

Producing Reliable Software via the Single Model Principle

Richard Paige and Jonathan Ostro�

Technical Report CS-2001-02

May 10, 2001

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Producing Reliable Software via the Single Model Principle

Richard Paige and Jonathan Ostroff
Department of Computer Science, York University

Toronto, Ontario M3J 1P3, Canada.
fpaige,jonathan g@cs.yorku.ca

Abstract

We contrast software modelling languages and develop-
ments that are founded on use of a single model with those
founded on use of multiple models. The advantages and
disadvantages of each approach are discussed. We propose
that to best support seamless and reversible development
of reliable software, languages and developments that fol-
low the single model principle are superior for late require-
ments engineering through to implementation. We define
the principle precisely, provide examples of languages that
support it, contrast it with multiple model development, and
discuss when the principle is insufficient: when dealing with
inconsistent descriptions, and for capturing and manipulat-
ing early requirements.

1. Introduction

Software development often makes use of modelling
languages, e.g., UML [13] and Eiffel [9], for describ-
ing systems and their requirements. Modelling languages
are usually supported by tools and development processes
that commonly target executable programming languages.
Modelling languages are typically used to describe early
and late requirements, capture architectural and detailed de-
signs, and provide documentation for maintainers of sys-
tems.

There are two fundamental kinds of modelling lan-
guages: those that are founded on use of asingle model
to describe concerns of interest; and those that make use
of multiple, independently constructed models. The pur-
pose of this paper is to critically compare these two kinds
of languages, particularly for building reliable software. We
focus, specifically, on the use of a single model in late re-
quirements engineering, design, and implementation; early
requirements engineering is discussed in Section 4.

1.1. Using multiple models

A representative example of a modelling language that
uses multiple models is UML. With UML, a system is de-
scribed using disparate, independently constructed models
[13]. Each model1 presents the system of interest from a dif-
ferent perspective. For example, one model may describe
architectural details of the system (e.g., how the compo-
nents that make up the system are connected), whereas a
separate model may describe behavioural details (e.g., how
components respond to messages dispatched from clients).
Information presented in one model may also be captured,
albeit differently, in another model. That is, the models may
overlap in terms of the information that they present.

The UML 1.3 Standard [13] says the following.

“Every complex system is best approached
through a small set of nearly independent views
of a model; no single view is sufficient. In terms of
the views of a model, the UML defines the follow-
ing graphical diagrams:

� use-case diagram

� class diagram

� behaviour diagrams [...]

� implementation diagrams [...]

These diagrams provide multiple perspectives of
the system under analysis or development. The
underlying model integrates these perspectives so
that a self-consistentsystem can be analyzed and
built. These diagrams, along with supporting doc-
umentation, are the primary artifacts that a mod-
eler sees, although the UML and support tools will
provide for a number of derivative views.”

By using multiple models, developers can work indepen-
dently on separate parts of a system, and can apply the most
appropriate diagrams or notations for describing each part.
When it comes time to construct executable code from the

1In the UML Standard 1.3 document [13], each model is called aview.
Section 3.4, where the metamodel of UML is partially presented, clarifies
that they are in fact models.

models, the models must be integrated into a single model
that satisfies all the constraints and descriptions contained
in the individuals. For example, a class may be described
by several UML models: a class diagram, pre- and post-
conditions for methods (written in, e.g., OCL), and a state
transition diagram. For consistency, transitions in the state
machine must correspond to precondition clauses. How-
ever, there is nothing in the UML nor in its supporting pro-
cesses to prevent that, for example, a precondition contains
the conditionP while the corresponding state transition is
erroneously guarded by the condition: P. Thus, the multi-
ple model approach allows inconsistent descriptions of sys-
tems. In a language like UML, neither infrastructure nor
tools are provided to detect such inconsistencies. Using a
single model, as opposed to multiple models, does not guar-
antee consistency, but it does make inconsistency easier to
detect and deal with.

1.2. Using a single model

Modelling languages and developments that make use of
a single model to describe a system obey thesingle model
principle, defined precisely in the sequel. Informally, such
a modelling language provides the means for expressing a
unique description of the system under consideration. The
principle will require three characteristics of modelling lan-
guages: that there beconceptual integrityof abstractions
that appear in descriptions of models; that there is sup-
port for checkingconsistencyof descriptions; and that the
language iswide-spectrum applicable.An example of a
modelling language that obeys the single model principle
is Eiffel2. With Eiffel, a single model can be constructed
and used throughout software development, with automatic
or semi-automatic generation of multiple views [12] of the
model. We provide an overview of Eiffel in Section 2, and
explain why it obeys the principle in successive sections.

1.3. Seamlessness and reversibility

The ability to supportseamlessandreversiblesoftware
development has been identified as important characteris-
tics for a modelling language to possess if it is to be used
successfully to develop reliable software [9, 15, 18]. Seam-
less development is founded on the use of a set of common
modelling abstractions – e.g., classes, binary components,
etc. – throughout the development process. In this man-
ner, impedance mismatches that potentially introduce errors
during development can be avoided, and errors that arise in
abstractions during one phase of development can easily be
traced back to errors made during previous phases. As well,

2It is a mistake to consider Eiffel as just a programming language. We
discuss this more in Section 2, but we point out for now that Eiffel does
support specification independent of implementation.

abstractions used in early phases can be directly mapped to
the same kinds of abstractions used in later phases [9]. Re-
versible development means that models can be generated
automatically, via software tools, from programs. In this
manner, it is easy to keep programs and models consistent,
thus aiding in documentation and maintenance.

We propose, in this paper, that to best enforce and sup-
port seamless and reversible development, a modelling lan-
guage should obey the single model principle for late re-
quirements engineering through implementation. We will
demonstrate that modelling languages that support the prin-
ciple will support seamless and reversible development.

Using multiple models is not a good way to produce re-
liable software.

� Seamless development becomes difficult, if not impos-
sible, because of overlapping descriptions. An abstrac-
tion, e.g., a class, can be described in multiple models,
in different ways, thus prohibiting the direct mapping
of a class in a model into a class in a program.

� It is easier to introduce inconsistencies into a descrip-
tion of a system by splitting the description up into sev-
eral models3.

� Separate models that are themselves consistent may
lead to inconsistencies when they are integrated. Fur-
ther, integration may introduce undesirable properties
or consequences, when models and descriptions are
thereafter composed. Checking the consistency of
composed specifications or models is a challenging
problem [19].

1.4. Insufficiency of a single model

There are two key points to make before we present fur-
ther technical details. We are positing a single model-based
approach as superior to multiple model approaches for late
requirements engineering through implementation. We are
not claiming that multipleviewsare unnecessary or value-
less. Multiple views of a model are very useful, if not es-
sential, in software development. Our perspective is that
multiple views should be consistent by construction wher-
ever possible, thus implying that they should be produced
– ideally automatically – from a single model. We discuss
this more in following sections.

The second point is that a single model-based approach
will not be sufficient for all development tasks. We discuss
such tasks in Section 4, particularly focussing on dynamic

3Nuseibeh et al [12] claim that inconsistency in requirements descrip-
tions must be tolerated, and that consistency checking of descriptions need
not be done routinely, as a matter of course. [6, 12] provide frameworks for
detecting and managing inconsistency in requirements descriptions. This
is discussed more in Section 4.2.

modelling and early requirements gathering and manipula-
tion.

We will illustrate the single model principle using the
Eiffel language [9], and the multiple model approach using
UML and Java. We thus commence with a brief overview of
Eiffel and its concepts, before turning to technical details.

This paper is motivated by Meyer’sself-documenting
principle [9] (p55), where it is stated

”. . . software becomes a single product
that supports multiple views. One view, suit-
able for compilation and execution, is the
full source code. Another is the abstract in-
terface documentation of each module, en-
abling software developers to write client
modules without having to learn the module’s
own internals. . . Other views are possible.”

2. Overview of Eiffel

Our perspective of Eiffel is that it is a modelling lan-
guage, and thus can be used for describing systems, not just
programs. This is compatible with that of Meyer [9], who
sees Eiffel as a method for software development. Eiffel ob-
tains this generality in part because of its support for speci-
fication, via assertions that can be embedded within classes
(in the form of class invariants) andcontractswhich are as-
sociated with features of classes. A valid Eiffel model may
consist only of specifications – that is, it may possess no
program code whatsoever; or a combination of specifica-
tion and code; or code only. It is thus a true wide-spectrum
language in the style of [5, 11].

Eiffel has both ASCII-based and graphical dialects; we
use only the ASCII dialect here (see [18] for the graphical
dialect, BON). Eiffel provides mechanisms for specifying
inheritance, association, and aggregation relationships be-
tween classes. It also possesses techniques for expressing
dynamic relationships, via feature calls. The assertion lan-
guage for Eiffel is first-order predicate logic. Not all as-
sertions that can be written are executable (though with the
Eiffel compiler’s support for agents [10], this is less of an
issue).

Here is an example of part of an Eiffel model of a class
CITIZEN. The class has four attributes, a boolean-valued
function single, and a state-changing proceduredivorce.
require clauses are preconditions, andensureclauses are
postconditions. Postconditions can refer to the value of an
expression when the feature was called by prefixing the ex-
pression with the keywordold. Classes may also havein-
variants, which are predicates that must be maintained by
all visible routines. Visibility of features is expressed by
annotatingfeature clauses with lists of client classes per-
mitted to access the features.

classCITIZEN inherit PERSON

feature NONE

children; parents: SET[CITIZEN]

spouse: CITIZEN

feature ANY

single: BOOLEAN

ensureResult= (spouse= Void) end

divorce

require not single

ensuresingleand (old spouse):singleend

invariant c children� p c:parents� p = Current

end

Eiffel supports inheritance relationships (e.g., between
PERSONand CITIZEN above), association relationships
(e.g., betweenCITIZENand itself, via attributespouse) and
aggregation relationships. Visual descriptions of relation-
ships can be found in [18]. Description of dynamic be-
haviour, e.g., message passing, is supported by describing
function and procedure calls, and can be visually repre-
sented as in [18], using object communication diagrams.

3. The Single Model Principle

The single model principle offers an alternative to multi-
ple model development that is preferable for building soft-
ware seamlessly and reversibly for late requirements en-
gineering through implementation. The informal idea is
simple: a single description of the system of interest is
constructed. Whenever different views of the software
are required, they are produced automatically or semi-
automatically from the description. In this manner, views
are guaranteed consistent because they are all constructed
from the same source. We now describe the principle more
precisely.

In developing a modern software system, two general
kinds of abstractions are typically produced4. Modelling
languages such as Eiffel and UML, and programming lan-
guages such as Java, are used to implement these different
kinds of abstractions.

� Modules:units of encapsulation, which have a notion
of interface that describes what aspects of the mod-
ule are accessible and inaccessible to other modules.

4The abstractions that we describe should more properly be called
meta-abstractions: modelling and programming languages may provide
different subtypes of each meta-abstraction. For example, the Object-
Oriented Turing language provides both an abstract data type construct
and a class construct.

Modules encapsulate both state and behaviour. Typ-
ical kinds of modules include abstract data types, bi-
nary components, and classes.

� Systems:collections of interacting modules and other
systems; thus, systems contain modules and possibly
other systems along with the relationships that are de-
fined between them.

Table 1 illustrates the different kinds of abstractions that
are created during software development, and how they are
described using Eiffel, UML, and Java. They are discussed
more in Section 3.1 and 3.2.

Based on these abstractions, we can define the single
model principle precisely.

Definition 1. Single Model Principle.A modelling lan-
guage that obeys the single model principle satisfies the fol-
lowing three criteria:

1. Conceptual integrity. Conceptual integrity refers to
the abstractions possessed by a modelling language
and how they are described. A language with concep-
tual integrity first possesses physical integrity of de-
scriptions: for each different kind of abstraction that
can be produced by the language, all information about
the abstraction is kept in exactly one physical place,
e.g., a file. Second, a language with conceptual in-
tegrity provides exactly one way of describing con-
cepts of interest. For example, Java possesses phys-
ical integrity, but not conceptual integrity: the con-
cepts of class and interface are semantically redundant
(as shown in [9], an interface is just a special kind of
class). UML possesses neither physical integrity nor
conceptual integrity (as discussed in Section 3.2).

2. Consistency of views.The language must provide in-
frastructure that makes the checking of the consistency
of different views of a model as automatable as pos-
sible, e.g., the consistency framework of [12], or the
framework for composing specifications of [19]. In
terms of tools, we might provide automatic generation
of views or support via a theorem prover. It is prefer-
able to guarantee consistency of views by construction.

3. Wide-spectrum applicability. The language is appli-
cable to modelling concepts and constructs throughout
late requirements engineering (when customer goals
are well-defined, and alternatives have been considered
and selected) through to implementation.

Conceptual integrity is a necessary requirement for
seamlessness: if information about an abstraction is kept
in more than one description, that information cannot be di-
rectly mapped to abstractions in successive phases of the

development process. Similarly, having multiple ways of
describing abstractions can make it difficult to seamlessly
map models into executable code. Consistency of views is
vital for building reliable software; a reliable system can-
not permit inconsistency. A modelling language for build-
ing reliable software should provide methodological and
tool support for reasoning about consistency. Finally, wide-
spectrum applicability is also a necessary requirement for
seamlessness: without wide-spectrum capabilities, a seam-
less mapping from requirements and design models through
to programs (and the reverse) will not be possible.

To better understand the principle, we now discuss how
Eiffel and a development method founded on UML and Java
supports, or fails to support, the single model principle.

3.1. Eiffel support for the principle

By construction, Eiffel obeys the single model principle.
The criterion of conceptual integrity is satisfied: in Eiffel,
modules are classes, classes are types, and all information
about a class - including interface details and executable
code - is kept in a single.e file. Systems in Eiffel are
described via directories containing classes and subdirec-
tories, as well as a singleAce file explaining how to exe-
cute the software. Thus Eiffel provides physical integrity of
descriptions. Conceptual integrity arises since Eiffel only
provides one abstraction, the class, for modelling and im-
plementing software.

Eiffel also satisfies the criterion of consistency: systems
are described using classes. All information related to each
class is contained within its description, and all pertinent
information can never be separated from the description of
the class. Different views of the class can be generated
automatically or semi-automatically (see Section 3.3). A
module in Eiffel can be checked for consistency. The sim-
plest form of consistency to establish can be done simply
by compiling the module, which ensures static syntactic and
semantic consistency. Other forms of consistency, e.g., that
preconditions and postconditions are satisfiable, that all rou-
tines in a class obey the class invariant, etc., can be estab-
lished via verification. The paper [16] provides a framework
for doing this semi-automatically using PVS. The key point
is that consistency checking is carried out by examining the
module’s text directly.

Eiffel is wide-spectrum applicable, as discussed earlier
and in [9]. It can be used to describe programs, require-
ments, and designs [9, 18]. All modelling abstractions used
in one stage can be directly mapped to abstractions used in
later stages of development.

Eiffel UML Java
Systems Directory with .e System model with Package containing

files and subdirectories, designated main class classes, interfaces
with an Ace file that diagram and other packages.
indicates the root class One class with

main() method.

Modules Class in a.e file Class, interface, datatype, Class or interface,
node, component, etc. in a .java file

Table 1. Abstractions produced during software development

3.2. UML and Java support for the principle

We start by considering conceptual integrity. The Java
language supports physical integrity directly, because each
class, interface, and package resides in its own file (.java
files) or directory. The language does not satisfy conceptual
integrity: Java possesses syntactic constructs for classes, in-
terfaces, and primitives, all of which describe the same se-
mantic concept5; as Eiffel and C++ show, there is no need
for separate syntactic constructs. UML does not satisfy
physical integrity at the level of modules. At the module
level, UML uses classes, interfaces, datatypes, nodes, and
components as classifiers, and further constraints (e.g., in
OCL, multiplicity, etc.) can be associated with classifiers;
however these constraints need not be kept in the same de-
scription as the classifier they constrain [13, 15].

Turning to consistency of views, Java satisfies the crite-
rion because all information about a module or a system is
kept in one place (i.e., a.java file, a package, or a di-
rectory), and checking the consistency of such a descrip-
tion can be done using a Java compiler (or a suite of syn-
tax/semantic checking tools). However, UML does not sat-
isfy the criterion at the module level. As we discussed with
physical integrity, UML classifiers may be constrained in
several views; e.g., a class may be constrained in a class di-
agram, in an OCL constraint written elsewhere, in a state
transition diagram, etc. Checking the consistency of such a
collection of descriptions and views is difficult, and is cur-
rently a research problem.

Finally, we consider wide-spectrum applicability. Java,
by itself, is not sufficient as a wide-spectrum language: it
possesses no language features forspecifyingbehaviour.
Java coupled with a design-by-contract tool such asiCon-
tract [8] would satisfy the criterion. UML itself is not wide-
spectrum (as it is independent of any programming lan-
guage); however, UML combined with Java andiContract
would satisfy the criterion.

5Interfaces are also included in Java to eliminate apparent complica-
tions that arise with multiple inheritance.

3.3. Deliverable dependencies

A simple way to illustrate the principle is by consider-
ing development deliverables and their dependencies. Fig. 1
represents a subset of the Eiffel deliverables and their rela-
tionships.

Class interface
Class text

(source code)

Dynamic diagrams

1

2

Static architecture

partly automatic
(user assisted)

automatic
generation

Figure 1. Eiffel deliverable dependencies
(from [18])

With Eiffel, all deliverables (i.e., class interfaces, source
code, static architectures, dynamic diagrams) are related
by automatic generation via tools, or by user-guided semi-
automatic generation. The key point to note is that all deliv-
erables with Eiffel are dependent: they cannot be indepen-
dently constructed, and thus inconsistent deliverables can-
not be produced.

If we contrast this with the approach offered by
UML/Java (depicted in Fig. 2), we find a different situation.

With UML/Java, deliverables (e.g., class diagrams, state
machines, OCL constraints, collaboration diagrams, etc.)
can be constructed independently and thus can introduce
overlap and inconsistencies. For example, consider a UML
model consisting of a class diagram (where methods have
pre- and postconditions written using OCL) and a state tran-
sition diagram. For consistency, preconditions must cor-
respond to guarded transitions in the state machine, but
nothing in the modelling language enforces this, nor does
the language provide necessary theory, methods, or tools to

Class diagram State machine diagram

Source code (OCL)Constraints
(e.g., Java)

Collaboration diagram

automatic generation

partly automatic

Figure 2. Deliverable dependencies using
UML/Java

check or enforce consistency. It is thus left to the modeller
to ensure or enforce consistency in their descriptions.

The single model approach, which is taken by Eiffel, is
more fundamental than the multiple model approach, ex-
emplified by UML/Java. Consider the problem of checking
the consistency of independently constructed multiple mod-
els. To do this, the models must be combined in a common
framework and reasoning must be carried out. But this is the
process of constructing a single model — containing all de-
scriptions regarding a software system of interest. Now, the
construction problem and the consistency checking problem
is more difficult than had development started with a single
model in the first place. To construct a single model, we
must combine information and constraints from several pos-
sibly very large, complex separate models. In contrast, with
the single model approach, a large model is constructed
piece by piece, by adding new descriptions (e.g., method
signatures, code for methods, contracts) over the course of
the entire development, and different views are produced
from the model automatically or semi-automatically.

3.4. The single model principle and metamodelling

Both Eiffel and UML are modelling languages, possess-
ing metamodels that specify the syntactic well-formedness
constraints that all models must obey. By examining the
metamodels for each language, we gain further insight as
to why Eiffel supports the single model principle and why
UML does not directly.

Fig. 3 depicts a fragment of the Eiffel metamodel; we
write the metamodel in BON (Eiffel’s graphical dialect).
The diagram shows that in Eiffel a model consists of a set
of abstractions. An abstraction may be a class, a cluster, an
object, or an object cluster. These abstractions may have re-
lationships with other abstractions. Each metaclass in Fig. 3

has constraints (written as clauses in class invariants) that
we omit; see [17] for further details. The diamond on the
association between the two clusters indicates the cardinal-
ity of the association: there are two associations directed
from the abstractions to the relationships cluster.

CLASS

abs:SET[..]

MODEL

STATIC_ABSTRACTION* DYNAMIC_ABSTRACTION*

CLUSTER OBJECT OBJECT_CLUSTER

ABSTRACTION*

ABSTRACTIONS

RELATIONSHIPS

RELATIONSHIP*

STATIC_
RELATIONSHIP* MESSAGE

ASSOCIATION

INHERITANCE AGGREGATION

Figure 3. A fragment of the Eiffel metamodel

This diagram clarifies why Eiffel supports the single
model principle: all abstractions that are associated with a
model are contained and constrained within the model itself.
Well-formedness constraints on messages, for example, en-
sure that each message corresponds to a feature provided by
a class; objects must have classes in the model, too.

Consider now Fig. 4, presenting a fragment of the UML
metamodel, extracted from the complete metamodel in [13],
and depicted in BON. The fundamental concept in a UML
model is aMODEL ELEMENT, which is subclassed by
concepts such asCLASSIFIERs andINTERFACEs.

Notice that a MODEL is also a subclass of
MODEL ELEMENT; that is, according to the meta-
model, a valid model may be constructed from several
different models (where each is an instance of the metaclass
MODEL), each potentially containing different abstrac-
tions and relationships. These models may therefore be
independently constructed – indeed, each view is of itself a
model – and nothing in the metamodel or in the semantics
of UML guarantees consistency of these views. This is why
UML is a multiple model approach. Dependencies between
separate views must be dealt with by the developer. There
is no theory provided with the UML that can help to test or
verify that a set of models is consistent or inconsistent.

CLASSIFIER

ELEMENT

DATATYPE INTERFACE MODELOBJECT ASSOCIATION PACKAGE

MODEL_
* contents: SET[..]

Figure 4. A fragment of the UML metamodel

4. Where the principle is insufficient

We have advocated the single model principle for build-
ing software seamlessly and reversibly. In effect, the sin-
gle model principle defines a process (or, more properly, a
meta-method) for building software, wherein a single suite
of expressive modelling abstractions and technologies are
applied throughout development, and multiple consistent
views of a single model are generated systematically and
semi-automatically when needed. An example of a process
that is founded on the single model principle is discussed
in Meyer [9], viz., thecluster processfor development. In
this process, a system is constructed from separate clusters
(equivalent to packages in UML or Java, consisting of mod-
ules and other clusters). Separate clusters can be designed
and implemented concurrently and separately, by separate
groups of personnel, who make use of precisely specified
interfaces of modules.

We now examine situations where the single model prin-
ciple appears to be, or actually is, insufficient for rigorous
development of reliable software. In particular, we want to
focus on dynamic modelling, early requirements engineer-
ing, and dealing with consistency.

4.1. Dynamic modelling

Modelling languages such as UML support dynamic
modelling via, e.g., sequence and state transition diagrams.
These diagrams can show the objects created by a system
and the messages passed between objects as the system ex-
ecutes. It appears that dynamic modelling may violate the
single model principle, particularly when used with a lan-
guage like Eiffel. However, this is not the case.

� Sequence diagrams can be treated as a generated view,
constructed automatically from Eiffel implementations
of methods of a class (that is, the messages depicted in
a dynamic model simply show the sequence of func-
tion or procedure calls within an executing system).
From this perspective, dynamic models cannot be con-
structed independently from static models (e.g., as is
permitted with UML). This perspective on the use
of sequence diagrams differs from that of Harel [4],
wherein they are posited as a modelling technique for
capturing requirements.

� Sequence diagrams can be viewed asrough sketches
[7], which provide informal documentation that is as-
cribed no precise semantics, and which can be used to
construct more rigorous descriptions. For example, a
sequence diagram could be used as informal documen-
tation for implementing methods of classes. With such
a perspective, dynamic models cannot be used for the
purposes of automatic generation.

� State transition diagrams are used in UML for describ-
ing the behaviour of objects; Harel posits them as a
mechanism for modelling design [4]. Eiffel does not
support state transition diagrams, but they can be gen-
erated automatically from class interfaces using, e.g.,
an approach similar to that of the SOMA toolset [2].

Thus, dynamic modelling can be used compatibly with
the single model principle: following the principle enforces
a specific process for using dynamic models.

4.2. Dealing with inconsistency

Nuseibeh et al [12] suggest that, when dealing with early
requirements – i.e., when customers are uncertain about
their needs, and are explaining their requirements in terms
of “desires” and “goals” rather than functionality – incon-
sistency in requirements descriptions should be tolerated.
As discussed earlier, frameworks have been proposed to al-
low inconsistent descriptions to be written, and inconsisten-
cies to be detected [12, 19]. Such inconsistencies can be
restricted to one, or several, views.

Inconsistent descriptions are incompatible with the sin-
gle model principle. Consider descriptions written in Eif-
fel: inconsistent Eiffel descriptions are possible, but are
limited to inconsistent classes (e.g., a class with an unim-
plementable method, or with a class invariant evaluating
to false), and are viewed as undesirable. Indeed, an Eif-
fel development environment will flag such descriptions as
invalid. Such inconsistent descriptions will also not be ex-
pressive enough to capture the goals and desires of cus-
tomers that are discussed in [12]. One implication of this is
that modelling languages based on the single model princi-
ple will be inappropriate for capturing inconsistent descrip-
tions of early requirements, in part because of their seamless
nature.

4.3. Early requirements engineering

Requirements engineering typically occurs in two dis-
tinct phases.Early requirements engineering is focussed on
understanding, capturing, and analysing specific customer
goals (which have a clear-cut criterion for satisfaction) or
soft-goals (which need not have a precise specification of
satisfaction). Late requirements engineering occurs when
goals are well-defined and real-world entities can be mod-
elled. Goals are critical in dealing with non-functional re-
quirements. A modelling language like Eiffel, based on the
single model principle, is insufficient for modelling goals,
in part because of its seamlessness. Eiffel provides no built-
in techniques for modelling goals: they would have to be
treated informally (e.g., as comments, rough sketches, or in-
formal documentation), and would not be directly express-
ible in executable code, thus defeating seamlessness. In or-
der to treat goals formally, a richer modelling language, e.g.,
KAOS [1] could be used, however this would defeat seam-
lessness and would introduce impedance mismatches, par-
ticularly in mapping designs to programs, unless the resul-
tant OO programming language supports goal-based con-
structs as well. The impedance mismatch can be minimized
by providing rigorous (automatic or semi-automatic) trans-
lations from a language for goal-based modelling to a lan-
guage such as Eiffel, which obeys the single model princi-
ple. A translation from KAOS to Z has been defined, and
mappings from Z to BON (and thereafter to Eiffel) appear in
[14]. This approach is also followed by Graham [3], in his
task-based modelling techniques that support traceability.
Thus, the single model principle seems incompatible with
goal-based requirements description, but translation meth-
ods could be used to ameliorate the incompatibility in prac-
tice. We suggest that the single model principle be followed
from late requirements engineering through to the produc-
tion of code.

5. Discussion and Conclusions

Independently generated multiple models of a system
cause more problems than they solve in developing soft-
ware. It is claimed that they are useful because they al-
low developers to work independently on different parts of a
software system, and thereafter their individual work can be
integrated. We have already remarked on problems with this
approach, particularly with consistency: checking that one
independently created model does not contradict a second
independently created model is a very complicated prob-
lem, even for small systems. The problem is avoided by
obeying the single model principle.

We have been careful to phrase our arguments in terms of
developingreliablesoftware. Consistency of descriptions is
an essential facet of developing reliable software, and thus

we suggest that obeying the principle in this specific domain
is necessary. However, the single model approach appears
incompatible with early requirements engineering and for
modelling inconsistency: systematic and automatable trans-
lations between appropriate languages may be necessary to
help in these phases.

The multiple model approach offered by languages such
as UML is not a good way to build reliable software. It is
not a good mechanism for ensuring consistency, nor to help
trace errors in programs back to errors in models. A single
model approach, wherein different views of a system can be
automatically or partly automatically generated from a sin-
gle model of the system, should be preferred for developing
high-quality software systems.

We have used Eiffel to illustrate the single model princi-
ple, but our arguments are not limited to this modelling lan-
guage: they apply to any language which provides a unique
way of describing abstractions of a system of interest, and
which relies on automatic generation of views. It remains
to be seen if Eiffel is an appropriate language for imple-
menting the principle in realistic software development sit-
uations.

References

[1] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer Pro-
gramming, 20:3–50, 1993.

[2] I. Graham. Requirements Engineering and Rapid Develop-
ment. Addison-Wesley, 1998.

[3] I. Graham. Object-Oriented Methods, Second Edition.
Addison-Wesley, 2001.

[4] D. Harel. From play-in scenarios to code: an achievable
dream.IEEE Computer, 34(1):53–60, January 2001.

[5] E. Hehner.A Practical Theory of Programming. Springer-
Verlag, 1993.

[6] A. Hunter and B. Nuseibeh. Managing inconsistent specifi-
cations: Reasoning, analysis and actions.ACM Transactions
on Software Engineering and Methodology, 7(4):335–367,
October 1998.

[7] M. Jackson. Software Requirements and Specifications.
Addison-Wesley, 1995.

[8] R. Kramer. iContract - the Java design by contract tool. In
Proc. TOOLS 1998. IEEE Press, 1998.

[9] B. Meyer. Object Oriented Software Construction, Second
Edition. Prentice Hall, 1997.

[10] B. Meyer. Agents, iterators, and introspection in Eiffel.
Technical report, ISE Inc., 2000.

[11] C. Morgan.Programming from Specifications, Second Edi-
tion. Prentice Hall, 1994.

[12] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework
for expressing the relationships between multiple views in
requirements specifications.IEEE Transactions on Software
Engineering, 20(10):760–773, October 1994.

[13] Object Modelling Group. UML Standard Guide 1.3, 1999.

[14] R. Paige and J. Ostroff. From Z to BON/Eiffel. InProc.
Automated Software Engineering 1998. IEEE Press, 1998.

[15] R. Paige and J. Ostroff. A comparison of BON and UML.
In Proc. UML 1999. Springer-Verlag, 1999.

[16] R. Paige and J. Ostroff. Developing BON as an industrial-
strength formal method. InProc. World Congress on Formal
Methods 1999. Springer-Verlag, 1999.

[17] R. Paige and J. Ostroff. Metamodelling and conformance
checking with PVS. InProc. Fundamental Aspects of Soft-
ware Engineering 2001. Springer-Verlag, 2001.

[18] K. Walden and J.-M. Nerson.Seamless Object Oriented
Software Architecture. Prentice Hall, 1995.

[19] P. Zave and M. Jackson. Conjunction as composition.ACM
Transactions on Software Engineering and Methodology,
2(4), October 1993.

