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Abstract Java and other languages (e.g., Lisp, Smalltalk, ML, Self,

Modula-3, and Eiffel) the run-time system keeps track of

In systems that support garbage collection a tension exisiémory (objects) that has been dynamically allocated and
between collecting garbage too frequently and not colleeriodically frees that memory which is no longer being
ing garbage frequently enough. Garbage collection thaled (i.e., it automatically performs garbage collection).
occurs too frequently may introduce unnecessary ovif-most existing Java implementations garbage collection
heads at the risk of not collecting much garbage duriiggperformed synchronously. That is, the executing pro-
each cycle. On the other hand, collecting garbage too gram is suspended for a period of time while garbage col-
frequently can result in applications that execute withl@ction is performed. Alternatively, some approaches to
large amount of virtual memory (i.e., with a large footgarbage collection attempt to simultaneously execute the
print) and suffer from increased execution times due garbage collector code and the main application by using
paging. a separate thread of control for garbage collection. How-

In this paper we use a large collection of Java appéiver, the suspension of the main application or even un-
cations and the highly tuned and widely used Boehmentrolled delays due to thread switching can cause seri-
Demers-Weiser conservative garbage collector to expsiis problems for users or other programs attempting to
imentally examine the extent to which the frequenggteract with the application.
of garbage collection impacts an application’s executionTime spent reclaiming memory that is no longer in use
time, footprint, and pause times. We use these resuitpically delays the execution of the application and as
to devise some guidelines for controlling garbage colleg-result can increase the execution time of the applica-
tion and heap growth in a conservative garbage collection. A tension is therefore created between collecting
in order to minimize application execution times. Thegarbage too frequently and not collecting garbage fre-
we describe new strategies for controlling garbage collefiiently enough. Garbage collection that occurs too fre-
tion and heap growth that impact not only the frequengyuently may introduce significant and unnecessary over-
with which garbage collection occurs but also the pointieads at the risk of not collecting much garbage during
at which garbage collection occurs. Experimental resuliach collection. On the other hand, collecting garbage too
demonstrate that when compared with the existing apfrequently can lead to larger heap sizes and increased
proach our new strategy can significantly reduce appligecution times due to paging.
tion execution times. A memory allocation and garbage collection subsystem

is faced with a number of fundamental decisions:

1 Introduction 1. When allocating memory, what algorithm should be
used?

In many programming languages (e.g., Pascal, C, and- If garbage collection is performed, which algorithm
C++) dynamically allocated memory must not only be should be used?

tracked by the programmer but it must also be freed whei®. When should garbage collection be performed?

it is no longer needed. Tracking and freeing dynamically4. When should the heap be expanded and by how
allocated memory is time consuming and error-prone. In  much should it expand?

*This work was partially supported by the IBM Toronto Labs Center 2. If the heap is being compacted, when should it be
for Advanced Studies and by NSERC. compacted?




Some of these decisions can have a significant impaeative machine instructions and provides the run-time sys-
on the frequency with which garbage collection occutesm (including the garbage collector). Although the sys-
and on the overhead incurred in performing garbage ctédm we used contains 256 MB of memory, we configure
lection. Much research has examined questions 1 anth& amount of memory used by the system at boot time.
above. For surveys see Wilson [16], Wilsehal. [17], Since many of the Java benchmarks do not consume large
and Jones and Lin [11]. Recent work [9] suggests that amounts of memory this permits us to shrink the amount
one garbage collector is best suited for all applications.dhmemory in the system in order to place higher demands
this paper we concentrate on questions 3 and 4 and ewalthe virtual memory subsystem.
uate their impact on application performance in the con-
text of the highly tuned and widely used Boehm-Demers- .

Weiser (BDW) [7] [6] [4] [3] conservative, mark-sweepi-l The Applications
collector. Our goal is to gain a better understanding of t
impact of these decisions on application behavior an
examine techniques for scheduling garbage collection
heap growth. Although we are not aware of any publish

{

work that specifically studies question 5 above, we dOGVM).l They cover a wide range of application areas in-

;:otpgder tg'.s qu?stlon heretpecaulTe tthe BDW 'mplem%ﬂiding: virtual machine benchmark programs, language
ation used s nota compacting coflector. processors, database utilities, compression utilities, arti-

ficial intelligence systems, multimedia, graphics, and ob-
Garbage Collector Performance ject broker applications. In our experiments all explicit
requests tgava.lang.System.gc() are ignored in
Three main metrics that arise naturally from how garbageder to ensure that garbage collections are only sched-
collection impacts an application and its execution argled by the algorithm being tested. Fitzgerald and Tarditi
the overall execution time of the application; the pau§®] report that the SPECIJVM98 benchmarks run faster in
times introduced due to garbage collection (typically ttibeir environment when they disregard these calls. Table
measures of interest are the total, average, and maximugrovides a brief description of each of the applications
pause times); and the footprint of the application. used in our experiments. (The SPECJVM98 applications
In this paper we concentrate on minimizing the ex8ave been studied and described in detail in other work
cution time of an application. Execution time in somg.2] [14] [9].)
ways includes components of the other two metrics be-We use this relatively large collection of Java applica-
cause pause times that are large will increase applicatimms to evaluate the original BDW collector (using a va-
execution times and applications with large footprints arety of configurations) and compare their execution time
more likely to incur overheads due to paging. While wi® our new approach to controlling garbage collection and
don't believe that this is the only metric of importancdjeap growth. At this point we have made no effort to elim-
we believe that it is an important metric to a large numbigate applications that behave similarly or that are not im-
of users and that it represents an important starting pgdacted by garbage collection.
when optimizing garbage collector performance.
In this work we also focus on applications executing in
isolation. We believe that it is first necessary to unde8 The BDW Collector
stand how these decisions impact a single application in
order to develop and study techniques designed for envithis paper we use version 4.11 of the highly tuned and
ronments where multiple applications execute simultangidely used Boehm-Demers-Weiser (BDW) conservative,
ously (which we also plan to study in future work). mark-and-sweep garbage collector to study how garbage
collection frequency impacts the execution of several ap-
plications. This collector was originally designed for use
2 Experimental Environment with C and C++ programs where information regarding
pointer locations is not known by the collector at runtime.
All experiments were conducted on a 400 MHz Pentiufis a result, any reachable location in memory that con-
Il with 16 KB of level 1 instruction and data cache antRins a bit pattern that could be interpreted as a pointer to
512 KB of unified level 2 cache. The operating systeRfap memory must conservatively be considered a pointer
is NT Version 4.0 service pack 3 which uses a 4 K8 1Two data set sizes are include for each applicat®t0 and -

page size. We use IBM’s High Performance Java (HPsl))O,Which are denoted by appendiri or.100 to the application
which translates Java-byte codes of whole programs imtone.

tf?‘ne Java applications used in our experiments were

d&B ained from several sources including SPECJVM98

%%Ce’-xchmarks (we exclud00 _check which is a syn-
netic benchmark designed to check features of the




to reachable memory. Additionally, heap compaction is
- not supported.

The BDW collector has been used to form the basis
\V for Geodesic’s REMIDI product [10]; integrated with the
Apache web servers running Amazon.com; and used in
C- a number of Java environments including the GNU Java
secompiler (gcj) and IBM’s HPJ environment used in this

study. We now briefly describe those aspects of this
D- garbage collector that are relevant to our study.

0€ The marking phase starts by marking all memory that
can be accessed (reached) by the application. The algo-
rithm begins with objects in registers, on the stack and

Urin static variables and then recursively marks all objects

due Compiler Construction Tool Sgt that can be reached from the original (root) set of ob-

jects. Upon completion of the marking phase, unmarked
N objects that can not be reached are considered garbage
- and are reclaimed during the sweep phase. The system

supports a distinction between atomic objects (those not
2 containing pointers) and composite objects (those con-

taining pointers) and only composite objects are traced

A parser generator which generatesduring the marking phase. Our implementation is able

to distinguish composite and atomic objects. Further, in
order to reduce pause times, an initial sweeping reclaims
only blocks consisting completely of unmarked objects.
x-A lazy sweep technique is used during allocation to in-
hatrementally sweep remaining objects as they are needed.
eré\s a result, garbage collection times should be correlated
with the size of the set of reachable composite objects and
n not the size of the heap (we've found this to be true in our

In the BDW collector the decision regarding whether or
at not to garbage collect is significantly influenced by a stati-
Ngcally defined variable, called ttiree space divisofFSD).
al Figure 1 shows a simplified version of the algorithm used

in the BDW collector to decide whether to collect garbage
esor to grow the heap (i.e., the algorithm used to schedule
segarbage collections). This portion of the code is invoked
when the memory allocator fails to find a suitable chunk
of memory for the object (being allocated by the appli-
u-cation). A check is made to determine what portion of
D the current heap is being used. Namely, if the portion of
s the heap that is used by the application is sufficiently large
when compared with the reciprocal of the FSD value, then
ur the garbage collector is invoked. For example, if the FSD
is 2 then garbage is collected if more than roughly one
n half of the heap is used and if the FSD is 4 then garbage
is collected if more than roughly one quarter of the heap

| Application | Description |

compress * | A data compression utility that imple
ments a modified version of a com-
pression technique known as LZ
(201 _compress)

db* Performs multiple database fun
tions on a memory resident databg
(-209 _db)

espresso A compiler that translates Java pr
grams using a subset of the langug
into byte code

fred Application frame work editor

jack * A Java parser generator based on F
(PCCTS)( 228 _jack)

jacorb An object broker system based ¢
OMG’s Common Object Request Brg
ker Architecture

javac * Common Java compiler JDK1.0,
(213 _javac)

javacup
parser code in Java

javalex A lexical analyzer generator for Javal

javaparser | A parser generator for Java

jaxnell Generates tokenizers from regular €
pressions, and parser generator t
generates recursive descent pars
from LL(1) grammars.

jess * An expert shell system based ¢
NASAa CLIP expert shell system experiments).
(-202 _jess)

jal A Java virtual machine benchmark th
performs array operations and sorti
to test the performance of Java virtu
machine.

jobe A Java Obfuscation tool that scrambl
Java Byte code to prevent the rever
engineering of the byte code

jolt A Java byte code to C translator

mpegaudio *| This application decompresses 4
dio files that conform to the IS(Q
MPEG Layer-3 audio specification
(222 _mpegaudio)

mtrt * A ray tracer that works on a dinosal
sceng( 227 _mtrt)

netrexx A new programming language writte|
in Java

toba Translates Java class files to C

Table 1. List of benchmark Java programs used in

experiments, * denotes SPECJVM98 application.

is used. If the portion of the heap that is being used by the
application is lower than the threshold determined by the
D value then the heap is grown.
Note that the FSD is also used when the heap is grown.
In this case it is used to determine how much to grow the
heap by. So modifications to the FSD impact two deci-



sion points: whether to garbage collect or not and howAs can be seen in Table 2 tlieed application exe-
much to grow the heap by. The amount by which the heaptes fastest when no garbage collections are performed.
is grown also impacts garbage collection frequency sin&s the frequency of garbage collection increases the ex-
growing the heap by a large amount can postpone the needtion times and total garbage collection times increase
for garbage collection. significantly. With an FSD value of 16 the application
if (mem_used >= (heap / FSD)) { runs slower than without garbage collection by a factor
" of about 3.8. In this case the 41 garbage collections take
a total of 4471 milliseconds. Adding this to the execu-
grow_heap_by((heap / FSD) + tion time of the application without garbage coIIectiqn
- - request_size) (1650) nearly completely accounts for the extra _execu_tlon
} - time. With an FSD value of 4, the default configuration
Figure 1. Simplified pseudo-code for the BDW collectchrthe BDW code, 't. execute_s 1.8times s!ower than .W'th'
that impacts scheduling. out garbage collection (again the extra time spent in the
garbage collector nearly completely accounts for the dif-
ference).

. Interestingly, the average (and to a lesser extent the
3.1 BDW Experiments maximum) garbage collection times increase as the fre-

Table 2 illustrates the impact of garbage collection frétiency of garbage collection increases. This is contrary
quency (including turning garbage collection off) on th® the notion that more frequent garbage collections might
execution of three Java applications. This subset of app@sult in less garbage being collected during each col-
cations was chosen from our larger set of Java applicatid®@ion and would therefore result in faster garbage col-
in order to illustrate the variety of affects that garbage cdections. This is because the amount of reachable com-
lection frequency can have on the application. Each apf@psite data in this application grows during execution;
cation is described in Section 2.1 and we consider the fifil the BDW collector tracing reachable composite ob-
set of applications later in the paper. jects accounts for the significant portion garbage collec-
The experiments were conducted using 64 MB of mefton time. This is accomplished by differentiating atomic
ory so that some of the applications are using a reasonaBiects from composite objects and only tracing compos-
portion of memory. Once the operating system and as#g-objects and by utilizing a lazy-sweep technique that ef-
ciated applications are loaded there is roughly 45-50 Migiently sweeps objects during allocation (when they are
of memory available for the application. Each experimen@Xxt allocated).
was run 15 times and Table 2 shows observed averages.The fred application executes fastest when garbage
Using the BDW conservative garbage collector wellection is turned off because this application can ex-
change the frequency with which garbage is collected bgute within the memory available in the system (with
modifying the statically defined free space divisor (FSDjarbage collection off the heap grows to 33 MB). How-
The first column shows the algorithm used to contreler, as can be seen for applications with larger mem-
garbage collection and heap growth (when garbage collery requirements likelb.100 andjavac.100 |, turning
tion is off we grow the heap as though an FSD value of 4garbage collection off can significantly degrade perfor-
used). The remaining columns show the: execution timence. Both applications execute slowest when garbage
including 90% confidence intervals (Runtime); number @bllection is turned off. Inthe case db.100 the slowest
garbage collections (GCs); total time spent in the garbagecution time is about 1.2 times slower than the fastest
collector (GC time); average time spent per garbage cekecution time which is obtained when an FSD value of 2
lection (Avg Pause); maximum time spent on one garbaigaised. In the case ¢dvac.100 the slowest execution
collection (Max Pause); average footprint (Avg F8pt)time is about a factor of 7 times slower than the fastest
the total number of page faults (Faults); and the numberexecution time (which is obtained when an FSD value of
page faults that occurred during garbage collection (G€is used).

faults). Although in all cases at least one garbage collecyjpjike thefred application, in which average garbage
tion is reported, the first call is for initialization purposegg|jection times grow as the frequency of garbage collec-
only and no garbage is collected. tion increases, the maximum and average pause times for
2This is obtained by post processing the amount of un-reclaimédp.100 are relatively unaffected by garbage collection
memory over 10,000 points during the application’s execution and tfikequency. This is becausedip.100 the total size of the

ing the average over those points. Points of execution are determi : ; ; ; _
based on the number of bytes allocated to ensure that samples are tg %nChable composite ObJeCtS IS relatlvely stable throth

at the same points in the application's execution no matter which alddt the exe_CUtion of the program (around 300 KB.during
rithm is used and how execution time is impacted. all but the first few collections). Therefore, increasing the

collect_garbage()
} else {




| Alg Runtime | GCs | GCtime | Avg Pause| Max Pause| Avg Foot | Faults | GCfaults |
fred
Off 1650 +/- 4.5 1 1 1 1 12199 7547 24
FSD 1 1661 +/- 6.1 1 0 0 0 12199 7547 24
FSD 2 2170 +/- 3.0 7 501 71 237 3456 5756 33
FSD 4 3030 +/- 5.0/ 16 1334 83 302 1978 5249 35
FSD 8 4220 +/- 47| 26 2510 96 323 1457 5155 35
FSD 16 6236 +/- 34| 41 4471 108 320 1138 5051 35
db.100
Off 67619 +/- 854.2 1 17 17 17 56246| 35353 24
FSD 1 68968 +/- 1385.2 1 19 19 19 56246 | 35272 24
FSD 2 55471 +/- 6.1 14 2267 161 224 6862 7682 42
FSD 4 57039 +/- 59| 24 3926 163 220 4330 6355 45
FSD 8 62719 +/- 6.5 52 9509 182 223 2709 5462 45
FSD 16| 69181 +/- 11.8 89 15979 179 220 2170 5171 45
javac.100
Off 430507 +/- 41188.8 1 19 19 19 137306| 171688 24
FSD1 | 431476 +/- 27102.9 2 16526 8262 16502 88601 | 155440 3099
FSD2 | 310998 +/- 13403.7 17 87263 5022 49631 16921| 75594 15898
FSD 4 68399 +/- 6883. 37 21731 591 7253 8660 | 20056 2063
FSD 8 61553 +/- 281.6f 65 27404 415 1126 5931 | 13632 276
FSD 16| 86362 +/- 1769.7, 120 54401 450 944 4363 | 11576 63

Table 2: Impact of garbage collection frequency in BDW with 64 MB system; times are in milliseconds and sizes are
in KB

frequency of garbage collections will increase the avéhis is also the only application that incurs a real garbage
age pause time (until collections are so frequent that tb@lection when FSD = 1 (besides the one that is incurred
asymptote is reached). Tlb.100 application executesto initialize the collector). Since the first collection is re-
fastest when an FSD value of 2 is used. Hemanvaet ally only a quick initialization phase and only two collec-
spot is obtained. Garbage collection is frequent enougibns are performed, the reported average pause time in
that paging overheads are relatively low but not so frihis case (8262 ms) is a bit misleading. The actual pause
guent that overheads due to collection would negativeigne for the one real collection is 16502 ms (as can be
impact execution time. Without garbage collection theeen in the column labelled Max Pause).

heap grows to about 124 MB, while the 14 garbage col-The results in Table 2 demonstrate that for the Java ap-

to about 21 MB. collected can have a substantial impact on their execution

When executingavac.100 , average garbage Co”(__,cfa_md that a sweet spot exists in terms of minimizing execu-
tion times decrease significantly as garbage collection fHon times. Additionally, we see that for the BDW collec-
guency increases (up to FSD = 8) even though the sizd ¥ no one F_SD value works best for all appllcathns and
the reachable set of composite objects is mainly increlf3@t increasing the frequency of garbage collection does
ing during execution. In this case, garbage needs to be ¢¥Jt appear to reduce the time spent in garbage collection
lected frequently enough to permit the application to ef@r Some applications.
ecute within the amount of memory available. More fre- Table 3 shows the results of the same experiments con-
guent collection keeps the footprint smaller and reducgiscted on a system with 128 MB of memory (rather than
the number of page faults that are incurred both during tdé MB as in the previous experiments). Because the algo-
execution of the program and during garbage collectioithm being used does not take into account the memory
(for FSD = 2, 4, 8, and 16). Note however, that once tlawailable in the system (it is based on the size of the heap),
footprint of the application is reduced to the point wheretihe garbage collection frequency is unchanged when com-
fits within the amount of memory available, which occunsared with the 64 MB case. Consequently, the results for
when FSD = 8, more frequent collections increase exefted are unchanged, since it can easily execute within
tion time (when FSD = 16). It is worth pointing out thathe available memory even without garbage collection. In



| Alg Runtime | GCs | GCtime | Avg Pause| Max Pause| Avg Foot| Faults | GCfaults |
fred
Off 1633 +/- 5.6 1 5 5 5 12199 7546 24
FSD 1 1662 +/- 11.8 1 5 5 5 12199 7546 24
FSD 2 2180 +/- 14.5 7 498 70 236 3456 5755 33
FSD 4 3022 +/- 8.2| 16 1329 82 302 1978 5249 35
FSD 8 4220 +/- 7.2 26 2500 96 322 1457 5155 35
FSD 16 6224 +/- 6.8| 41 4470 108 320 1137 5050 35
db.100
Off 56011 +/- 174.8 1 32 32 32 56246| 31749 24
FSD 1 55924  +/- 124.5 1 24 24 24 56246| 31772 24
FSD 2 55345 +/- 43| 14 2259 161 223 6862 7681 42
FSD 4 56916 +/- 41| 24 3918 163 219 4330 6354 45
FSD 8 62588 +/- 39| 52 9501 182 225 2709 5461 45
FSD 16| 69033 +/- 5.1 89 15949 179 219 2170 5170 45
javac.100
Off 399141 +/- 7286.2 1 24 24 24 137320| 190045 24
FSD1 | 264869 +/- 3400.5 2 439 219 402 88588 | 133386 42
FSD 2 37959 +/- 170.7) 17 6937 391 1022 15788| 19328 67
FSD 4 45374  +/- 112.00 37 14284 385 1001 8958 | 16787 62
FSD 8 58524 +/- 240.00 65 27196 416 975 5968 | 13369 72
FSD 16| 86473 +/- 1647.9 120 54664 451 945 4366 | 11634 69

Table 3: Impact of garbage collection frequency in BDW with 128 MB system; times are in milliseconds and sizes are
in KB

the case of theb.100 application all measured aspects In a system with 128 MB of memory the differences
of the application are unchanged relative to the 64 MB maximum and average garbage collection times as the
case (within confidence intervals), except the executioallection frequency increases for FSD = 2, 4, 8, and 16
time of the application. While the sweet spot is still okare not nearly as dramatic as in the 64 MB case. In fact
served to occur when FSD = 2, we see that the executishen garbage collection is less frequent (but not so in-
time is only slightly better than when garbage collectidnequent as to cause paging) average and maximum pause
is turned off. times are actually equal to or lower than when collection
Fairly significant and important differences are sedpmore frequent. For this reason the algorithm we develop
in the execution of thgavac.100  application. When N the next section is able to postpone garbage collection
Compared with the 64 MB case, the execution time is SLmi.thOUt inCUrring substantial costs (prOVided it isn’t de-
stantially reduced in many of the cases. However, the 4ptred too long).
plication now executes fastest when an FSD value of 2 isWhen comparing the results in Table 2 with those in
used (38.0 seconds), as compared with the 64 MB cd&ble 3 we see that for some applications the best FSD
when a best execution time of 61.6 seconds is obtaingue changes with the amount of memory available in
using FSD = 8. the system. This motivates us to develop a technique that
Interestingly, when FSD = 1 is used, the overhead izonsiders the memory available in the system in order to

curred by the one real garbage collection is significanﬁygtempt to execute each application at its sweet spot.

lower in this case than when executed on a system with 64

MB of memory. In both cases the collection is triggered

when the heap size is 64 MB (recall that about 45-50 s~ A New Approach

is available for the application) so the heap has exceeded

the amount of memory available in the system. In this caseanalyzing the results obtained from the experiments
the reachable composite objects can be traced withoutéonducted in the previous section combined with lessons
curring many page faults (42 faults are incurred duringarned from experiments in which we attempted to pro-
collections) while a total of 3099 faults are incurred duduce an improved algorithm, we have developed some
ing collection in the case when a 64 MB system is usedjuidelines that we use in our new scheduling algorithm:



1. If there is sufficient memory available, garbage We have also added another decision point to our
should not be collected and the heap should be gromodified runtime system. This decision point considers
quite aggressively. whether or not garbage should be collected even if there

2. As the amount of available memory becomes low @@ considerable amount of free memory available in the
attempt to keep some memory available in order g/"rént heap. This is considered important because in the
avoid paging if possible. This is done by more ag3PW collector the heap size is never reduced and once
gressively (i.e., more frequently) collecting garbageh€ap grows, all decisions are made with respect to that

and less aggressively growing the heap (i.e., growiR§W heap.size. Using the or.iginal FSD-based app_roach
by smaller amounts). to controlling garbage collection and heap growth, if an
. : .application allocated a large amount of data (growing the
3. t\i/\ellzgz ':)r}e Z?E;;ugg;?ﬁ:??;ﬁ@?;ﬁ Itc()) V; t;e Irne eap to a point beyond available memory), even if a subse-
. 9 9 . 99 .rqsuent garbage collection reclaimed substantial amounts of
sive. Therefore, methods are required for ensuri

ngemory, garbage collection would not be invoked again

that frequency is tempered. We accgmpllsh this tE)ﬁf[il an allocation request could not be satisfied from the
tracking the amount of memory reclaimed on recep

) S : xisting h . Thi n ntially result in ing when
collections and not collecting if recentcollectlonsde sting heap s can potentially result in paging whe

: o f?might not be necessary.
not reclaim a sufficient amount of memory. s o o
This new decision point is carefully added to the allo-

As mentioned earlier, a significant problem with usingft0" SO as to limit its impact on the already highly opti-
the FSD to control garbage collection and heap growfi{Z€d allocation code. We track the memory used by the
(and approaches used in other garbage collectors) is f3!ication and when a threshold is passed we invoke the
the amount of memory available in the system is not codarbage collector if a recent collection reclaimed a suffi-
sidered. Our new approach utilizes thresholds that £&nt amount of memory. Although this adds a few in-
based on and determined relative to the amount of av&fructions to the allocation path it does not seem to im-
able memory. pact the execution time of our applications in a noticeable

When the memory allocator is unable to find a suitabfdy- In fac_t, this extra decis?ion pointis notincluded in the
block of memory in the existing heap for a new request §PVW Version of our experiments and we have observed
must either garbage collect or grow the heap. When mélﬂgt we are typically able to obtain appllcat|o.n exequtlon
ing this decision our modified runtime system determinfid1€s that are as low or lower than those obtained with the
the amount of memory available in the system and mal@gw version. _ _
the decision based on: the amount of memory availablefinally, when growing the heap we grow quite ag-
whether or not a threshold has been exceeded sincegrgssively, targeting a doubling of the heap size on each
last garbage collection; and the amount of garbage cgtowth, until the heap size reaches the first threshold (care
lected during the recent garbage collections (to ensure tigdken to grow only up to the first threshold). Subsequent
collections are not too frequent and that they are actuadigap growths are done by growing to the next thresh-
reclaiming memory). old. We propagate these targeted growth sizes through the

Until the amount of memory used by the applicatiofriginal BDW code which ensures that the heap is grown
exceeds the first threshold, garbage collection is effd}blat Igastam|n|mum incrementand no more than a max-
tively off. When any threshold is exceeded for the firgfhum increment (256 KB and 16 MB respectively, as de-
time garbage is always collected. During a collectidiined in the original version of our BDW implementation).

caused by exceeding threshdlfl the amount of mem-  Figure 2 shows an example of how thresholds are used
ory reclaimed is calculated®;) and is used in decidingto control both garbage collection and heap growth. In this
whether or not to collect garbage the next time thresékxample each decision point is marked. A circle denotes
old T; is exceeded (or any other thresholds crossed it the heap was grown, a square denotes that garbage
R;). Garbage will be collected if a sufficient amount ofvas collected and a diamond denotes that the decision
garbage was collected during recent collections. If thes to do neither. The program starts with an initial heap
amount of memory reclaimed crosses two or more thregli our experiments we use the default initial size used in
olds, we collect the next time each of those thresholdstig BDW collector, 256 KB). As the program allocates
reached. In our current implementation we define a sufremory the heap is grown as shown by poiAtand B.
ficient amount of memory that should be collected wheDnce the amount of memory used by the application has

crossing threshold; as follows: reached threshold; (at pointC'), the garbage collector
will be invoked because the allocator is not able to find
Sy =T,—-Ty for Tyand an appropriate block in the heap to satisfy the request. At
S;=T; —T;—, for T;where; > 1. point C' garbage collection reclaims memory to paint



The amount of memory collected from poffitto D, R;, to try to free up unused memory and limit heap growth
is not considered large enough for garbage to be collectedrder to attempt to execute the application within the
the next timeT is reached (becaud®, is less thanS;). amount of memory available in the system. Bouncing
Therefore, the next time the allocator fails to satisfy ttebove and below thresholds is prevented by ensuring that
current request (at poirit) the heap is expanded up to tha sufficient amount of memory is reclaimed by the previ-

next threshold75. ous collection.
. Naturally the choice of the number of thresholds and
Avail Memory T their locations can greatly influence application perfor-

mance. While we would prefer a technique that did not re-
quire parameter tuning, we didn’t find it difficult to choose
a set of thresholds that works quite well across the set of
applications used in our experiments. Our current imple-
mentation defines logical thresholds relative to the amount
of memory available in the system at the time of collec-
tion. For the experiments conducted with 64 MB of mem-
ory we used logical thresholds of:

Figure 2: Example operation using thresholds 0.40, 0.55, 0.70, 0.85, 0.92, 1.00, 1.15, and 30.00.

As the application continues to use memory, the collec-FOr experiments conducted with 128 MB of memory
tor will be invoked at point” because a new thresholdWe used logical thresholds of:
T>, has been reached. This time a substantial amount of 0.80, 0.85, 0.90, 0.95, 1.00, 1.05, and 10.00.
garbage s collected, reducing the amount of memory con-
sidered live to point7. This is considered to be a good Note that each set of thresholds includes one threshold
collection because it collected more theén = 7, — 77 at the point equal to available memory and one slightly
bytes of memory. Therefore, the next tirie or 7T, are above. Again these are designed to attempt to collect
reached the garbage collector will be invoked. From thémough garbage so that the program will execute with
point onward the heap does not need to be expandeddome memory available. However, we've set the next
some time because the heap size i§aand it is never threshold to a point well beyond available memory (this
reduced (compaction is not implemented in the BDW cqgtoint is not reached in any of our experiments). Prelim-
lector). inary experiments we have conducted suggest (and it has
As the program continues to allocate objects, theen pointed out in other work [12]) that it might be best
amount of memory being used will grow until poiaf not to garbage collect when the amount of reachable data
is reached (again &f;). Since our approach is to try tois large (since the virtual memory subsystem will page out
keep the amount of memory below each threshold (pinactive data). We hope to conduct further research into
vided the recent collection reclaimed a sufficient amouiis issue in the future.
of memory), garbage collection will be invoked at point
H. Since not a lot of garbage is collected to reach poi&t
I, the next timel is reached (at poinf) the collectoris
not invoked. One of the goals of this work is to develop an approach
In the example described above we differentiate scheduling that results in faster application execution
garbage collection point§ and F' as being initiated as atimes than achieved by the existing approaches. There-
result of the heap becoming sufficiently utilized and colere, we begin by using an environment with 64 MB
lection pointH as being initiated by the allocator passingf memory and comparing our threshold-based approach
a threshold that we would like to avoid exceeding. with the original BDW algorithm with FSD = 4, FSD = 2,
As can be seen in the example in Figure 2, we hasad with garbage collection turned off. These environ-
chosen thresholds so that as less memory is availablertents are examined explicitly because the majority of the
thresholds are closer together. This permits us to collagiplications used in our experiments execute very effi-
garbage more aggressively (i.e., more frequently) anddiently in one of these three scenarios. The results of these
grow the heap less aggressively (i.e., by smaller amourdggperiments are shown in Figure 3(a), 3(b), and 3(c), re-
as the amount of memory available to the application dgectively. Additionally, in Figure 3(d) we compare the
creases. Both of these actions are designed to avoid execution times obtained using our threshold based ap-
lection and heap growth overheads when there is an abpreach with the minimum execution times obtained across
dance of available memory. Moreover, they are designaitiFSD values.

1 Threshold-based Experiments



based algorithm and executing with 64 MB of mem-
ory, overheads due to garbage collection are relatively
small for all applications excepavac.100 (where it
is about 33%) andred (where it is about 21%). For
javac.100 , execution time is significantly improved
especially when compared with FSD = 2 (Figure 3(b)) or
(a) FSD = 4 turning garbage collection off (Figure 3(c)). We discuss
thefred application in detail shortly.

The results observed in Figure 3(b), which compare
the threshold-based algorithm with FSD =2, are simi-
lar to those seen in Figure 3(a) (for FSD = 4) but they
are not as dramatic. In this case, for all executions ex-
ceptespresso andjavac.100 the threshold-based
algorithm and FSD =2 yield execution times that are
within approximately 5-10% of each other. However, we
point out that when using the threshold-based approach
javac.100 executes in less than 20% of the time re-
quired to execute with FSD = 2. We also point out that
when comparing the graphs in Figure 3(a) and 3(b), one
(c) GC Off could conclude that a default FSD value of 2 would better
serve more of the applications in our test suite than the
value of 4 used in the current BDW distribution. How-
ever, the value of 4 appears to be more conservative and
prevents any one of the applications tested from suffering
from very poor performance.

Figure 3(c) compares the execution times of the

threshold-based algorithms with those obtained when

Figure 3: Comparing threshold-based algorithm withy a6 collection is off. By comparing these results
BDW using different FSD values on a 64 MB system it those in Figure 3(d) we can see that in our environ-

ment a number of applications execute most effectively
when garbage collections do not interfere with the exe-
In all graphs, the execution time obtained with oWytion of the application. For almost all of these appli-
scheduling algorithm averaged over 15 runs is normalizegtions the threshold-based algorithm is able to ensure
with I’eSpeCt to the mean execution time over 15 runsmbt the number of garbage Co”ections iS kept to a min-
the application when executed using the standard BOWum and we see that execution times are as good as
environment (for the FSD value used). The values gffhen no garbage collections occur (and in fact in many
shown using the taller, dark colored bars. We use ligf§ses the garbage collector is not invoked after its ini-
colored bars to show the amount of time spent pausgflization phase). However, for 8 of the 26 applications,
during garbage collection using the threshold-based @Re threshold-based approach provides significant reduc-
proach, as a percentage of the execution time obtainediisns in execution time because without garbage collec-
ing the threshold-based approach. tion these applications incur considerable overheads due
Figure 3(a) shows that the set of Java applications usegaging.

executes quite well using the threshold-based approaCUnfortunately, one of the applicationfrdd ) exe-
when compared with the standard BDW approach Usgstes slower by a factor of 1.3 when using the threshold-
ing FSD =4 (the default value). Using the thresholgsased algorithm than when garbage collection is turned
based algorithm, many of the applications (10 of 2@}t (which is also wherfred executes fastest). This is
execute in roughly 80% or less of the time requirggkcausdred is a very short running program and the
when using FSD = 4. Interestingly, one of these applicggo garbage collections initiated in the threshold-based al-
tions (espresso ) benefits significantly and executes iyorithm take a total of 447 ms and inflate execution time
roughly 60% or less of the time required when FSD =4 3 factor close to 1.3. One possible remedy for this
used. Moreover, none of the 26 applications runs slowgiation would be to take into account how long an appli-
using the threshold-based approach. cation has been executing. The idea would be to further
It is interesting to note that when using the thresholdelay collections until an application has executed for a

(b) FSD = 2

(d) Best times over all FSD values



sufficient length of time (assuming that its rate of mem-
ory allocation is not too high). This would ensure that jm @ e s “w B - THEs 5 _ s BE_ 22
the cost of garbage collection is amortized over a longer{i B A ma BN R ERBAA NN B O N NN HAERN
period of time, rather than only over the amount of mem- 158 5 8 818 5 5 5 5[5 5 5 80 088§ §N
ory allocated as is currently done. We have not tried this
approach yet.

As mentioned previously, one of the goals of the (a) FSD = 4
threshold-based approach is to perform at least as well ag
the best possible FSD value across all applications. Tha
is, to perform enough garbage collections to avoid pag-I8 8 8 B8 5 5 5885 88N W88 E NN
ing for those applications for which that is a problem and
to avoid collecting garbage too frequently for those appli-
cations whose execution would be negatively impacted.
Figure 3(d) compares the mean response time of each ap- (b) FSD =2
plication with the mean response time obtained with the [m g BB EE BER BRREER BE
best standard BDW collection method (i.e., the minimum
mean execution time obtained with garbage collection off
and using FSD values of 1, 2, 4, 8, and #6Jhis graph
shows that our approach to controlling garbage collec-
tion and heap growth is roughly as good or slightly better (c) GC Off
than the best FSD value for all but one of the applicatons - —— 7 —— —— 77—
(fred ). (AN NRED

To demonstrate that our approach also works with dif- 18 8 8 B 8 8 5 5 8 5 5 5 80058 N NN
ferent amounts of physical memory, we conduct the same
set of experiments with 128 MB of memory and present
a similar series of graphs in Figure 4. The observations
here are similar to those made when executing using 64
MB, except that the threshold-based approach appearfitpure 4. Comparing threshold-based algorithm with
be slightly more consistent than in the 64 MB case. BDW using different FSD values on a 128 MB system
the 128 MB case all applications execute in time equal to
or slightly better than the best possible FSD value (Fig- . . )
ure 4(d)). Additionally, the portion of the execution timés two-thirds full. This roughly corresponds to using an
spent performing garbage collection is negligible in #1SD value of 1.5 in the BDW collector and will suffer

applications excepavac.100  where it is now about from the drawbacks described in Section 3.1.
13%. Zorn [18] [19] points out that the efficiency of conser-

vative garbage collection can be improved if more garbage

can be collected during each collection phase and suggests
5 Related Work that one way to achieve this is to wait longer between col-

lections. However, he also warns that there is a tradeoff

Moon [13] points out that users of some early Lisp mg_etween the efficiency of collection and program address

chines found that garbage collection made interactive pRace. In addition, he describes a policy for scheduling

sponse time so poor that users preferred to turn garbggég)age collection that is based on an “allocation thresh-

collection off and reboot once the virtual address spa% - Namely, the collector runs only after a fixed amount

was consumed. He also demonstrates that some appl?éa{pemory has been allocated (e.g., after every 2 MB of

tions execute fastest with garbage collection turned off Me€mory have bgen allocated). , i
é‘A set of experiments conducted in our environment us-

(d) Best times over all FSD values

Appel [2] and Cooper, Nettles, and Subramanian [8 ; . ;
describe techniques for determining heap sizes in copy| Zor’s allocation threshold approach yielded results

collectors. Unfortunately, neither study specifically enr tarr-]zc S":;'laég)v:/hosl? oféyamed ulsmg the dlflfle rer}[fc FSD
amines the impact that their decisions have on applicati zﬂueﬁ |?jr € it (t:)? ic '" amel_y, ?.O oneg oca Ionth
performance. Smith and Morrisett [15] describe a mostl ireshold was suitable for all applications. because the
copying collector that collects garbage whenever the heapTo be fair, Zorn devised this algorithm to fairly compare two differ-
ent garbage collection algorithms while ensuring that the scheduling of

30f the applications tested none of the execution times decreaggabage collections was done identically in each case and not to optimize
with FSD values of 32 or higher. any performance metric.
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amount of memory available is not considered when iréxecution time (due to interaction with the virtual mem-

tiating garbage collection, some applications exceed thrg subsystem).

amount of memory available and overheads due to pag©One of the main differences between our work in this
ing significantly increase execution time. While a small@aper and previous work is that we specifically study and
threshold might reduce the execution time of such an atevise techniques for controlling garbage collection and
plication it can increase the execution time of other applieap growth and directly consider the tradeoff between
cations where the overhead due to frequent collection®iecution time and application footprint.

significant.

Alonso and Appel [1] implement an “advice serverB Discussion
that is used to determine how to take maximum advantage

of memory resources available to a generational CopYiRg -reased garbage collection times, whether they are
garbage collector for ML. After each garbage C°||9Cti°£thieved by improvements to the implementation we've
the application contacts the advisor process to determ&eed (e.g., by reducing cache misses during collections
how it should adjust its hegp size. The advisor proc g?) or by utilizing a different collector, may mean
usesymstat - output to monitor the number of free pageg, hage collection can be invoked more frequently with-
and page faultrates in order to tell each application howig negatively impacting the application’s execution time.
adjust its heap size. Although this is not explicitly statqgyyje \e believe that this would make it easier to obtain
in their paper, we believe that garbage collections only 0¢ eet spot in terms of collection frequency, we suspect
cur when the free space portion of the heap is exhausfgd it \would still be necessary to prevent collections from
(based on the ML implementation we believe they ”S%@curring too frequently.

[2]). As a result, control over garbage collection only 0c- y,reqver, we've observed that in some cases the bene-
curs by modifying the size of th? heap. Unfortunately Fhfﬁs obtained from using our threshold-based approach are
approach_can not be dt_aployed in the BDW coIIe_cto_r, SING&esult not so much of controlling how frequently col-
the BDW implementation does not support shrinking the ions occur but of controlling the point at which they
heap. Although it might be possible to modify the BDWccur. Eor example, when executifgyac.100  using
collector to contact an advisor process when making qﬁir threshold-based approach on a 64 MB system, an av-
cisions regarding garbage collection and heap growth, we ;e of 24 collections are performed and a mean execu-
believe that our approach obtains significant benefits Pé'n time of 58 seconds is observed. In contrast, with FSD
occasionally deciding to garbage collect even when the_r%, 4 and 8 the collector is invoked an average of 17, 37

is sufficient memory available in the heap to satisfy a rga g5 times respectively, while mean execution times are
quest. This is accomplished by carefully adding a S'm%‘il

mental to the performance of most applications. HOWnectrym. In fact it is slightly better than that obtained
ever, their work dqes demonstrate that.gar_bage collecmﬁh the 65 collections performed when FSD = 8.
can be controlled in a number of applications executing); 515 seems that garbage collection overheads are still
simultaneously to provide reduced executions times. sufficiently large that our approach might prove useful in
Recently, Kim and Hsu [12] have analyzed the memembination with other garbage collectors. Recent exper-
ory system behavior of several Java programs from timeents conducted by Fitzgerald and Tarditi [9] show that
SPECJVM98 benchmark suite. One of the observatidios one application¢n2 ) garbage collections account for
made in their work is that the default heap configurati@minimum of 30% of the total execution time across three
used in IBM JDK 1.1.6 results in frequent garbage cadifferent collectors used in their experiments. Addition-
lection and the inefficient execution of applications. Aklly, garbage collections account for roughly 15-25% of
though the direct overheads due to garbage collectiortle execution time for several combinations of applica-
their environment appear to be more costly than in ouigns and collectors. They also point out that for some
(because the entire heap is swept on each collection aftheir applications reducing the number of garbage col-
because heap compaction is used), we believe that theations by half roughly halves the time spent in garbage
results also demonstrate the need to improve techniqaeBection.
for controlling garbage collection and heap growth. They Of course, our technique may not work with all garbage
also point out that although the direct costs of garbagellectors. An unstated but underlying assumption is that
collection decrease as the available heap size is increaslethying garbage collection will not significantly increase
there exists an optimal heap size which minimizes tothle time spent in garbage collection. While this is true
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in the BDW collector used in our experiments, this is not
true for all garbage collectors. For example, the mark-
and-sweep copying collector reported on by Kim and
Hsu [12] incurs overheads proportional to the amount of
garbage being collected. It is unclear what impact delay-
ing garbage collection would have in such environments.

As discussed in more detail in Section 5, Alonso and
Appel [1] demonstrate that garbage collection can be ef4ye also design, implement, and experimentally eval-
fectively controlled in a number of simultaneously exgrate a threshold-based algorithm for controlling garbage
cuting applications. Although we intentionally focus oRgjiection and heap growth. We demonstrate that by us-
understanding how to minimize the run time of one appihg our new approach we are able to significantly reduce
cation executing in isolation, we have tried to keep Mithe execution time of many applications when compared
tiprogrammed environments in mind. In such cases tfifth the method used by the standard BDW implementa-
amount of available memory will be reduced and presufiisn, We believe that these benefits are obtained by taking
ably thresholds will be reached sooner. However, suchigy account the amount of memory available to the appli-
environment might require us to dynamically adjust 0@gtion when determining whether to collect garbage or to
thresholds because we have found that for some appligasy the heap and by considering the amount of memory
tions itis important to be more aggressive about collectingc|aimed in previous collections.
garbage when less memory is initially available. This is\ye gpserve that with our threshold-based approach the
reflected in differences in thresholds used for 64 MB apgecytion times of the applications tested are (except for
128 MB systemsd(f. Section 4). one case) at least as fast as the execution times obtained
using the best possible scheduling in the standard BDW
collector (i.e., over all FSD values).

In the future we plan to test our approach using different

In this work we evaluate the performance of, Compa,@qrbage collectors, and to consider multiple applications
and design algorithms specifically to control the sched@Xecuting simultaneously, dynamic threshold values, and
ing of garbage collection and heap expansion. Colld€chniques that do not require tuning.
tively we refer to these problems as the garbage collection
scheduling problem.
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