

Checking the Consistency of Views using PVS

Richard F. Paige, Jonathan S. Ostro�, and Phillip J. Brooke

Technical Report CS-2002-01

February 18, 2002

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Checking the Consistency of Views using PVS

Richard F. Paige1, Jonathan S. Ostroff2, and Phillip J. Brooke3

1 Department of Computer Science, University of York,
Heslington, York YO10 5DD, United Kingdom.paige@cs.york.ac.uk

2 Department of Computer Science, York University,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.jonathan@cs.yorku.ca

3 School of Computing, University of Plymouth,
Drake Circus, Plymouth, Devon, PL4 8AA, United Kingdom.philb@soc.plym.ac.uk

Abstract. A method, based on BON [17], for building reliable object-oriented
software systems was proposed in [14]. It combined use of modelling and Ex-
treme Programming [1] (XP) practices, emphasizing the use of a limited set of
views of a software system, with consistency rules and automatic generation tools
defined between the views. This paper builds upon this framework and formally
specifies the consistency constraints between the two BON views: the static view
provided by class diagrams, and the dynamic view provided by collaboration dia-
grams. The constraints are specified as an extension of the BON metamodel from
[12], and are implemented in PVS. They ensure that the sequence of messages
appearing in the dynamic view are permitted, given the contracts appearing in
the static view. A sketch of how the constraints might be implemented in a BON
CASE tool is also provided.
A revised version of this paper was published in Proc. Fourth Workshop on Rig-
orous Object-Oriented Methods (ROOM4), London, UK, Springer, March 2002.

1 Introduction and Motivation

Consistency checking of documents has long been an important task in software de-
velopment. It has particularly been emphasized with recent work on viewpoint specifi-
cation [7] and combining specifications [18]. With the recent interest in UML [2], the
consistency checking of independently constructed models of a software system has
become of increasingly significant interest.

Consistency checking of software models involves the use of constraints, algo-
rithms, and tools to check that information described in one model is not contradicted
by information described in another model. In a setting where formal specifications of
models are available, this is essentially the problem of checking that a conjunction of
predicates – each a formal specification of a model – is satisfiable. In general, com-
plete formal specifications of models are usually unavailable, and thus the problem of
consistency checking is made more complex and challenging.

UML is a particularly interesting language for describing software systems and
maintaining consistency of description. It supports the use of up to four different views
of a software system. These views may be constructed independently, may overlap, and
thus may contradict each other. The intent of using multiple views is to describe differ-
ent aspects or elements of a system in the most appropriate way. The different descrip-
tions are to be combined to form a consistent, complete, checkable description of the

software system that can be used thereafter to generate executable code. Unfortunately,
UML does not provide a full set of rules or tools to check consistency. Many consistency
constraints are specified in the UML metamodel [8] and certain UML-compliant CASE
tools implement many of these. However, some of the complex constraints, which in-
volve information scattered across very different views of the software system, are not
implemented in any tool, and thus developers must rely on their own expertise to iden-
tify and resolve inconsistencies.

The UML supports two fundamental models:class diagramsandcollaboration di-
agrams. These diagrams present, respectively, static structural information about a sys-
tem, as well as dynamic information about behaviour, the latter captured by describing
objects and the messages passed between them. So fundamental are these two types of
models in OO computing that they are supported in a number of object-oriented (OO)
modelling languages, including OMT, Fusion, and BON [17].

The aim of this paper is to formally specify and describe implementations of consis-
tency constraints between BON views – particularly, but not exclusively, class diagrams
and collaboration diagrams – that can be produced during software development. These
rules will be used in the context of a proposed methodology for building reliable sys-
tems [14]. This methodology is novel in that it integrates object-oriented modelling and
the practices of Extreme Programming (XP) [1], thus allowing developers to work with
code, test drivers, or models, as needed. This motivates the need to allow development
products – e.g., code and models – to be consistent by construction, and also to provide
tools to check the consistency of products. The consistency constraints will be spec-
ified as an extension of the metamodel of BON presented first in [12]. As such, the
constraints will be specified in PVS [9], so that theorem proving technology can be ex-
ploited both in checking the consistency of views, and in validating the specifications of
the constraints. The intent is to use these specifications, and their implementations, in
the construction of a CASE tool for BON that supports consistency checking and also
consistent views by construction.

We shall use the BON language for describing the two different views applied by the
methodology, in part because of its simplicity and our familiarity with it. However, the
rules that we present in this paper are not BON-dependent; they can be applied equally
well to UML and other modelling languages that support these two views.

The methodology in which the consistency rules are to be specified integrates OO
modelling and XP; thus, a programming language is required with which to describe
test drivers. We use Eiffel [6] for this purpose. An advantage of Eiffel is that it offers
built-in support for specifying contracts (pre- and postconditions), which can assist in
the testing process. However, the rules that we develop and present in this paper are
not Eiffel-dependent; they can be applied equally well to Java, C++, and other OO
programming languages as well.

1.1 Overview

We commence with a brief overview of the methodology of [14], focussing on the nota-
tions used and the manner in which XP is integrated with modelling. We describe BON
very briefly, and present an example of each type of BON diagram. We then specify the
notation used throughout the paper and define the relationcw ,“consistent-with”, which

can be applied to development work products. Then we explain consistency check-
ing of class diagrams against collaboration diagrams, specify well-formedness rules in
BON and in PVS, and outline an implementation. We do the same for checking test
drivers against collaboration diagrams. This is the key link between modelling and XP
test drivers, which are interpreted as implementations or refinements of collaboration
diagrams. We then briefly explain how the constraints are being implemented in our
research prototype.

2 Background

We briefly summarize the methodology that integrates OO modelling and XP from
[14], since the methodology provides the motivation for constructing the consistency
constraints. Then, we outline BON and Eiffel, focussing on the elements of their syntax
used throughout the remainder of the paper. In particular, we will make use of the BON
text-based notation for writing classes and interfaces, and its graphical notation for
writing collaborations.

2.1 A Methodology integrating XP and object-oriented modelling

A methodology that follows and supports the principles and practices of XP, while
still allowing OO modelling to be used, was presented in [14]. The methodology, as
proposed, makes use of a selection of OO modelling diagrams, source code (e.g., in
Eiffel or Java or some other suitable OO programming language), and test drivers. Test
drivers provide a fundamental link between OO modelling and XP practices.

A key difficulty in integrating XP and OO modelling is to allow code to be written
before modelling, and to allow modelling before writing code - i.e., to allow developers
to select the work product to use at the start of development. It is essential to allow
this level of flexibility, so that testing can be carried out when desired, and so that the
abstraction capabilities of modelling languages can be fully exploited.

Parts of the methodology are summarized in Fig. 1. The diagram uses UML’s pack-
age and dependency notations to illustrate the work products delivered by the method-
ology, and their relationships.

A key element of Fig. 1 is the relationship between test drivers and collaboration di-
agrams: a collaboration diagram is viewed as an abstraction of a test driver. Tool support
is to be provided so that, given a collaboration diagram, the outline of an executable test
driver can be produced; and, given a test driver, a collaboration diagram can automat-
ically be produced. The second key aspect of this diagram is the relationship between
class and collaboration diagrams: given one of each such diagrams, we desire to be able
to show the consistency of the information contained in both descriptions.

Descriptions of how the relationships between work products can be established are
outlined in [14]. In this paper, we focus on the relationships involving collaboration
diagrams and class diagrams. Specifically, we will describe how consistency between
these work products can be established, directly via use of a metamodel and tools such
as PVS, and indirectly via use of test drivers.

Source Code

Use−Case
Diagrams

Test Drivers

Class
Diagrams

<<refine>>

<<use>>

Collaboration
Diagrams

Consistency check or
reverse engineering

Reverse engineering

<<derive>>

Consistency by

<<use>>

<<derive>>

<<derive>>

<<use>>

executing the test
drivers and checking
contracts

Fig. 1. Work products and their relationships

With this restricted set of work products, and with the relationships defined in Fig. 1,
developers can follow the principles of XP where needed, and can also apply modelling
where desired as well. Further, the tools and process supplied with the methodology can
support the developers in switching between work products when needed.

2.2 BON and Eiffel

BON is an OO method possessing a recommended process as well as a graphical lan-
guage for specifying object-oriented systems. The language provides mechanisms for
specifying classes and objects, their relationships, and assertions (written in first-order
predicate logic) for specifying the behaviour of routines and invariants of classes.

The fundamental construct in BON is the class. A class has a name, an optional
class invariant, and zero or more features. A feature may be anattribute, a query–
which returns a value and does not change the system state – or acommand, which
changes system state but returns nothing. Fig. 2 contains an example of a BON model
for the interface of a classCITIZEN . A graphical notation is also available for writing
class interfaces; it is summarized in [12].

BON models consist of one or more classes organized inclusters(drawn as dashed
rounded rectangles that may encapsulate classes and other clusters). Classes and clus-
ters interact via two general kinds of relationships.

– Inheritance: Inheritance defines a subtyping relationship between a child and one
or more parents.

– Client-supplier: there are two client-supplier relationships, association and aggre-
gation. Both relationships are directed from aclient to asupplier. Association de-
picts reference relationships, while aggregation depicts subobject (or part-of) rela-
tionships. Client-supplier relationships can be drawn between classes and clusters;
recursive rules are given in [17] to explain the meaning of cluster relationships.

BON also provides notation for collaboration diagrams, showing the communica-
tion between objects. Fig. 3 shows an example. Numbers that annotate messages are

classCITIZEN
inherit PERSON
featurefANY g

name; sex : STRING
age : INTEGER
spouse : CITIZEN
children; parents : SET [CITIZEN]
single : BOOLEAN is

ensureResult = (spouse = Void)
divorce is

modifiesspouse
require: single

ensuresingle ^ (old spouse):single

featurefEMPLOYER;GOVERNMENTg
salary : REAL

invariant
single or married : single _ spouse:spouse = Current ;
number of parents : parents:count � 2;
symmetry : 8 c 2 children � 9 p 2 c:parents � p = Current

end

Fig. 2.ClassCITIZEN

cross-referenced to a scenario box, detailing the purpose of the message. Messages in
dynamic diagrams correspond to feature calls.

SQUARE

CIRCLE

SET

ROOTGROUP
(outer)

1

2

4

3

Fig. 3. BON collaboration diagram

Eiffel is a pure OO programming language with some similarities to Java. It empha-
sizes the use of design-by-contract, via the specification of pre- and postconditions for
class features, and invariants for classes. It is syntactically very similar to the BON tex-
tual notation shown in Fig. 2, except that features can include bodies, and its assertion
language is executable and supports only propositions, and not quantifiers (though the
latest Eiffel implementation supports a notion ofagentthat increases the expressiveness
of the executable assertion language substantially). Eiffel is semantically compatible
with BON, in that BON models can be seamlessly mapped to Eiffel programs.

3 Notation and Foundations

The eventual goal of our work is to be able to check anywork product,WP , against any
other work product for consistency. A work product, in the context of the methodology
of [14], is defined as any one of:

– Machine-checkable Eiffel source code, where classes and routines are annotated
with pre/postconditions and invariant clauses.

– A class diagram, showing classes, assertions, and class relationships.
– A collaboration diagram, showing objects and message passing.
– A test driver, which is an Eiffel class that executes a sequence of routines on one or

more objects and checks that relevant conditions hold.

Informally, we desire to define a“consistent-with” relationcw : WP $ WP ,
which obeys several important properties that relate to the methodology of [14] (we
assume thatcw is an infix relation):

– symmetry, i.e.,wp1 cw wp2 = wp2 cw wp1.
– transitivity (which, as we discuss below, is useful for methodological support).

– reflexivity, i.e., a work product is always consistent with itself.

Transitivity ofcw is very useful, as the following illustrates. Suppose thatCD ;DD ;TD ;

andSC are work products representing, respectively, a class diagram, collaboration di-
agram, test driver, and source code. Suppose as well that we want to show that

CD cw DD

(i.e., that a class diagram is consistent with a collaboration diagram). One approach to
this is:

(CD cw SC) (1)

(DD cw TD) (2)

(SC cw TD) (3)

If cw is transitive, then

(1) ^ (2) ^ (3) ! (CD cw DD)

It is straightforward to guarantee that a class diagram and source code are consistent
(equation (1)); either forward engineer code from diagrams, or reverse engineer dia-
grams from code. Alternatively, an abstract syntax tree can be built for the code and it
can be traversed, checking components against elements in the graph underpinning the
class diagram. Similarly, checking source code against a test driver, equation (3), is also
easy: compile the test driver and execute it. If it compiles, executes, and all tests are ac-
cepted, the two products are consistent. Equation (2), checking collaboration diagrams
against test drivers, is more complicated, and will be described in the sequel; a sketch
of an algorithm was presented in [14].

Thus, one approach to consistency checking of collaboration diagrams and class di-
agrams is by exploiting the transitive properties of thecw relationship and by making
use of test drivers as an intermediate product. But it is also desirable to be able to check
collaboration diagrams against class diagrams directly. This is important because de-
velopers may not want to have to create test drivers in order to do consistency checking
(they may not, for example, be following the principles and guidelines of XP). In the
next section, we specify consistency constraints for these diagrams, and then discuss
how these constraints can be implemented in a CASE tool.

4 Checking Collaboration Diagrams Against Class Diagrams

The goal is to check the consistency of a BON collaboration diagram against a set of one
or more BON class diagrams, and if the diagrams are not consistent, to report where the
inconsistencies arise. Inconsistencies can arise due to object declaration (e.g., an object
is unassociated with any class), or routine invocation (e.g., a routine is being called by a
client that does not have permission to do so, based either on information hiding rules,
or on preconditions). It is critical to observe that class diagrams contain only contracts,
and not implementations, of routines. Further, the BON assertion language, based on

first-order predicate logic, contains constructs that are not executable (e.g., quantifiers
over unbounded domains). Thus, in general, consistency checking will not be possible
by direct simulation, and will likely require user intervention.

There are several main steps to checking the consistency of class diagrams and
collaboration diagrams.

1. Ensure that the two diagrams are syntactically correct; there is a BON CASE tool
that will do this for us.

2. Ensure that the diagrams are semantically correct in the sense that they obey typing
and scoping rules (e.g., all classes arising in an interface appear in a class diagram).

3. Check that the sequence of messages being fired in the collaboration diagram is
allowable given the pre/postconditions of the routines in the class diagram.

We consider these steps in order, skipping (1) since the BON CASE tool is described
elsewhere [10]. The remaining constraints will be specified as an extension of the meta-
model of BON first presented in [12]. Some of these constraints, e.g., those in (2), are
easily implemented in a CASE tool. Since the BON CASE tool implements the BON
metamodel, we thus have a way of ensuring that they are satisfied. Other constraints are
more complex, and thus we will express them using the PVS language, so that we can
thereafter use the PVS system to check the constraints.

Before specifying the rules in (2) and (3), we briefly recount the key parts of the
BON metamodel from [12]. The BON metamodel consists of two clusters and one root
class,MODEL; every BON model is an instantiation ofMODEL. The general outline
of the metamodel is in Fig. 4.

ABSTRACTIONS RELATIONSHIPS

MODEL
abs: SET[..]

Fig. 4. BON metamodel, abstract view

Well-formedness constraints in the metamodel are specified as clauses in the invari-
ant ofMODEL, or in individual classes appearing in the clustersABSTRACTIONS

or RELATIONSHIPS . New constraints for the rules in (2) and (3) will also be inte-
grated into the metamodel as invariant clauses (as we discuss shortly).

We now present the consistency constraints, and in doing so apply the textual di-
alect of BON. These specifications will be used in formulating machine-checkable PVS
specifications which can then be applied in automatically proving that a collaboration
diagram is consistent with a class diagram.

First, we recap the concept of a routine of a class from [12] (with one extension
- the notion of aspecification). A routine has a name, a possibly empty sequence of
parameters, a set of accessors, a pre- and postcondition, and a specification, which cor-
responds to the semantics of the routine. (In [12], a routine is specialized into queries,
which return values, and commands, which change the state of the system; this is a level
of complexity that we can ignore in this paper.) Here is the interface ofROUTINE .

class ROUTINE feature

name : STRING

parameters : SEQUENCE [PARAMETER]

pre; post ; spec : BOOLEAN

accessors : SET [CLASS]

invariant spec = ((old pre) ! post ^ t � old t ^ t 6= 1)

end� ROUTINE

spec is the semantics of the routine;t is a global clock. According to the invariant of
ROUTINE , the specification of the routine is satisfied if any implementation starts in
a state satisfying the precondition and terminates in finite time in a state satisfying the
postcondition. The semantics of specifications is in [11], where a calculus for refining
BON specifications to Eiffel programs is provided.

Part of the PVS formulation of the BON classROUTINE is given below; missing
details may be found in [12]. A new non-empty type is introduced, and features of the
BON class are transformed to PVS functions. The precondition and postcondition are
formalized as functions mapping a routine and state (the latter represented as one or
two sets of entities) to a boolean value.

FEATURE: TYPE+
ATTRIBUTE, ROUTINE: TYPE+ FROM FEATURE

routine_name: [ROUTINE -> string]
feature_pre: [ROUTINE, set[ENTITY] -> bool]
feature_post: [ROUTINE, set[ENTITY], set[ENTITY] -> bool]

Expressing the concept of a routine specification in PVS is more complicated. The
complication does not arise in expressing a specification directly, but incombining
specifications. Thus, our formulation of specifications is aimed at being able to (se-
quentially) compose them in the sequel. The formalization of specifications of a routine
initially requires a new type,SPECTYPE, which is a record containing the initial and
final state of a specification, along with the value of the specification; initial and final
state are sets of entities. The functionsoldstate andnewstate produce the entities
associated with a routine (given the class in which the routine arises), specifically the
parameters, local variables, and accessible attributes. It is necessary to introduce a new
type for specifications so that theframeof a specification can be expressed.

SPECTYPE: TYPE+ =
[# old_state: set[ENTITY], new_state: set[ENTITY],

value: [set[ENTITY], set[ENTITY] -> bool] #]

oldstate, newstate: [ROUTINE, CLASS -> set[ENTITY]]

A specification can now be defined in terms of the new type.

spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE]

spec_ax: AXIOM
(FORALL (rou1:ROUTINE): (FORALL (c:CLASS):

(member(rou1,class_features(c)) IMPLIES
(spec(rou1,oldstate(rou1,c),newstate(rou1,c)) =

(# old_state := oldstate(rou1,c), new_state := newstate(rou1,c),
value := (LAMBDA (o:{p1:set[ENTITY] | p1=oldstate(rou1,c)}),

(n:{p2:set[ENTITY] | p2=newstate(rou1,c)}):
feature_pre(rou1,o) IMPLIES feature_post(rou1,o,n)) #)))))

Thespec_ax axiom states that the prestate and poststate of a specification are that
of the routine, and the value of the specification is a function from pre and poststate
to a boolean, where the boolean istrue if and only if the precondition implies the
postcondition (we omit time variables from the PVS translation for simplicity, but it is
straightforward to add them).

The classSEQUENCE is defined in [6]; it represents a packaged, indexable data
structure of arbitrary but finite length. Here is an excerpt of its interface, presenting the
routines that are relevant to this work.item returns the specified item in the sequence,
while head andtail return the first element and all but the first element in the sequence,
respectively.subseq(t) returnstrue iff t is a subsequence of the current object, while
precedes(g1; g2) is true iff elementg1 occurs beforeg2 in the sequence. In producing
the PVS formalization ofSEQUENCE , we use the built-in notion of a finite sequence.

class SEQUENCE [G] feature

size : INTEGER

item(i : INTEGER) : G

tail : SEQUENCE [G]

head : G

subseq(t : SEQUENCE [G]) : BOOLEAN

precedes(g1; g2 : G) : BOOLEAN

invariant size � 0

end � SEQUENCE [G]

Now we can specify the concept of a message that appears in a collaboration di-
agram; messages were specified in [12], but we modify the definition slightly here.
Informally, a message corresponds to a routine call invoked on one or more target ob-
jects. More formally, a message in a collaboration diagram consists of a source and a
target, a routine (which is the implementation of the message) and a message number.
In general, the source and target may be sets of objects, but for simplicity we consider
only the case where a message is sent from and to a single object. Recursive rules are
given in [17] for unrolling messages applied to clusters.

classMESSAGE feature

source; target : OBJECT

routine : ROUTINE

number : INTEGER

invariant number � 1

end � MESSAGE

A partial specification of the PVS formulation of messages follows. A new type is
introduced, and the features of theMESSAGE class are represented as functions on
the new type.

MESSAGE: TYPE+ FROM ABS
routine_message: [MESSAGE -> ROUTINE]
number_message: [MESSAGE -> nat]

Now we can specify the concept of a collaboration diagram. This requires us to
extend the specification of the metamodel from [12]. Specifically, we must extend the
classMODEL. A model consists of a set of abstractions (which may be clusters, ob-
jects, classes, and object clusters) and a set of relationships. To this class, we add, via
inheritance, several private features that will be used to produce all abstractions and
relationships that make up a collaboration diagram.

Aside.BON obeys thesingle model principle[13], in that a unique model
of a system exists, from which different views can be generated. In this way,
consistency of views is guaranteed. Thus, in the metamodel for BON, there
is a unique class,MODEL, defining the well-formedness constraints on mod-
els. Features of this class can be used to generate views. New views can be
added by inheriting fromMODEL and adding new features. It is not within
the spirit of BON to add new views by adding new subclasses ofMODEL,
e.g.,DYNAMIC MODEL, etc., as this can easily introduce inconsistencies.

The existing classMODEL includes all features and constraints necessary to model
collaboration diagrams. However, it is inconvenient to use for validating the consis-
tency of class diagrams and collaboration diagrams directly. Thus, for convenience, we
restructureMODEL slightly, via inheritance, and introduce several new features for
checking the consistency of class diagrams and collaboration diagrams. In particular,
we add a feature representing the set of objects appearing in a model, the sequence of
messages and routine calls appearing in a collaboration diagram, a scenario box (a free-
form block of text describing what is represented by the messages), and features for
producing the collaboration diagram view and the class diagram view from the single
model. As well, invariant clauses are added to the extension ofMODEL; further clauses
will be added shortly for checking the consistency of the views. Here is the interface
of EXTENDED MODEL. Note that all new features, with the exception of those for
generating new views, are private.

classEXTENDED MODEL inherit MODEL

feature fNONEg

occurs : SET [OBJECT]

sequence : SEQUENCE [MESSAGE]

scenario box : TEXT

calls : SEQUENCE [ROUTINE]

feature fANY g

class diagram : EXTENDED MODEL

collab diagram : EXTENDED MODEL

invariant

msgs in rels;

calls linked to msgs;

objects in occurs;

objects in abs;

same lengths

end � EXTENDED MODEL

The invariant clauses are as follows. The clausemsgs in rels says that each mes-
sage in thesequence is a relationship in the model.

8 s 2 sequence j 9m 2 rels �m = s

The clausecalls linked to msgs states that each call appearing in sequencecalls at
elementi is the routine associated with the message appearing insequence at element
i .

8 s1; s2 2 sequence j sequence:precedes(s1; s2) �

9 c1; c2 2 calls j calls:precedes(c1; c2) �

s1:routine = c1 ^ s2:routine = c2

objects in occurs states that each object in the source or target of a message occurs in
the collaboration diagram.

8m 2 sequence � 8 s 2 m:source � s 2 occurs ^

8 s 2 m:target � s 2 occurs

objects in abs is similar, and says that each object in the setoccurs is in the set of
abstractions belonging to the model.

occurs � abs

Finally, same lengths states thatcalls andsequence are the same length.

calls :length = sequence:length

The functionsclass diagram andcollab diagram produce the two views of the
model. These are defined as follows.

class diagram : EXTENDED MODEL

ensure Result :abs = fa 2 abs j a : STATIC ABSg;

Result :rels = fr 2 rels j r : STATIC RELg

collab diagram : EXTENDED MODEL

ensure Result :abs = fa 2 abs j a : DYNAMIC ABSg;

Result :rels = fr 2 rels j r : MESSAGEg

To expressEXTENDED MODEL in PVS, we could introduce a new subtype
(representing the type of extended models), and then could map each routine of the
BON class to a PVS function. A new PVS subtype is not strictly needed, since PVS
does not provide the object-oriented structuring facilities of BON. Thus, adding new
functions or attributes to the PVS specification is in fact easier that with BON. The
translation process is as follows. We introduce new functions (that operate on variables
of typeMODEL) representing the additional features that we require, e.g., representing
class diagrams, collaboration diagrams, etc.

objects_model: [MODEL -> set[OBJECT]]
sequence_model: [MODEL -> finseq[MESSAGE]]
calls_model: [MODEL -> finseq[ROUTINE]]

class_diagram collab_diagram: [MODEL -> MODEL]

The invariant clauses inEXTENDED MODEL will each be mapped to PVS ax-
ioms. Here is an example, stating thatcalls is a projection ofsequence (the other axioms
are straightforward translations of the BON constraints).

calls_linked_ax: AXIOM
(FORALL (mod1:MODEL):

(FORALL (i:{j:nat|j<length(sequence_model(mod1))}):
routine_message(sequence_model(mod1)(i))=calls_model(mod1)(i)))

To formalize the routinesclass diagram andcollab diagram, we introduce two
new functions. The specifications of each are similar, so we present only the PVS spec-
ification ofcollab diagram here.

collab_diagram_ax: AXIOM
(FORALL (mod1:MODEL):

abst(collab_diagram(mod1)) = { da:DYN_ABS | member(da,abst(mod1))} AND
rels(collab_diagram(mod1)) = { m:MESSAGE | member(m,rels(mod1)) })

We can now formally define the “consistent-with” relationship. Supposexm : EXTENDED MODEL,
and letxm:cd andxm:dd be short-hands forxm:class diagram andxm:collab diagram,
respectively. The formal definition ofxm:cd cw xm:dd is a number of constraints that
must be contained in the invariant ofEXTENDED MODEL. For each constraint, a
PVS formulation is provided when it cannot be found in [12].

1. Each object appearing in the collaboration diagram has a corresponding class in the
class diagram.

8 o 2 m:dd :occurs � 9 c 2 m:cd :abs j c:type : CLASS � o:class = c

(Note thatm:cd :abs , defined in [12], is the set of abstractions appearing in the class
diagram.)

2. Each message in the collaboration diagram has a corresponding routine call, and
that call is permitted based on the list of accessors provided with each routine.

8msg 2 m:dd :sequence �

8 o 2 msg :source � o:class 2 msg :routine:accessors

3. Each routine appearing in a message must actually belong to the target class of
the message (i.e., routines that are called must exist). This will be checked by the
compiler/CASE tool and as such we do not specify it here. However, it is captured
in the full specification of the BON metamodel referenced in [12]. The constraint
in [12] is more general in that it checks all features (including attributes) to ensure
that they exist. This ensures that if a message is sent from one object to another,
there is a link between the two objects.

4. Constraint (2) establishes that each message in a collaboration diagram corresponds
to a routine call. The routines that are called must be enabled (i.e., their precondi-
tions must be true). A precondition can only be true if the sequence of previous calls
to routines left the state of the system satisfying the precondition. To check this, an
initial state,init , must be provided (by the developer). The following condition
must be true.

init ! m:dd :calls :item(1):pre

i.e., the developer-supplied initial state (specified as a predicate) must imply the
precondition of the first element in the sequence of calls in the collaboration dia-
gram. In PVS, this is specified as follows.init is translated to a function mapping
a model and a set of entities (the state) to a boolean.

init: [MODEL, set[ENTITY] -> bool]

init_ax: AXIOM
(FORALL (mod1:MODEL):

(FORALL (old_s:set[ENTITY]):
init(mod1,old_s) IMPLIES feature_pre(calls_model(mod1)(0),old_s)))

What about calls after the first? For a calli � 2 to be enabled, the preceding calls
1; ::; i � 1 must produce a state satisfying the precondition of calli . We can obtain
this state by first sequentially composing the specifications of calls1; ::; i � 1. This
results in a double-state predicate (i.e., in the user-supplied initial state and in the
post-state of calli � 1). We then project out the post-state and check that the result

satisfies the pre-state of calli . Formally:

8 i : 2; ::; dd :calls :length �

(dd :calls :item(1):spec ; : : : ; dd :calls :item(i � 1):spec)!

dd :calls :item(i):pre

(Recall that the definition of sequential composition is the following:

P ; Q = 9 s 0 � P [s := s 0] ^Q [old s := s 0]

wheres 0 is an intermediate state, i.e., for every sequential composition, there is an
implicit existential quantification that needs to be instantiated and simplified.)

Expressing the above constraint in PVS is challenging. The problem lies in formal-
izing the definition of sequential composition: an explicit specification of the state of
a routine is required so as to capture the frame of each specification, and to be able
to define an intermediate state. Sequential compositionP ; Q can be formalized in
PVS as follows, using functionseqspecs . It takes as argument two variables of type
SPECTYPEand returns aSPECTYPEresult.

seqspecs: [SPECTYPE, SPECTYPE -> SPECTYPE]

seqspecs_ax: AXIOM
(FORALL (s1,s2: SPECTYPE):

seqspecs(s1,s2) =
(# old_state := old_state(s1), new_state := new_state(s2),

value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),
(n:{p2:set[ENTITY] | p2=new_state(s2)}):

(EXISTS (i: set[ENTITY]): value(s1)(o,i) AND value(s2)(i,n)))
#))

seqspecs must be lifted to apply to a finite sequence of specifications in order to
formalize constraint (4). This is expressed as functionseqspecsn .

seqspecsn: [finseq[SPECTYPE] -> SPECTYPE]

seqspecsn_ax1: AXIOM
(FORALL (seq1: finseq[SPECTYPE]):

length(seq1)=2 IMPLIES seqspecsn(seq1) = seqspecs(seq1(0),seq1(1)))

seqspecsn_ax2: AXIOM
(FORALL (seq1:finseq[SPECTYPE]):

length(seq1)>2 IMPLIES
seqspecsn(seq1) = seqspecs(seq1(0),seqspecsn(rest(seq1))))

To complete the PVS formalization of constraint (4), we define a function to convert
a sequence of messages into a finite sequence ofSPECTYPEs.

convert: [finseq[MESSAGE] -> finseq[SPECTYPE]]

convert_ax: AXIOM
(FORALL (msgs1:finseq[MESSAGE]):

length(msgs1)=length(convert(msgs1)) AND
(FORALL (i:{j:nat|j<length(msgs1)}):

(EXISTS (c:CLASS):
member(routine_message(msgs1(i)),class_features(c)) IMPLIES

convert(msgs1)(i) =
spec(routine_message(msgs1(i)),

oldstate(routine_message(msgs1(i)),c),
newstate(routine_message(msgs1(i)),c)))))

Effectively,convert states that each element of the converted sequence is identi-
cal to the corresponding message’s routine details. Now the view consistency constraint
can be formally expressed in PVS.

views_consistent: AXIOM
(FORALL (mod1:MODEL):

(FORALL (i:{j:nat|0<j AND j<length(calls_model(mod1))}):
LET loc_spec:SPECTYPE = (seqspecsn(convert(sequence_model(mod1)ˆ(0,i-1)))) IN

(value(loc_spec)(old_state(loc_spec),new_state(loc_spec)) IMPLIES
feature_pre(calls_model(mod1)(i),

oldstate(calls_model(mod1)(i),
object_class(msg_target(sequence_model(mod1)(i))))))))

This axiom first declares a local variable,loc_spec , which is the result of sequen-
tially composing the firsti specifications in messages in the model. This specification
must then imply the precondition of the routine of messagei + 1 in the model.

This is a specification of the consistency relationcw for collaboration diagrams and
class diagrams. We might prefer to have an algorithmic description of the consistency
checking process; however, we view an algorithmic description as an implementation
of the specification ofcw above. The next subsection briefly suggests how the BON
CASE tool might support this consistency checking.

4.1 Implementation and algorithms

An implementation of consistency checking of collaboration diagrams and class di-
agrams follows the following process. First, assume that rules (1), (2), and (3) above,
have been checked – this is straightforward and can easily be implemented in the CASE
tool framework of [10] (in fact, most of these rules have already been implemented).
Rule (4) is to be checked, informally, as follows: convert the collaboration diagram
into an annotated finite state machine (FSM), following this algorithm. Given a user-
supplied initial state (specified as an assignment of values to entities), simulate the finite
state machine. Each state in the machine represents the execution of a routine; a transi-
tion represents the termination of one message and the commencement of the next. On
entry to the state, the precondition of the routine is checked; if it is satisfied, simulation
continues, otherwise it halts and feedback is provided. On exiting the state, the speci-
fication of the routine (i.e.,routine:spec, as above) is added to aconstraint store. This
constraint store might be a set of conjectures in PVS. One might envision PVS running
in the background, discharging obligations as they are generated by the simulation. An

alternative to using PVS would be to consider a constraint store akin to that used in con-
straint programming. A constraint solver could then be applied as each new condition
is added.

To complete the implementation, we must indicate how the “next state” in the state
machine is selected. This is done according to sequence number. So, after executing in
statea:f (representing the calla:f) which has sequence numbern, the next state will
be the one reachable with sequence numbern + 1.

Producing a FSM from a collaboration diagram is straightforward and follows the
approach of [3]. We produce a FSM because it is a simple computational model and it
is easy to implement; it is also sufficient for simulating BON collaboration diagrams.
Much of the complexity of the translation in [3] arises from UML’s sequence diagrams
(including concepts such as return calls, exception handling, and nesting). These prob-
lems do not in general arise in BON collaboration diagrams. The above algorithm is
currently being implemented in the BON CASE tool of [10].

5 Checking Collaboration Diagrams against Test Drivers

The approach described in the previous section shows how to check a collaboration
diagram against a class diagram for consistency. When developing software using the
methodology of [14], it is possible that developers will have constructed test drivers.
These can be used not only for the usual testing purposes but also in the consistency
checking process, as discussed in Section 3: consistency of class diagrams and collab-
oration diagrams can be tested indirectly via checking collaboration diagrams against
test drivers. In this section we summarize how this latter check can be specified and
implemented. To do so, we define thecw relationship for test drivers and collaboration
diagrams. We do this using the infrastructure set up for direct checking of collaboration
diagrams and class diagrams. Consider the following test driver, written in Eiffel.

classTEST DRIVER

creation make

feature r : REPOSITORY ; s : SET ; b : BUYER; a : ADDRESS ;

feature

make is do

create r ; create s; create b; create a;

r :get leads; s:get next buyer ; b:get address; a:print

end

end � TEST DRIVER

We want to determine if the sequence of calls appearing in the test driver is an
implementation of the calls appearing in the collaboration diagram. Unfortunately, we
cannot just take the FSM constructed in the previous section and simulate it directly
as follows: on entry to each state, execute the next routine call appearing in the test
driver. This is insufficient because the test driver may make calls to routines that do not

appear in the collaboration diagram (i.e., implementation details). Thus, we consider
the following approach.

Define a test driver using a BON class as follows. Theoccurs set describes the
names of all objects appearing increate statements in the test driver,calls is the se-
quence of routine calls appearing in the source text, andsource text is the sequence of
strings that make up the body of the test driver.

classTEST DRIVER feature

occurs : SET [OBJECT]

calls : SEQUENCE [ROUTINE]

source text : SEQUENCE [STRING]

end � TEST DRIVER

The following well-formedness constraints apply for all test drivers; they are constraints
that are part of the invariant forTEST DRIVER.

1. For each entity occurring in a test driver, there is a suitable instantiation and creation
statement.

8 o 2 occurs � 9 i : 1; ::source text :length �

source text :item(i):includes(o:name) ^ source text :item(i):includes(\create")

2. If a messagei precedes a messagej in the sequence of test driver messages, then
the routine call corresponding toi in the source text precedes the routine call forj .

8 i ; j : 1; ::; calls :length j i < j �

9 u; v : 1; ::; source text :length j u < v �

source text :item(u):includes(calls :item(i):text) ^

source text :item(v):includes(calls :item(j):text)

(where a callr :text for a routiner produces a string representation of the routine
call). Note that we do not have to worry about loops or selections in the test driver
source text; all we have to concern ourselves with are calls. Consider the following
example fragment of a test driver.

class SIMPLE TEST DRIVER feature

: : :

make is do

: : :

from i := number of test runs;

until i = 0;

loop

contents:test1(i); contents:test2(i); frame:test3(i);

i := i � 1;

end

end

end � SIMPLE TEST DRIVER

This test driver can generate a fixed number of messages sent, in order, tocontents

andframe. The sequence of routine calls associated with this test driver will contain
number of test runs concatenations of the subsequence

< contents :test1; contents :test2; frame:test3>

However, this repetition will not be captured in the collaboration diagram – it will
show the subsequence once. Thus, its sequence of routine calls will contain the
above subsequence exactly once, and the test driver is therefore an implementation
of the collaboration diagram.
We can extract the calls very simply from the source text as follows. First, construct
an abstract syntax tree (parse tree) from the test driver. Then, using an in-order
traversal of the parse tree, concatenate all targeted routine calls that are encoun-
tered. This produces the sequence of calls.

We can now definecw for test drivers and collaboration diagrams as follows. First,
we declare the following variables.

dd : EXTENDED MODEL

td : TEST DRIVER

dd cw td holds if and only if

td :occurs :includes(dd :occurs) ^ dd :calls :subseq(td :calls)

The first conjunct states that the entities occurring in the collaboration diagram must
be included in the entities arising in the test driver. The second conjunct states that the
sequence of calls appearing in the collaboration diagram must be a subsequence of the
calls appearing in the test driver. We note the similarity between this specification and
CSP’s “hide” or “interface” construct.

The functionsubseq is defined as follows. Informally, it returnstrue if its argument
is a not necessarily contiguous subsequence of the target. Here are some examples:

(< 1; 2; 4; 9; 16; 3; 8>):subseq(< 1; 2; 3 >) = true

(< 1; 2; 3 >):subseq(< 1; 2 >) = true

(< 1; 2; 7; 9; 12 >):subseq(< 1; 2; 4 >) = false

(< 3; 5; 7; 9 >):subseq(<>) = true

The empty sequence,<>, is a subsequence of any other sequence. For our problem
domain, this implies that the empty collaboration diagram (consisting of no messages)

is implemented by any test driver. This is consistent with the usual definitions of refine-
ment. Note that the dual does not hold – an empty test driver (consisting of no routine
calls) does not implement any collaboration diagram, except the empty one. Here is the
formal specification ofsubseq .

subseq(t : SEQUENCE [G]) : BOOLEAN

require true

ensure

size = 0 ! Result = true;

size > 0 ^ t :size = 0 ! Result = false;

size = 1 ^ t :size > 1 ! Result = t :includes(item(1));

size > 1 ^ t :size = 1 ! Result = false;

size > 1 ^ t :size > 1 !

Result = (t :includes(s:item(1)) ^ tail :subseq(t)

subseq makes use of the simple routineincludes which is as follows.

includes(x : G) : BOOLEAN

require true

ensure

size = 0 ! Result = false;

size > 0 ! Result = ((x = head) _ includes(a; tail))

The implementation ofcw for test drivers and collaboration diagrams will construct
the sequences corresponding to the routine calls appearing in the test driver, as well as
those appearing in the messages of the collaboration diagram, and will check to see if
the dynamic diagram sequence is a subsequence of the test driver sequence. It is inef-
ficient to generate both sequences of routine calls and then test one against the other.
Instead, we can carry out this check as follows. The dynamic diagram drives the im-
plementation of the consistency check. As was done for testing class diagrams against
collaboration diagrams, a finite state machine is constructed from the collaboration dia-
gram (to recap: transitions of the machine are routine calls, and a state represents the ex-
ecution of the body of a routine). Simulation of the diagram starts from a user-provided
initial state, indicating initial values for variables. This could be extracted automatically
from the test driver, e.g., by looking at assignment statements in creation routines, or
by using the postcondition of a creation routine. The test driver is then parsed and an
abstract syntax tree (AST) constructed and the root is marked. The simulation of the
state machine begins. On entry to a statea:f (representing the execution of a routine
call a:f), the AST is traversed depth-first starting from the last mark. If a routine call
a:f is found in the AST, then the corresponding node is marked, and simulation of the
state machine continues with the next transition according to sequence number. Other-

wise, simulation halts and a suitable message is displayed indicating at what point the
test driver fails to implement the collaboration diagram.

6 Related Work and Conclusions

The introduction of the UML has spurred much recent research on consistency check-
ing, but the topic has been of past interest and study. Zave and Jackson [18] presented
a framework for composing specifications via conjunction, with the aim of support-
ing multi-paradigm specification. In their approach, specifications are transformed in
to a common semantic domain (in [18], they use one-sorted first order logic, but dif-
ferent semantic domains can be chosen) and thereafter combined. They pay particular
attention to constructing translations to the common semantic domain so that specifica-
tions can be easily and usefully composed, e.g., so as to make consistency checking as
straightforward as possible to carry out. The authors’ goal is not specifically consistency
checking, but suggestions and recommendations as to how to use the approach to make
consistency checking easier to carry out are provided. They do not specifically focus on
the OO realm, and do not explicitly consider tool support. They recognize the problem
of semantic fragmentation, i.e., providing a non-standard semantics to commonly used
languages.

Finkelstein et al. [7] focus specifically on the problem of detecting inconsistency
when combining descriptions of systems from multiple viewpoints. Their work em-
phasizes that inconsistency is not always undesirable, and that in fact it may provide
important information to developers, e.g., related to misunderstandings or confusion
with respect to requirements. Thus, their logical framework aims to support developers
in identifying inconsistencies and specifying actions to carry out on their identifica-
tion. Consistency checking is carried out by producing a logical database of formulae
describing separate views, as well as further formulae specifying environmental infor-
mation, e.g., relationships between views. Consistency or inconsistency checking can
be carried out using automated theorem provers.

The ADORA project [4] presents an alternative to UML for OO modelling, wherein
all information related to a system is integrated into one coherent model. In this lat-
ter regard, it is similar to thesingle model principledescribed in [13]. The integrated
model allows consistency constraints to be defined between views. A language and tool
for supporting these constraints is discussed in [15]. Some of the constraints that are
checked by this tool are also captured in the UML metamodel, and as such are checked
by UML-compliant CASE tools.

Tsiolakis [16] focusses specifically on consistency checking with the UML, primar-
ily, consistency checks relating class diagrams, sequence diagrams, and state charts.
In their approach, diagrams are annotated with extra information relating the separate
views, and attributed graph grammars are used as a theoretical underpinning to carry
out the consistency checking.

Our current focus is on implementing the consistency checking described in this pa-
per. Many of the rules are currently built in to the metamodel implementation provided
with the tool. The architecture of the tool makes it straightforward to add new rules to

the metamodel, or to replace the metamodel entirely with a new set of rules. The basic
architecture is shown in Fig. 5.

The BON−CASE tool
<<framework>>

<<component>>
Diagram Editor

BON Parser
<<component>> <<component>>

Code Generator

<<component>>
BON Metamodel

Fig. 5. Architecture of the BON CASE tool

Some of the consistency checking cannot be carried out automatically or imple-
mented in the metamodel, e.g., checking that the sequence of messages appearing in a
collaboration diagram is allowable, based on contracts. The checks will be sent to the
PVS theorem prover and discharged automatically where possible. The paper [12] de-
scribes how we have successfully used PVS for semi-automatically proving that models
satisfy the BON metamodel; the same approach can be used for consistency checking
between views. As well, we are currently exploring the use of automated verification
technology, particularly FDR, for carrying out the sequencing consistency checks. This
will be very useful for consistency checking of test drivers against collaboratin dia-
grams, since we can effectively represent this as a constraint to be checked on traces.

References

1. K. Beck.Extreme Programming Explained, AWL, 1999.
2. G. Booch, J. Rumbaugh, and I. Jacobson.The UML Reference Guide,Addison-Wesley, 1999.
3. L. Briand and Y. Labiche. A UML-Based Approach to System Testing, inProc. UML 2001,

LNCS 2185, Springer-Verlag, 2001.
4. M. Glinz, S. Berner, S. Joos, J. Ryser, N. Schett, and Y. Xia. The ADORA Approach to

Object-Oriented Modeling of Software. InProc. CAiSE’01, LNCS 2068, Springer, June
2001.

5. E.C.R. Hehner.A Practical Theory of Programming, Springer-Verlag, 1993.
6. B. Meyer.Eiffel The Language, Prentice-Hall, 1992.
7. A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsistency Handling

in Multi-Perspective Specification.IEEE Trans. Software Engineering20(8), August 1994.
8. OMG Consortium, UML 1.4 Documentation, 2000. Available at www.omg.org.
9. S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert.PVS System Guide 2.3, CSL, SRI

International, September 1999.
10. R.F. Paige and L. Kaminskaya. A Tool-Supported Integration of BON and JML. Technical

Report CS-TR-2001-04, Department of Computer Science, York University, July 2001.

11. R.F. Paige and J.S. Ostroff. Developing BON as an industrial-strength formal method. In
Proc. World Congress on Formal Methods, LNCS 1709, Springer-Verlag, September 1999.

12. R.F. Paige and J.S. Ostroff. Metamodelling and conformance checking with PVS. InProc.
Fundamental Aspects of Software Engineering 2001, LNCS 2029, Springer-Verlag, April
2001.

13. R.F. Paige and J.S. Ostroff. The Single Model Principle. InProc. Requirements Engineering
2001, IEEE Press, August 2001.

14. R.F Paige and J.S. Ostroff. A Proposal for a UML-Based Method for Developing Reliable
Systems, inProc. Workshop on Precise UML-Based Methods, GI Series 7, German Society,
October 2001.

15. N. Schett.A Notation for Integrity Constraints inADORA Models - Concept and Imple-
mentation(in German). Diplomathesis, University of Zurich, 1998.

16. A. Tsiolakis.Semantic Analysis and Consistency Checking of UML Sequence Diagrams.
Diplomarbeit, TU-Berlin, TR 2001-06, April 2001.

17. K. Walden and J.-M. Nerson.Seamless Object-Oriented Software Architecture, Prentice-
Hall, 1995.

18. P. Zave and M. Jackson. Conjunction as Composition,ACM Transactions on Software Engi-
neering and Methodology2(4), October 1993.

