr:

The number of parameters of the routine.

RtnFcetDecNbr:

The number of function/routine declaration statements in the routine.

D.1.7 Nesting Level (Scope) Metrics

RtnStmNstLvISum:

The sum of nesting level values of each statement in the routine. It is used to compute
RinStmNstLvlAvg.

RtnStmNstLvlAvg:

The average nesting level of statements in the routine. RinStmNstLvlAvg represents
the average nesting level weighted against the number of statements in the routine.
RtnNstLvIMax:

The maximal nesting level in the routine.

RtnScpNstLvISum:

The sum of nesting level values for all scopes in the routine. A new scope begins whenever
an open bracket { is explicitly placed or whenever an implicit (conceptual) open bracket

can be deduced, as in:

if (1< 2 ) i++4; (implicit open bracket)

RtnScpNstLvlAvg:

The average nesting level of the scopes in the routine. A new scope begins whenever an
open bracket { is explicitly placed or whenever an implicit (conceptual) open bracket can

be deduced, as in:
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if (1< 2 ) i++4; (implicit open bracket)

RtnScpNbr:

The total number of scopes in the routine. A new scope begins whenever an open bracket
{ is explicitly placed or whenever an implicit (conceptual) open bracket can be deduced,

as in:

if (1< 2 ) i++4; (implicit open bracket)

D.1.8 Cross Reference Metrics
RtnXplCalNbr:

The number of explicit function/method calls in the routine.

RtnXplCastNbr:

The number of explicit type casts in the routine.

D.1.9 McCabe Metric
RtnCycCplNbr:

The cyclomatic number of the routine. The cyclomatic number v((G) was defined by

McCabe, and can be computed using the following formula:
v(G) =1 4+ number_of _decision_points_in_the routine
where a decision point is either:
e an if statement
e a loop statement

e a branch of a switch-like statement (the cases and the default)

D.1.10 Halstead Metrics
OpdNbr:

The total number of operands in the routine’s scope.
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OpdUnqgNbr:

The number of distinct operands in the routine’s scope.

OprNbr:

The total number of operators in the routine’s scope.

OprUngNbr:

The number of distinct operators in the routine’s scope.

HalDif:

The Halstead program difficulty, for the routine’s scope.

HalEfT:

The Halstead program effort, for the routine’s scope.

HalLen:

The Halstead program length, for the routine’s scope.

HalLvl:

The Halstead program level, for the routine’s scope.

HalVoec:

The Halstead program vocabulary, for the routine’s scope.

HalVol:

The Halstead program volume, for the routine’s scope.

D.1.11 Miscellany Metrics
RtnLnsNbr:

The number of lines in the routine.

129
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RtnStxErrNbr:

The number of syntax errors that occurred while parsing the routine.

D.1.12 Maintainability Indexes
MI1:

A single maintainability index, based on Halstead’s metrics. It is computed using the

following formula:
MI1 =125 -10* LOG(avg — F)
The term avg — F is defined as follows:

e avg-E = average Halstead Volume V per module

MI12:

A single maintainability index, based on Halstead’s metrics, McCabe’s Cyclomatic Com-
plexity, lines of code and number of comments. It is computed using the following

formula:

MI2 =171 =544 * In(avg — E) — 0.23 * avg — V(G) — 16.2 x In(avg — LOC)

+50 * sin(sqrt(2.46 * (avg — CMT /avg — LOC)
The coefficients are derived from actual usage.The terms are defined as follows:
e avg-E = average Halstead Volume V per module

e avg-V(G) = average extended cyclomatic complexity per module

avg-LOC = the average count of lines of code (LOC) per module

o avg-CMT = average percent of lines of comments per module
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MI13:

A single maintainability index, based on Halstead’s metrics, McCabe’s Cyclomatic Com-
plexity, lines of code and number of comments. It is computed using the following

formula:

MI3 =171 —3.42 x In(avg — F) — 0.23 * avg — V(G) — 16.2 x In(avg — LOC)

+0.99 *x avg — CMT
The coefficients are derived from actual usage.The terms are defined as follows:
o avg-E = average Halstead Volume V per module

e avg-V(G) = average extended cyclomatic complexity per module

avg-1.LOC = the average count of lines of code (LOC) per module

o avg-CMT = average percent of lines of comments per module

D.2 A study of the optimization activities

In this section we describe how we conducted pre-post analyses of the maintainability
metrics for each of the optimization activities.

The pre-post analysis of the maintainability metrics was performed on nine different
code optimization activities; four of these activities focused on improving performance
and the other five focused on improving maintainability. Following is a brief description

of the performance and maintainability optimization activities that took place:

Hoisting and Unswitching - The FOR loops were optimized, so that each iteration

executed faster (performance optimization).

Address Optimization - References to global variables that used a constant address

were replaced with references using a pointer and offset (performance optimization).

Integer Divide Optimization - Integer divide instructions with power-of-two denom-
inators were replaced with shift instructions, which are faster (performance opti-

mization).
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Function Inlining - When a function was called in the program, the body of the func-

tion was expanded inline (performance optimization).

Elimination of GOTO statements - The number of GOTO statements in the source

code was minimized (maintainability optimization).

Dead Code Elimination - Code that was unreachable or that did not affect the pro-

gram was eliminated (maintainability optimization).

Elimination of Global Data Types and Data Structures - Global data types and

data structures were made local (maintainability optimization).

Maximization of Cohesion - Classes with low cohesion were split into many smaller

classes, when possible (maintainability optimization).

Minimization of Coupling Through ADTs - Variables declared within a class, which
have a type of ADT which is another class definition, were eliminated (maintain-

ability optimization).

Some of these activities were applied to WELTAB only, others to AVL only, and others
to both systems. We first extracted file level and function level maintainability metrics
on the original WELTAB and AVL C++ source code before any of the optimization
activities took place. For each distinct performance and maintainability optimization
activity, we then extracted file level and function level maintainability metrics on either
WELTAB or AVL or both, after the activity took place.

It is important to note that for both WELTAB and AVL there exist many other
optimization activities that could have been applied to the source code. However, the
C++ source code of both systems was of such low quality, that it did not allow us to apply
many other optimizations that we would have liked to. It was difficult to understand
and modify both WELTAB and AVL, since even slight changes could affect other parts
of the system in undesirable ways.

The reason for this low quality is that the C++ code was the result of a reengineering
effort to migrate the original C version to an object-oriented language. The reengineer-
ing tool used for this purpose focused on producing code that was correct rather than
readable. Thus, although the resulting C4++ versions of WELTAB and AVL executed

properly, it was difficult to understand and maintain the new systems.
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We now provide a detailed analysis of these performance and maintainability opti-

mization activities, by explaining the pre-post changes in the maintainability metrics.

D.2.1 Hoisting and Unswitching

The objective of this performance optimization activity was to optimize run-time perfor-
mance by minimizing the time spent during FOR loops.

Hoisting refers to cases where loop-invariant expressions are executed within FOR
loops. In such cases, the loop-invariant expressions can be moved out of the FOR loops,
thus improving run-time performance by executing the expression only once rather than
at each iteration. [16]

For example, in the code fragment below, the expression (x+y) is loop invariant, and

the addition can be hoisted out of the loop.

for (1 = 0; i < 100; i++) {
ali]

X+ y;

Below is the code fragment after the invariant expression has been hoisted out of the

loop.
t=x+y,;
for (1 = 0; i < 100; i++) {
alil] = t;
t

Unswitching refers to transforming a FOR loop containing a loop-invariant IF state-
ment into an IF statement containing two FOR loops. [16]
For example, in the code fragment below, the IF expression is loop-invariant, and can

be hoisted out of the loop.

for (1 = 0; i < 100; i++)

if (x)

alil = 0;
else

b[i] = 0;
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After unswitching, the IF expression is only executed once, thus improving run-time

performance.
if (x)
for (i = 0; 1 < 100; i++)
alil = 0;
else
for (i = 0; i < 100; i++)
b[i] = 0;

This heuristic was implemented in WELTAB only, at both the file level and the func-
tion level. The file level measurements taken on the new optimized version of WELTAB

are shown in Table D.1.

Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.0461
RtnCtlCplSum 64.7692 64.8358
RtnCtlCplMax 9.3003 9.3003
RtnExeCplAvg 7.2738 7.2621
RtnExeCplSum 308.3121 308.4053
RtnExeCplMax 18.2973 18.2973
RtnStmNbr 56.5222 56.5621
RtnXpdStmNbr 99.9482 99.9349
RtnCtlIStmNbr 15.3669 15.3802
RtnlfNbr 8.0074 8.0074
RtnSwitchNbr 0.0030 0.0030
RtnLabelNbr 2.4630 2.4630
continued on next page
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continued from previous page
Metric Pre-Value Post-Value
RtnCaseNbr 0.0266 0.0266
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.7071
RtnReturnNbr 1.1036 1.1036
RtnGotoNbr 3.9571 3.9571
RtnContinueNbr 0.5888 0.5888
RtnBreakNbr 0.0133 0.0133
RtnExeStmNbr 32.6672 32.6938
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.4882
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.4867
RtnPrmNbr 2.1553 2.1553
RtnFctDecNbr 0.0015 0.0015
RtnStmNstLvISum 1.1562 1.1588
RtnStmNstLvlAvg 104.1405 104.2071
RtnNstLvlMax 2.4734 2.4734
RtnScpNstLvlAvg 1.7935 1.7920
RtnScpNstLvlSum 29.7544 29.7811
RtnScpNbr 10.9660 10.9793
RtnXplCalNbr 22.0414 22.0414
RtnXplCastNbr 1.2589 1.2589
RtnCycCplNbr 10.7278 10.7411
OpdNbr 179.5680 179.6346
OpdUngNbr 47.5769 47.5769
OprNbr 237.6716 237.7382
OprUngNbr 14.8003 14.8003
continued on next page
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Metric Pre-Value Post-Value
HalDif 23.5483 23.5906
HalEAf 202943.3935 202972.7049
HalLen 417.2396 417.3728
HalLvl 0.2173 0.2172
HalVoc 62.3772 62.3772
HalVol 3060.1143 3060.7325
RtnLnsNbr 72.4719 72.5518
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.9256
MI2 36.6910 36.6757
MI3 61.3768 61.3618

Table D.1: File level maintainability metrics on the WELTAB system before and after
Hoisting/Unswitching

All of the Halstead base metrics and derived metrics increased. These measures
include HalVol, HalLen, HalEff, HalDif, OprNbr, and OpdNbr. These increases can be
attributed to the increases in the number of operators and operands. These increases
resulted from the fact that in the new optimized version of WELTAB the number of FOR

loops has increased.

Other measurements that increased are the number of statements in the routine
(RtnStmNbr), the number of control flow statements (RtnCtIStmNbr), and executable
statements (RtnExeStmNbr). These increases can also be attributed to the increase
in the number of FOR loops in the new version of WELTAB. Thus, it makes sense to

conclude that Unswitching had a negative effect on main memory utilization.

The final observation we can make is that all the Maintainability Indexes (Mls) de-
creased. These descreases can be attributed to the fact that all Halstead’s metrics and
lines of code (variables that affect the Mls) increased. Thus, Hoisting and Unswitching

had as a result that maintainability was affected negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table D.2. All those measurements also show a decrease in maintainability

after hoisting /unswitching.
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Function Metric Pre-Value Post-Value
report-canv MI1 63.18 63.18

MI2 -16.50 -16.50

MI3 12.26 12.26
Baselib-smove | MI1 86.55 85.36

MI2 75.09 70.87

MI3 92.97 89.31

Table D.2: Function level maintainability metrics on the WELTAB system before and

after hoisting /unswitching

D.2.2 Integer Divide Optimization

The objective of this performance optimization activity was to replace integer divide
expressions with power-of-two denominators with faster integer shift instructions. [16]
For example, the integer divide expression in the code fragment below can be replaced

with a shift expression:

int £ (unsigned int i)
{

return i / 2;

Below is the code fragment after the integer divide expression has been replaced with

a shift expression:

int £ (unsigned int i)
{

return i >> 1;

This heuristic was implemented in both WELTAB and AVL. In WELTAB measure-
ments were taken at both the file level and the function level. In AVL measurements

were taken at the function level only. The file level measurements taken on the new

optimized version of WELTAB are shown in Table D.3.
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Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.0483
RtnCtlCplSum 64.7692 64.7692
RtnCtlCplMax 9.3003 9.3003
RinExeCplAvg 7.2738 7.2738
RtnExeCplSum 308.3121 308.3121
RtnExeCplMax 18.2973 18.2973
RtnStmNbr 56.5222 56.5222
RtnXpdStmNbr 99.9482 99.9482
RtnCtlIStmNbr 15.3669 15.3669
RtnIfNbr 8.0074 8.0074
RtnSwitchNbr 0.0030 0.0030
RtnLabelNbr 2.4630 2.4630
RtnCaseNbr 0.0266 0.0266
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.6938
RtnReturnNbr 1.1036 1.1036
RtnGotoNbr 3.9571 3.9571
RtnContinueNbr 0.5888 0.5888
RtnBreakNbr 0.0133 0.0133
RtnExeStmNbr 32.6672 32.6672
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.4882
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.4867
continued on next page
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Metric Pre-Value Post-Value
RtnPrmNbr 2.1553 2.1553
RtnFctDecNbr 0.0015 0.0015
RtnStmNstLvISum 1.1562 1.1562
RtnStmNstLvlAvg 104.1405 104.1405
RtnNstLvlMax 2.4734 2.4734
RtnScpNstLvlAvg 1.7935 1.7935
RtnScpNstLvlSum 29.7544 29.7544
RtnScpNbr 10.9660 10.9660
RtnXplCalNbr 22.0414 22.0414
RtnXplCastNbr 1.2589 1.2589
RtnCycCplNbr 10.7278 10.7278
OpdNbr 179.5680 179.5680
OpdUngNbr 47.5769 47.5769
OprNbr 237.6716 237.6716
OprUngNbr 14.8003 14.8033
HalDif 23.5483 23.5535
HalEff 202943.3935 202975.6943
HalLen 417.2396 417.2396
HalLvl 0.2173 0.2173
HalVoc 62.3772 62.3802
HalVol 3060.1143 3060.1412
RtnLnsNbr 72.4719 72.4719
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.9256
MI2 36.6910 36.6902
MI3 61.3768 61.3763
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Table D.3: File level maintainability metrics on the WELTAB system before and after

integer divide optimization

It is interesting to observe that most of the metrics did not change at all, and even
those that did changed only slightly. These measures alone show that the new optimized

system is almost as maintainable as the original one. However, we know that the new
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system is less maintainable because some divide instructions of the original system got
replaced with shift instructions which are less intuitive.

The few metrics which increased slightly are the Halstead metrics OprUnqNbr, HalDif,
HalEff, HalVoc, and HalVol. These metrics point out the fact that the new optimized
code is slightly less maintainable than the original one. Thus, Integer Divide Optimization
had as a result that maintainability was affected negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table D.4, and on the optimized version of AVL in Table D.5. All those

measurements also show a decrease in maintainability after integer divide optimization.

Function Metric Pre-Value Post-Value
wcre- MI1 70.05 69.90
showdone MI2 22.44 22.25

MI3 48.00 47.88
weltab- MI1 70.05 69.91
showdone MI2 22.44 22.27

MI3 48.00 47.89

Table D.4: Function level maintainability metrics on the WELTAB system before and

after integer divide optimization

Function Metric Pre-Value Post-Value
ubi_cacheGet | MI1 88.40 88.04

MI2 87.16 86.71

MI3 104.19 103.90

Table D.5: Function level maintainability metrics on the AVL system before and after

integer divide optimization

D.2.3 Address Optimization

The objective of this performance optimization activity was to fit all the global scalar

variables of WELTAB in a global variable pool. Then, each of the global scalar variables
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gets accessed via one pointer and an offset, instead of via constant address. This way,
more expensive load and store sequences are avoided and code size is reduced. [16]
This is an example of how the global variables were declared and referenced in the

original WELTAB system:

int nwrite;

int untspilt;
int untavcbs;
int untstart;
int untnprec;
int untwards;

int unitno;

void f (void)
{
unitno = 10;

return;

Below is the new code fragment after the global variables got mapped into a global
memory pool. As we can see, the global variable unitno is now referenced by adding an

offset 6 to the pointer AddressOpt.

int Addr0pt[7];
int *AddressOpt = &AddrOpt[0];

void f (void)
{
* (AddressOpt+6) = 10;

return;

This heuristic was implemented in WELTAB only, at both the file level and the func-
tion level. The file level measurements taken on the new optimized version of WELTAB

are shown in Table D.6.
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Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.0552
RtnCtlCplSum 64.7692 65.0488
RtnCtlCplMax 9.3003 9.3846
RinExeCplAvg 7.2738 7.2759
RtnExeCplSum 308.3121 308.7840
RtnExeCplMax 18.2973 18.3047
RtnStmNbr 56.5222 56.5222
RtnXpdStmNbr 99.9482 99.9482
RtnCtlIStmNbr 15.3669 15.3669
RtnIfNbr 8.0074 8.0074
RtnSwitchNbr 0.0030 0.0030
RtnLabelNbr 2.4630 2.4630
RtnCaseNbr 0.0266 0.0266
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.6938
RtnReturnNbr 1.1036 1.1036
RtnGotoNbr 3.9571 3.9571
RtnContinueNbr 0.5888 0.5888
RtnBreakNbr 0.0133 0.0133
RtnExeStmNbr 32.6672 32.6672
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.4882
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.4867
continued on next page
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Metric Pre-Value Post-Value
RtnPrmNbr 2.1553 2.1553
RtnFctDecNbr 0.0015 0.0015
RtnStmNstLvISum 1.1562 1.1562
RtnStmNstLvlAvg 104.1405 104.1405
RtnNstLvlMax 2.4734 2.4734
RtnScpNstLvlAvg 1.7935 1.7935
RtnScpNstLvlSum 29.7544 29.7544
RtnScpNbr 10.9660 10.9660
RtnXplCalNbr 22.0414 22.0414
RtnXplCastNbr 1.2589 1.2589
RtnCycCplNbr 10.7278 10.7278
OpdNbr 179.5680 179.8772
OpdUngNbr 47.5769 47.5784
OprNbr 237.6716 238.8210
OprUngNbr 14.8003 14.8018
HalDif 23.5483 23.5686
HalEff 202943.3935 204257.1457
HalLen 417.2396 418.6982
HalLvl 0.2173 0.2173
HalVoc 62.3772 62.3802
HalVol 3060.1143 3071.5034
RtnLnsNbr 72.4719 72.4719
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.8982
MI2 36.6910 36.6559
MI3 61.3768 61.3547
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Table D.6: File level maintainability metrics on the WELTAB system before and after

address optimization

As we can see in this table, most measurements remained unchanged because of this

optimization. The most significant changes appeared in the Halstead metrics.

All of the Halstead base metrics and derived metrics increased. These measures
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include HalVoc, HalVol, Hall.vl, HalLen, HalEff, HalDif, OprUnqNbr, OprNbr, OpdUn-
qNbr, and OpdNbr. These increases can be attributed to the increases in the number of
operators and operands. These increases resulted from the fact that in the new version
of WELTARB global scalar variables get accessed by adding an offset to a pointer.

Another interesting result is the fact that RtnCtICplAvg and RtnExeCplAvg also
increased slightly. This implies that the total complexity of the decision statements, loop
statements and executable statements increased. This increase can also be attributed to
the increases in the number of operators and operands. These increases resulted from
the fact that in the optimized version of WELTAB global scalar variables get accessed
by adding an offset to a pointer.

The final observation we can make is that all the Maintainability Indexes (Mls) de-
creased. These descreases can be attributed to the fact that all Halstead’s metrics (vari-
ables that affect the Mls) increased. Thus, Address Optimization had as a result that
maintainability was affected negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table D.7. All those measurements also show a decrease in maintainability

after address optimization.

Function Metric Pre-Value Post-Value
cmprec-xfix MI1 62.39 62.37

MI2 -18.10 -18.13

MI3 11.03 11.01
cmprec-prec MI1 67.49 67.46

MI2 11.60 11.55

MI3 38.35 38.32
cmprec-vedt MI1 62.29 62.26

MI2 -18.78 -18.81

MI3 10.39 10.37
cmprec-vset MI1 75.88 75.89

continued on next page
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Function Metric Pre-Value Post-Value
MI2 41.99 42.00
MI3 64.84 64.84
cmprec-viix MI1 62.45 62.42
MI2 -17.06 -17.09
MI3 12.04 12.02
files-rsprtpag | MI1 65.23 65.22
MI2 1.74 1.73
MI3 29.54 29.54
files-prtpag MI1 65.20 65.19
MI2 1.62 1.60
MI3 29.43 29.42
report-fixw MI1 75.56 75.57
MI2 40.88 40.89
MI3 63.87 63.88
report-cmut MI1 70.77 70.78
MI2 21.93 21.93
MI3 47.15 47.15
report-chead | MI1 81.41 81.41
MI2 62.78 62.78
MI3 83.05 83.05
report-rsum MI1 68.48 68.48
MI2 13.74 13.75
MI3 40.03 40.03
report-lans MI1 67.99 67.99
MI2 11.23 11.23
MI3 37.75 37.75
report-cnvla | MI1 64.20 64.13

continued on next page
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Function Metric Pre-Value Post-Value
MI2 -10.32 -10.41
MI3 17.96 17.91
report-canv MI1 63.18 63.12
MI2 -16.50 -16.58
MI3 12.26 12.21
weltab-sped MI1 68.32 68.25
MI2 9.82 9.74
MI3 36.19 36.14
weltab-poll MI1 64.70 64.66
MI2 -4.10 -4.15
MI3 23.95 23.92
weltab-spol MI1 63.64 63.60
MI2 -10.60 -10.64
MI3 17.94 17.91
weltab- MI1 79.08 78.63
getprec MI2 56.93 56.36
MI3 78.29 77.93
weltab-pget MI1 64.15 63.73
MI2 -6.30 -6.82
MI3 22.00 21.67
weltab- MI1 67.49 67.36
showpoll MI2 15.32 15.16
MI3 42.07 41.97
weltab- MI1 70.05 69.91
showdone MI2 22.44 22.27
MI3 48.00 47.89
weltab- MI1 73.18 73.12

continued on next page
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Function Metric Pre-Value Post-Value
allowcard MI2 34.66 34.59

MI3 58.77 58.72

Table D.7: Function level maintainability metrics on the WELTAB system before and

after address optimization

D.2.4 Function Inlining

The objective of this performance optimization activity was to eliminate the overhead
associated with calling and returning from a function, by expanding the body of the
function inline.

For example, in the code fragment below, the function add() can be expanded inline

at the call site in the function sub().

int add (int x, int y)
{

return x + y;

int sub (int x, int y)
{
return add (x, -y);

Expanding add() at the call site in sub() yields:

int sub (int x, int y)
{

return x + -y,

Function inlining usually increases code space, which is affected by the size of the
inlined function, and the number of call sites that are inlined.
This heuristic was implemented in both WELTAB and AVL. In WELTAB measure-

ments were taken at both the file level and the function level. In AVL measurements
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were taken at the function level only. The file level measurements taken on the new

optimized version of WELTAB are shown in Table D.8.
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Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.0593
RtnCtlCplSum 64.7692 63.7246
RtnCtlCplMax 9.3003 9.2083
RinExeCplAvg 7.2738 7.0388
RtnExeCplSum 308.3121 324.3207
RtnExeCplMax 18.2973 17.6178
RtnStmNbr 56.5222 58.4692
RtnXpdStmNbr 99.9482 103.4348
RtnCtlIStmNbr 15.3669 15.3315
RtnIfNbr 8.0074 8.1667
RtnSwitchNbr 0.0030 0.0018
RtnLabelNbr 2.4630 2.3533
RtnCaseNbr 0.0266 0.0163
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.7409
RtnReturnNbr 1.1036 1.0851
RtnGotoNbr 3.9571 3.7609
RtnContinueNbr 0.5888 0.5616
RtnBreakNbr 0.0133 0.0145
RtnExeStmNbr 32.6672 34.5562
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.5815
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.5815
RtnPrmNbr 2.1553 2.1667
RtnFctDecNbr 0.0015 0.0000
continued on next page
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Metric Pre-Value Post-Value
RtnStmNstLvISum 1.1562 1.1675
RtnStmNstLvlAvg 104.1405 108.2319
RtnNstLvlMax 2.4734 2.5272
RtnScpNstLvlAvg 1.7935 1.8177
RtnScpNstLvlSum 29.7544 31.0471
RtnScpNbr 10.9660 11.3388
RtnXplCalNbr 22.0414 22.6975
RtnXplCastNbr 1.2589 1.1540
RtnCycCplNbr 10.7278 10.9239
OpdNbr 179.5680 185.8877
OpdUngNbr 47.5769 46.1667
OprNbr 237.6716 244.0833
OprUngNbr 14.8003 14.6902
HalDif 23.5483 24.8862
HalEff 202943.3935 223962.9441
HalLen 417.2396 429.9710
HalLvl 0.2173 0.2226
HalVoc 62.3772 60.8569
HalVol 3060.1143 3149.6310
RtnLnsNbr 72.4719 76.3424
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.4982
MI2 36.6910 35.5612
MI3 61.3768 60.4460
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Table D.8: File level maintainability metrics on the WELTAB system before and after

Function Inlining

All of the Halstead base metrics and derived metrics increased. These measures
include HalVol, Hallen, HalEff, HalDif, OprNbr, and OpdNbr. These increases can be
attributed to the increases in the number of operators and operands. These increases
resulted from the fact that in the new optimized version of WELTAB the amount of

source code has increased.
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Other measurements that increased are the number of statements in the routine
(RtnStmNbr), and executable statements (RtnExeStmNbr). These increases can also be
attributed to the increase in the amount of source code in the new version of WELTAB.
Thus, it makes sense to conclude that Function Inlining had a negative effect on main
memory utilization.

The final observation we can make is that all the Maintainability Indexes (MlIs) de-
creased. These descreases can be attributed to the fact that all Halstead’s metrics and
lines of code (variables that affect the Mls) increased. Thus, Function Inlining had as a
result that maintainability was affected negatively in the optimized system.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table D.9, and on the optimized version of AVL in Table D.10. All those

measurements also show a decrease in maintainability after function inlining.

Function Metric Pre-Value Post-Value
weltab-poll MI1 64.70 64.19

MI2 -4.10 -4.33

MI3 23.95 20.95
weltab-spol MI1 63.64 63.21

MI2 -10.60 -11.56

MI3 17.94 15.18
report-cand MI1 80.68 80.68

MI2 56.09 56.09

MI3 76.71 76.71
report.rsum MI1 68.48 67.94

MI2 13.74 12.00

MI3 40.03 38.54
report-cnvla | MI1 64.20 61.66

MI2 -10.32 -11.30

MI3 17.96 16.16

continued on next page
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Function Metric Pre-Value Post-Value
report-canvw | MI1 77.14 75.11
MI2 46.06 39.07
MI3 68.32 62.27
report-dhead | MI1 78.83 73.16
MI2 52.48 44.72
MI3 73.96 68.83
report-canv MI1 63.18 61.48
MI2 -16.50 -17.20
MI3 12.26 9.34
Baselib- MI1 88.86 71.99
setdate MI2 85.25 64.20
MI3 102.06 72.86
Baselib-cvec MI1 79.81 76.68
MI2 56.15 48.85
MI3 77.16 66.33

after function inlining

Function Metric Pre-Value Post-Value
ubi_btInsert MI1 77.85 77.73

MI2 47.39 47.24

MI3 69.32 69.22
ubi_cache MI1 91.18 90.59
Delete MI2 94.48 93.76

MI3 110.22 109.76
ubi_cache MI1 91.96 91.32

continued on next page
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Table D.9: Function level maintainability metrics on the WELTAB system before and
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Function Metric Pre-Value Post-Value
Reduce MI2 93.33 92.53
MI3 108.70 108.19
ubi_cacheSet | MI1 92.79 87.15
MaxEntries MI2 101.13 88.93
MI3 116.14 106.58
ubi_cacheSet | MI1 92.79 87.15
MaxMemory | MI2 101.16 88.98
MI3 116.14 106.58
ubi_cachePut | MI1 91.44 84.88
MI2 91.20 79.57
MI3 106.81 98.23

Table D.10: Function level maintainability metrics on the AVL system before and after

function inlining

D.2.5 Elimination of GOTO statements

The objective of this maintenance optimization activity was to minimize the number of
GOTO statements in WELTAB. This optimization falls into the category of perfective
maintenance since the software environment was not changed, no new functionality was
added, and no defects were fixed.

It is important to note that the original WELTAB C++ source code contained a
very large number of GOTO statements. It was not possible to eliminate all GOTO
statements, since in many cases removing them would have altered the source code’s
control flow. Fach GOTO statement that was eliminated got replaced with a block of
executable statements, ending with a return statement. Thus, it was ensured that the
control flow in the optimized version was exactly the same as in the original version of
WELTAB.

This heuristic was implemented in WELTAB only. Measurements were taken at both
the file level and the function level. The file level measurements taken on the new

optimized version of WELTAB are shown in Table D.11.
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Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.2050
RtnCtlCplSum 64.7692 68.3996
RtnCtlCplMax 9.3003 9.7183
RinExeCplAvg 7.2738 7.5615
RtnExeCplSum 308.3121 324.2096
RtnExeCplMax 18.2973 19.4574
RtnStmNbr 56.5222 59.0928
RtnXpdStmNbr 99.9482 102.9749
RtnCtlIStmNbr 15.3669 16.0786
RtnIfNbr 8.0074 8.4847
RtnSwitchNbr 0.0030 0.0055
RtnLabelNbr 2.4630 2.3504
RtnCaseNbr 0.0266 0.0491
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.7085
RtnReturnNbr 1.1036 1.6725
RtnGotoNbr 3.9571 3.5917
RtnContinueNbr 0.5888 0.6026
RtnBreakNbr 0.0133 0.0131
RtnExeStmNbr 32.6672 34.3941
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.6201
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.6179
continued on next page
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Metric Pre-Value Post-Value
RtnPrmNbr 2.1553 2.1987
RtnFctDecNbr 0.0015 0.0022
RtnStmNstLvISum 1.1562 1.1771
RtnStmNstLvlAvg 104.1405 109.3231
RtnNstLvlMax 2.4734 2.5240
RtnScpNstLvlAvg 1.7935 1.8219
RtnScpNstLvlSum 29.7544 31.1114
RtnScpNbr 10.9660 11.4825
RtnXplCalNbr 22.0414 23.6736
RtnXplCastNbr 1.2589 1.3930
RtnCycCplNbr 10.7278 11.2424
OpdNbr 179.5680 187.6321
OpdUngNbr 47.5769 49.0338
OprNbr 237.6716 250.5524
OprUngNbr 14.8003 15.3788
HalDif 23.5483 24.8515
HalEff 202943.3935 218348.6089
HalLen 417.2396 438.1845
HalLvl 0.2173 0.1957
HalVoc 62.3772 64.4127
HalVol 3060.1143 3209.2513
RtnLnsNbr 72.4719 75.9356
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.6085
MI2 36.6910 35.4542
MI3 61.3768 60.2877

155

Table D.11: File level maintainability metrics on the WELTAB system before and after
eliminating GOTO statements

It is important to note that maintainability did get improved by eliminating GOTO
statements. Elimination of GOTO statements is the only way to minimize the number of

unconditional branches in source code. Decreasing the number of unconditional branches
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is a key factor in improving maintainability, as it can assist a maintainer in understanding
the source code of a system. [6] In our measurements, the number of unconditional
branches is shown by the metric RtnGotoNbr, which decreased significantly after GOTO
statements were eliminated.

However, elimination of GOTO statements also affects other characteristics of source
code in varying ways, and thus maintainability may get affected in different ways. After
eliminating GOTO statements many of the DATRIX measurements showed that source
code became slightly less maintainable. These measurements are shown in Table D.11.

Eliminating GOTO statements had as a consequence that the source code’s com-
plexity increased. This is shown by the fact that all measurements related to source
code complexity went up. These measures include RtnCtlCplAvg, RtnExeCplAvg, and
RtnCycCplNbr. These changes can easily be attributed to the fact that each GOTO
statement in the C++ version of WELTAB got replaced with blocks of executable source
code.

Other measurements that increased are the number of statements in the routine
(RtnStmNbr), the number of control flow statements (RtnCtlIStmNbr), executable state-
ments (RtnExeStmNbr), declarative statements (RtnDecStmNbr), variable/object de-
calaration statements (RtnObjStmNbr), the number of function/method calls (RtnFct-
DecNbr) and the number of return statements (RtnReturnNbr). These increases can also
be attributed to the blocks of executable source code which have replaced the GOTO
statements in the new version of WELTAB. Thus, it makes sense to conclude that elim-
ination of GOTO statements had a negative effect on main memory utilization.

Another interesting result is the fact that all of the Halstead base metrics and derived
metrics increased as well. These measures include HalVoc, HalVol, Hall.vl, Hallen,
HalEff, HalDif, OprUngNbr, OprNbr, OpdUnqNbr, and OpdNbr. These increases can
be attributed to the increase in the number of operators and operands, which resulted
from the blocks of executable source code which replaced the GOTO statements.

The final observation we can make from the metrics is that all the Maintainability
Indexes (Mls) decreased. These descreases can be attributed to the fact that all Hal-
stead’s metrics, McCabe’s Cyclomatic Complexity and lines of code (variables that affect
the Mls) increased.

The function level measurements taken on the new optimized version of WELTAB
are shown in Table D.12. All those measurements also show a decrease in maintainability

after eliminating GOTO statements.
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Function Metric Pre-Value Post-Value
weltab-sped MI1 68.32 67.44
MI2 9.82 5.22
MI3 36.19 31.99
weltab-poll MI1 63.64 63.87
MI2 -10.60 -6.72
MI3 17.94 21.72
weltab-spol MI1 63.64 62.85
MI2 -10.60 -13.07
MI3 17.94 15.83
weltab- MI1 73.18 72.83
allowcard MI2 34.66 33.70
MI3 58.77 57.96
cmprec-xfix MI1 62.45 62.04
MI2 -17.06 -19.00
MI3 12.04 10.28
cmprec-viix MI1 62.45 62.09
MI2 -17.06 -18.01
MI3 12.04 11.24
cmprec-vset MI1 75.88 75.11
MI2 41.99 39.24
MI3 64.84 62.45
cmprec-vedt MI1 62.29 61.94
MI2 -18.78 -19.72
MI3 10.39 9.61
cmprec-prec MI1 67.49 67.36
MI2 11.60 10.81

continued on next page
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Function Metric Pre-Value Post-Value
MI3 38.35 37.62

report-cnvla | MI1 64.20 63.96
MI2 -10.32 -10.72
MI3 17.96 17.67

report-cmut MI1 70.77 70.62
MI2 21.93 21.46
MI3 47.15 46.75

report-fixw MI1 75.56 74.94
MI2 40.88 39.25
MI3 63.87 62.53

Table D.12: Function level maintainability metrics on the WELTAB system before and
after eliminating GOTO statements

D.2.6 Dead Code Elimination

The objective of this maintenance optimization activity was to eliminate dead code that
was unreachable or that did not affect the program. This optimization falls into the
category of perfective maintenance since the software environment was not changed, no
new functionality was added, and no defects were fixed.

It is important to note that the original WELTAB C++ source code contained a
large amount of dead code. It cannot be certain that all dead code was eliminated. How-
ever, after dead code was eliminated on some source files, the size of the files decreased
by almost half their original size. This fact alone points out the importance of dead
code elimination, not only for maintainability purposes, but also for space performance
purposes.

This heuristic was implemented in WELTAB only, at both the file level and the func-
tion level. The file level measurements taken on the new optimized version of WELTAB

are shown in Table D.13.
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Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 3.9224
RtnCtlCplSum 64.7692 26.7616
RtnCtlCplMax 9.3003 6.8142
RinExeCplAvg 7.2738 6.9737
RtnExeCplSum 308.3121 132.3684
RtnExeCplMax 18.2973 13.7926
RtnStmNbr 56.5222 26.8576
RtnXpdStmNbr 99.9482 39.2848
RtnCtlIStmNbr 15.3669 6.9195
RtnIfNbr 8.0074 3.5077
RtnSwitchNbr 0.0030 0.0031
RtnLabelNbr 2.4630 0.6533
RtnCaseNbr 0.0266 0.0279
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 0.8669
RtnReturnNbr 1.1036 1.4149
RtnGotoNbr 3.9571 0.9009
RtnContinueNbr 0.5888 0.2043
RtnBreakNbr 0.0133 0.0217
RtnExeStmNbr 32.6672 14.4272
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 5.5108
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 5.5108
continued on next page
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Metric Pre-Value Post-Value
RtnPrmNbr 2.1553 2.6780
RtnFctDecNbr 0.0015 0.0000
RtnStmNstLvISum 1.1562 1.0598
RtnStmNstLvlAvg 104.1405 40.6842
RtnNstLvlMax 2.4734 2.2043
RtnScpNstLvlAvg 1.7935 1.6468
RtnScpNstLvlSum 29.7544 13.1610
RtnScpNbr 10.9660 5.6254
RtnXplCalNbr 22.0414 9.3932
RtnXplCastNbr 1.2589 0.3406
RtnCycCplNbr 10.7278 5.4025
OpdNbr 179.5680 77.7245
OpdUngNbr 47.5769 25.4861
OprNbr 237.6716 103.7245
OprUngNbr 14.8003 12.4520
HalDif 23.5483 16.4142
HalEff 202943.3935 59274.8497
HalLen 417.2396 181.4489
HalLvl 0.2173 0.1830
HalVoc 62.3772 37.9381
HalVol 3060.1143 1198.8055
RtnLnsNbr 72.4719 35.3560
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 77.2713
MI2 36.6910 56.6653
MI3 61.3768 78.8650
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Table D.13: File level maintainability metrics on the WELTAB system before and after

eliminating dead code

Eliminating dead code had as a consequence that the source code’s complexity de-
creased. This is shown by the fact that all metrics related to source code complexity went

down, such as RtnCtlCplAvg, RtnExeCplAvg, and RtnCycCpINbr. These decreases can
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be attributed to the blocks of executable source code eliminated in the new optimized
system.

Eliminating dead code had as a consequence that all of the Halstead base metrics
and derived metrics decreased. These measures include HalVoc, HalVol, Hall.vl, Hall.en,
HalEff, HalDif, OprUngNbr, OprNbr, OpdUngNbr, and OpdNbr. These decreases can
be attributed to the decrease in the number of operators and operands, which resulted
from the blocks of executable source code eliminated in the new optimized system.

All the Maintainability Indexes (MIs) increased significantly, by nearly 30to the fact
that all Halstead’s metrics (variables that affect the Mls) decreased. Thus, Dead Code
Elimination had as a result that maintainability was affected positively in the optimized
system.

The function level measurements taken on the new optimized version of WELTAB are
shown in Table D.14. All those measurements also show an increase in maintainability

after eliminating dead code.

Function Metric Pre-Value Post-Value
report MI1 70.43 76.32

MI2 36.22 55.32

MI3 61.43 73.67
card MI1 72.76 73.23

MI2 38.32 49.23

MI3 62.78 71.06
weltab MI1 70.23 75.98

MI2 39.03 49.32

MI3 61.43 77.32
files MI1 69.45 74.32

MI2 40.01 56.98

MI3 62.67 78.02
cmprec MI1 68.04 72.76

continued on next page
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Function Metric Pre-Value Post-Value
MI2 36.43 51.56
MI3 64.98 77.32

Table D.14: Function level maintainability metrics on the WELTAB system before and

after eliminating dead code

D.2.7 Elimination of Global Data Types and Data Structures

The objective of this maintenance optimization activity was to turn global data types
and data structures to local. This optimization falls into the category of perfective
maintenance since the software environment was not changed, no new functionality was
added, and no defects were fixed.

This heuristic was implemented in WELTAB only, and measurements were taken at
both the file level and the function level. The file level measurements taken on the new

optimized version of WELTAB are shown in Table D.15.

Metric Pre-Value Post-Value
RtnComNbr 0.0000 0.0000
RtnComVol 0.0000 0.0000
RtnCtlCplAvg 4.0483 4.0364
RtnCtlCplSum 64.7692 64.5782
RtnCtlCplMax 9.3003 9.2729
RinExeCplAvg 7.2738 7.2523
RtnExeCplSum 308.3121 307.4027
RtnExeCplMax 18.2973 18.2434
RtnStmNbr 56.5222 56.3555
RtnXpdStmNbr 99.9482 99.6534
RtnCtlIStmNbr 15.3669 15.3215
continued on next page
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Metric Pre-Value Post-Value
RtnlfNbr 8.0074 7.9838
RtnSwitchNbr 0.0030 0.0029
RtnLabelNbr 2.4630 2.4558
RtnCaseNbr 0.0266 0.0265
RtnDefaultNbr 0.0000 0.0000
RtnLopNbr 1.6938 1.6888
RtnReturnNbr 1.1036 1.1003
RtnGotoNbr 3.9571 3.9454
RtnContinueNbr 0.5888 0.5870
RtnBreakNbr 0.0133 0.0133
RtnExeStmNbr 32.6672 32.5708
RtnSysExitNbr 0.0000 0.0000
RtnDecStmNbr 8.4882 8.4631
RtnTypeDecNbr 0.0000 0.0000
RtnObjDecNbr 8.4867 8.4617
RtnPrmNbr 2.1553 2.1490
RtnFctDecNbr 0.0015 0.0015
RtnStmNstLvISum 1.1562 1.1528
RtnStmNstLvlAvg 104.1405 103.8333
RtnNstLvlMax 2.4734 2.4690
RtnScpNstLvlAvg 1.7935 1.7912
RtnScpNstLvlSum 29.7544 29.6696
RtnScpNbr 10.9660 10.9366
RtnXplCalNbr 22.0414 21.9764
RtnXplCastNbr 1.2589 1.2552
RtnCycCplNbr 10.7278 10.6991
OpdNbr 179.5680 179.0383
continued on next page
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Metric Pre-Value Post-Value
OpdUngNbr 47.5769 47.4366
OprNbr 237.6716 236.9705
OprUngNbr 14.8003 14.7566
HalDif 23.5483 23.4759
HalEAf 202943.3935 202344.7375
HalLen 417.2396 416.0088
HalLvl 0.2173 0.2137
HalVoc 62.3772 62.1932
HalVol 3060.1143 3051.0844
RtnLnsNbr 72.4719 72.2611
RtnStxErrNbr 0.0000 0.0000
MI1 71.9263 71.9391
MI2 36.6910 36.7616
MI3 61.3768 61.4414

Table D.15: File level maintainability metrics on the WELTAB system before and after

eliminating global data types and data structures

Eliminating global data structures had as a consequence that all of the Halstead base

metrics and derived metrics decreased. These measures include HalVoc, HalVol, HalLvl,

HalLen, HalEff, HalDif, OprUngNbr, OprNbr, OpdUnqNbr, and OpdNbr.

The source code’s complexity also decreased. This is shown by the fact that all metrics

related to source code complexity went down. These metrics include RtnCtlCplAvg,

RtnExeCplAvg, and RtnCycCplNbr.

The final observation we can make is that all the Maintainability Indexes (Mls) in-
creased. These increases can be attributed to the fact that all Halstead’s metrics (vari-
ables that affect the Mls) decreased. Thus, Elimination of Global Data Types and Data
Structures had as a result that maintainability was affected positively in the optimized

system.

The function level measurements taken on the new optimized version of WELTAB are
shown in Table D.16. All those measurements also show an increase in maintainability

after eliminating global data types and data structures.
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Function Metric Pre-Value Post-Value
report MI1 71.92 81.02
MI2 36.69 38.91
MI3 61.38 62.04
weltab MI1 73.18 74.56
MI2 38.55 39.76
MI3 65.44 65.59

Table D.16: Function level maintainability metrics on the WELTAB system before and

after eliminating global data types and data structures

D.2.8 Maximization of Cohesion

The objective of this maintenance optimization activity was to split a class with low
cohesion into many smaller classes, each of which has higher cohesion. This optimization
falls into the category of perfective maintenance since the software environment was not
changed, no new functionality was added, and no defects were fixed.

This heuristic was implemented in AVL only, and measurements were taken at the
function level only. The function level measurements taken on the new optimized ver-
sion of AVL are shown in Table D.17. All those measurements show an increase in

maintainability after maximizing cohesion.

Function Metric Pre-Value Post-Value
SampleRec MI1 93.65 94.66
MI2 103.03 105.01
MI3 119.21 121.89

Table D.17: Function level maintainability metrics on the AVL system before and after

maximizing cohesion

D.2.9 Minimization of Coupling Through ADTs

The objective of this maintenance optimization activity was to eliminate variables de-

clared within a class, which have a type of ADT that is another class definition. This



APPENDIX D. MAINTAINABILITY MEASUREMENTS 166

optimization falls into the category of perfective maintenance since the software environ-
ment was not changed, no new functionality was added, and no defects were fixed.

This heuristic was implemented in AVL only, and measurements were taken at the
function level only. The function level measurements taken on the new optimized ver-
sion of AVL are shown in Table D.18. All those measurements show an increase in

maintainability after minimizing coupling through ADTs.

Function Metric Pre-Value Post-Value
ubi_cacheRoot | MI1 76.86 79.31
MI2 98.77 102.67
MI3 108.44 111.45
ubi_idbDB MI1 83.46 85.18
MI2 88.67 93.63
MI3 99.46 106.32
ubi_btNode MI1 92.76 96.17
MI2 92.49 93.25
MI3 116.21 117.38
ubi_idb MI1 81.07 88.93
FuncRec MI2 107.33 117.43
MI3 127.32 139.87

Table D.18: Function level maintainability metrics on the AVL system before and after
minimizing coupling through ADTs



