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Abstract

In systems that support garbage collection a tension exists
between collecting garbage too frequently and not collect-
ing garbage frequently enough. Garbage collection that
occurs too frequently may introduce unnecessary over-
heads at the risk of not collecting much garbage during
each cycle. On the other hand, collecting garbage too in-
frequently can result in applications that execute with a
large amount of virtual memory (i.e., with a large foot-
print) and suffer from increased execution times due to
paging.

In this paper we use a large collection of Java appli-
cations and the highly tuned and widely used Boehm-
Demers-Weiser conservative garbage collector to exper-
imentally examine the extent to which the frequency
of garbage collection impacts an application’s execution
time, footprint, and pause times. We use these results
to devise some guidelines for controlling garbage collec-
tion and heap growth in a conservative garbage collector
in order to minimize application execution times. Then
we describe new strategies for controlling garbage collec-
tion and heap growth that impact not only the frequency
with which garbage collection occurs but also the points
at which garbage collection occurs. Experimental results
demonstrate that when compared with the existing ap-
proach our new strategy can significantly reduce applica-
tion execution times.

1 Introduction

In many programming languages (e.g., Pascal, C, and
C++) dynamically allocated memory must not only be
tracked by the programmer but it must also be freed when
it is no longer needed. Tracking and freeing dynamically
allocated memory is time consuming and error-prone. In

�This work was partially supported by the IBM Toronto Labs Center
for Advanced Studies and by NSERC.

Java and other languages (e.g., Lisp, Smalltalk, ML, Self,
Modula-3, and Eiffel) the run-time system keeps track of
memory (objects) that has been dynamically allocated and
periodically frees that memory which is no longer being
used (i.e., it automatically performs garbage collection).
In most existing Java implementations garbage collection
is performed synchronously. That is, the executing pro-
gram is suspended for a period of time while garbage col-
lection is performed. Alternatively, some approaches to
garbage collection attempt to simultaneously execute the
garbage collector code and the main application by using
a separate thread of control for garbage collection. How-
ever, the suspension of the main application or even un-
controlled delays due to thread switching can cause seri-
ous problems for users or other programs attempting to
interact with the application.

Time spent reclaiming memory that is no longer in use
typically delays the execution of the application and as
a result can increase the execution time of the applica-
tion. A tension is therefore created between collecting
garbage too frequently and not collecting garbage fre-
quently enough. Garbage collection that occurs too fre-
quently may introduce significant and unnecessary over-
heads at the risk of not collecting much garbage during
each collection. On the other hand, collecting garbage too
infrequently can lead to larger heap sizes and increased
execution times due to paging.

A memory allocation and garbage collection subsystem
is faced with a number of fundamental decisions:

1. When allocating memory, what algorithm should be
used?

2. If garbage collection is performed, which algorithm
should be used?

3. When should garbage collection be performed?
4. When should the heap be expanded and by how

much should it expand?
5. If the heap is being compacted, when should it be

compacted?
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Some of these decisions can have a significant impact
on the frequency with which garbage collection occurs
and on the overhead incurred in performing garbage col-
lection. Much research has examined questions 1 and 2
above. For surveys see Wilson [16], Wilsonet al. [17],
and Jones and Lin [11]. Recent work [9] suggests that no
one garbage collector is best suited for all applications. In
this paper we concentrate on questions 3 and 4 and eval-
uate their impact on application performance in the con-
text of the highly tuned and widely used Boehm-Demers-
Weiser (BDW) [7] [6] [4] [3] conservative, mark-sweep
collector. Our goal is to gain a better understanding of the
impact of these decisions on application behavior and to
examine techniques for scheduling garbage collection and
heap growth. Although we are not aware of any published
work that specifically studies question 5 above, we don’t
consider this question here because the BDW implemen-
tation used is not a compacting collector.

Garbage Collector Performance

Three main metrics that arise naturally from how garbage
collection impacts an application and its execution are:
the overall execution time of the application; the pause
times introduced due to garbage collection (typically the
measures of interest are the total, average, and maximum
pause times); and the footprint of the application.

In this paper we concentrate on minimizing the exe-
cution time of an application. Execution time in some
ways includes components of the other two metrics be-
cause pause times that are large will increase application
execution times and applications with large footprints are
more likely to incur overheads due to paging. While we
don’t believe that this is the only metric of importance,
we believe that it is an important metric to a large number
of users and that it represents an important starting point
when optimizing garbage collector performance.

In this work we also focus on applications executing in
isolation. We believe that it is first necessary to under-
stand how these decisions impact a single application in
order to develop and study techniques designed for envi-
ronments where multiple applications execute simultane-
ously (which we also plan to study in future work).

2 Experimental Environment

All experiments were conducted on a 400 MHz Pentium
II with 16 KB of level 1 instruction and data cache and
512 KB of unified level 2 cache. The operating system
is NT Version 4.0 service pack 3 which uses a 4 KB
page size. We use IBM’s High Performance Java (HPJ)
which translates Java-byte codes of whole programs into

native machine instructions and provides the run-time sys-
tem (including the garbage collector). Although the sys-
tem we used contains 256 MB of memory, we configure
the amount of memory used by the system at boot time.
Since many of the Java benchmarks do not consume large
amounts of memory this permits us to shrink the amount
of memory in the system in order to place higher demands
on the virtual memory subsystem.

2.1 The Applications

The Java applications used in our experiments were
obtained from several sources including SPECJVM98
benchmarks (we exclude200 check which is a syn-
thetic benchmark designed to check features of the
JVM).1 They cover a wide range of application areas in-
cluding: virtual machine benchmark programs, language
processors, database utilities, compression utilities, arti-
ficial intelligence systems, multimedia, graphics, and ob-
ject broker applications. In our experiments all explicit
requests tojava.lang.System.gc() are ignored in
order to ensure that garbage collections are only sched-
uled by the algorithm being tested. Fitzgerald and Tarditi
[9] report that the SPECJVM98 benchmarks run faster in
their environment when they disregard these calls. Table
1 provides a brief description of each of the applications
used in our experiments. (The SPECJVM98 applications
have been studied and described in detail in other work
[12] [14] [9].)

We use this relatively large collection of Java applica-
tions to evaluate the original BDW collector (using a va-
riety of configurations) and compare their execution time
to our new approach to controlling garbage collection and
heap growth. At this point we have made no effort to elim-
inate applications that behave similarly or that are not im-
pacted by garbage collection.

3 The BDW Collector

In this paper we use version 4.11 of the highly tuned and
widely used Boehm-Demers-Weiser (BDW) conservative,
mark-and-sweep garbage collector to study how garbage
collection frequency impacts the execution of several ap-
plications. This collector was originally designed for use
with C and C++ programs where information regarding
pointer locations is not known by the collector at runtime.
As a result, any reachable location in memory that con-
tains a bit pattern that could be interpreted as a pointer to
heap memory must conservatively be considered a pointer

1Two data set sizes are include for each application-s10 and -
s100 , which are denoted by appending.10 or .100 to the application
name.
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Application Description

compress * A data compression utility that imple-
ments a modified version of a com-
pression technique known as LZW
( 201 compress)

db * Performs multiple database func-
tions on a memory resident database
( 209 db)

espresso A compiler that translates Java pro-
grams using a subset of the language
into byte code

fred Application frame work editor
jack * A Java parser generator based on Pur-

due Compiler Construction Tool Set
(PCCTS)( 228 jack)

jacorb An object broker system based on
OMG’s Common Object Request Bro-
ker Architecture

javac * Common Java compiler JDK1.0.2
( 213 javac)

javacup A parser generator which generates
parser code in Java

javalex A lexical analyzer generator for Java
javaparser A parser generator for Java
jaxnell Generates tokenizers from regular ex-

pressions, and parser generator that
generates recursive descent parsers
from LL(1) grammars.

jess * An expert shell system based on
NASA’a CLIP expert shell system
( 202 jess)

jgl A Java virtual machine benchmark that
performs array operations and sorting
to test the performance of Java virtual
machine.

jobe A Java Obfuscation tool that scrambles
Java Byte code to prevent the reverse
engineering of the byte code

jolt A Java byte code to C translator
mpegaudio * This application decompresses au-

dio files that conform to the ISO
MPEG Layer-3 audio specifications
( 222 mpegaudio)

mtrt * A ray tracer that works on a dinosaur
scene( 227 mtrt)

netrexx A new programming language written
in Java

toba Translates Java class files to C

Table 1: List of benchmark Java programs used in our
experiments, * denotes SPECJVM98 application.

to reachable memory. Additionally, heap compaction is
not supported.

The BDW collector has been used to form the basis
for Geodesic’s REMIDI product [10]; integrated with the
Apache web servers running Amazon.com; and used in
a number of Java environments including the GNU Java
compiler (gcj) and IBM’s HPJ environment used in this
study. We now briefly describe those aspects of this
garbage collector that are relevant to our study.

The marking phase starts by marking all memory that
can be accessed (reached) by the application. The algo-
rithm begins with objects in registers, on the stack and
in static variables and then recursively marks all objects
that can be reached from the original (root) set of ob-
jects. Upon completion of the marking phase, unmarked
objects that can not be reached are considered garbage
and are reclaimed during the sweep phase. The system
supports a distinction between atomic objects (those not
containing pointers) and composite objects (those con-
taining pointers) and only composite objects are traced
during the marking phase. Our implementation is able
to distinguish composite and atomic objects. Further, in
order to reduce pause times, an initial sweeping reclaims
only blocks consisting completely of unmarked objects.
A lazy sweep technique is used during allocation to in-
crementally sweep remaining objects as they are needed.
As a result, garbage collection times should be correlated
with the size of the set of reachable composite objects and
not the size of the heap (we’ve found this to be true in our
experiments).

In the BDW collector the decision regarding whether or
not to garbage collect is significantly influenced by a stati-
cally defined variable, called thefree space divisor(FSD).
Figure 1 shows a simplified version of the algorithm used
in the BDW collector to decide whether to collect garbage
or to grow the heap (i.e., the algorithm used to schedule
garbage collections). This portion of the code is invoked
when the memory allocator fails to find a suitable chunk
of memory for the object (being allocated by the appli-
cation). A check is made to determine what portion of
the current heap is being used. Namely, if the portion of
the heap that is used by the application is sufficiently large
when compared with the reciprocal of the FSD value, then
the garbage collector is invoked. For example, if the FSD
is 2 then garbage is collected if more than roughly one
half of the heap is used and if the FSD is 4 then garbage
is collected if more than roughly one quarter of the heap
is used. If the portion of the heap that is being used by the
application is lower than the threshold determined by the
FSD value then the heap is grown.

Note that the FSD is also used when the heap is grown.
In this case it is used to determine how much to grow the
heap by. So modifications to the FSD impact two deci-
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sion points: whether to garbage collect or not and how
much to grow the heap by. The amount by which the heap
is grown also impacts garbage collection frequency since
growing the heap by a large amount can postpone the need
for garbage collection.

if (mem_used >= (heap / FSD)) {
collect_garbage()

} else {
grow_heap_by((heap / FSD) +

request_size)
}

Figure 1: Simplified pseudo-code for the BDW collector
that impacts scheduling.

3.1 BDW Experiments

Table 2 illustrates the impact of garbage collection fre-
quency (including turning garbage collection off) on the
execution of three Java applications. This subset of appli-
cations was chosen from our larger set of Java applications
in order to illustrate the variety of affects that garbage col-
lection frequency can have on the application. Each appli-
cation is described in Section 2.1 and we consider the full
set of applications later in the paper.

The experiments were conducted using 64 MB of mem-
ory so that some of the applications are using a reasonable
portion of memory. Once the operating system and asso-
ciated applications are loaded there is roughly 45-50 MB
of memory available for the application. Each experiment
was run 15 times and Table 2 shows observed averages.

Using the BDW conservative garbage collector we
change the frequency with which garbage is collected by
modifying the statically defined free space divisor (FSD).
The first column shows the algorithm used to control
garbage collection and heap growth (when garbage collec-
tion is off we grow the heap as though an FSD value of 4 is
used). The remaining columns show the: execution time
including 90% confidence intervals (Runtime); number of
garbage collections (GCs); total time spent in the garbage
collector (GC time); average time spent per garbage col-
lection (Avg Pause); maximum time spent on one garbage
collection (Max Pause); average footprint (Avg Foot)2;
the total number of page faults (Faults); and the number of
page faults that occurred during garbage collection (GC-
faults). Although in all cases at least one garbage collec-
tion is reported, the first call is for initialization purposes
only and no garbage is collected.

2This is obtained by post processing the amount of un-reclaimed
memory over 10,000 points during the application’s execution and tak-
ing the average over those points. Points of execution are determined
based on the number of bytes allocated to ensure that samples are taken
at the same points in the application’s execution no matter which algo-
rithm is used and how execution time is impacted.

As can be seen in Table 2 thefred application exe-
cutes fastest when no garbage collections are performed.
As the frequency of garbage collection increases the ex-
ecution times and total garbage collection times increase
significantly. With an FSD value of 16 the application
runs slower than without garbage collection by a factor
of about 3.8. In this case the 41 garbage collections take
a total of 4471 milliseconds. Adding this to the execu-
tion time of the application without garbage collection
(1650) nearly completely accounts for the extra execution
time. With an FSD value of 4, the default configuration
for the BDW code, it executes 1.8 times slower than with-
out garbage collection (again the extra time spent in the
garbage collector nearly completely accounts for the dif-
ference).

Interestingly, the average (and to a lesser extent the
maximum) garbage collection times increase as the fre-
quency of garbage collection increases. This is contrary
to the notion that more frequent garbage collections might
result in less garbage being collected during each col-
lection and would therefore result in faster garbage col-
lections. This is because the amount of reachable com-
posite data in this application grows during execution;
in the BDW collector tracing reachable composite ob-
jects accounts for the significant portion garbage collec-
tion time. This is accomplished by differentiating atomic
objects from composite objects and only tracing compos-
ite objects and by utilizing a lazy-sweep technique that ef-
ficiently sweeps objects during allocation (when they are
next allocated).

The fred application executes fastest when garbage
collection is turned off because this application can ex-
ecute within the memory available in the system (with
garbage collection off the heap grows to 33 MB). How-
ever, as can be seen for applications with larger mem-
ory requirements likedb.100 andjavac.100 , turning
garbage collection off can significantly degrade perfor-
mance. Both applications execute slowest when garbage
collection is turned off. In the case ofdb.100 the slowest
execution time is about 1.2 times slower than the fastest
execution time which is obtained when an FSD value of 2
is used. In the case ofjavac.100 the slowest execution
time is about a factor of 7 times slower than the fastest
execution time (which is obtained when an FSD value of
8 is used).

Unlike thefred application, in which average garbage
collection times grow as the frequency of garbage collec-
tion increases, the maximum and average pause times for
db.100 are relatively unaffected by garbage collection
frequency. This is because indb.100 the total size of the
reachable composite objects is relatively stable through-
out the execution of the program (around 800 KB during
all but the first few collections). Therefore, increasing the
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Alg Runtime GCs GC time Avg Pause Max Pause Avg Foot Faults GCfaults

fred
Off 1650 +/- 4.5 1 1 1 1 12199 7547 24
FSD 1 1661 +/- 6.1 1 0 0 0 12199 7547 24
FSD 2 2170 +/- 3.0 7 501 71 237 3456 5756 33
FSD 4 3030 +/- 5.0 16 1334 83 302 1978 5249 35
FSD 8 4220 +/- 4.7 26 2510 96 323 1457 5155 35
FSD 16 6236 +/- 3.4 41 4471 108 320 1138 5051 35

db.100
Off 67619 +/- 854.2 1 17 17 17 56246 35353 24
FSD 1 68968 +/- 1385.2 1 19 19 19 56246 35272 24
FSD 2 55471 +/- 6.1 14 2267 161 224 6862 7682 42
FSD 4 57039 +/- 5.9 24 3926 163 220 4330 6355 45
FSD 8 62719 +/- 6.5 52 9509 182 223 2709 5462 45
FSD 16 69181 +/- 11.8 89 15979 179 220 2170 5171 45

javac.100
Off 430507 +/- 41188.8 1 19 19 19 137306 171688 24
FSD 1 431476 +/- 27102.9 2 16526 8262 16502 88601 155440 3099
FSD 2 310998 +/- 13403.7 17 87263 5022 49631 16921 75594 15898
FSD 4 68399 +/- 6883.6 37 21731 591 7253 8660 20056 2063
FSD 8 61553 +/- 281.6 65 27404 415 1126 5931 13632 276
FSD 16 86362 +/- 1769.7 120 54401 450 944 4363 11576 63

Table 2: Impact of garbage collection frequency in BDW with 64 MB system; times are in milliseconds and sizes are
in KB

frequency of garbage collections will increase the aver-
age pause time (until collections are so frequent that the
asymptote is reached). Thedb.100 application executes
fastest when an FSD value of 2 is used. Here asweet
spot is obtained. Garbage collection is frequent enough
that paging overheads are relatively low but not so fre-
quent that overheads due to collection would negatively
impact execution time. Without garbage collection the
heap grows to about 124 MB, while the 14 garbage col-
lections performed when FSD = 2 limits the heap growth
to about 21 MB.

When executingjavac.100 , average garbage collec-
tion times decrease significantly as garbage collection fre-
quency increases (up to FSD = 8) even though the size of
the reachable set of composite objects is mainly increas-
ing during execution. In this case, garbage needs to be col-
lected frequently enough to permit the application to ex-
ecute within the amount of memory available. More fre-
quent collection keeps the footprint smaller and reduces
the number of page faults that are incurred both during the
execution of the program and during garbage collection
(for FSD = 2, 4, 8, and 16). Note however, that once the
footprint of the application is reduced to the point where it
fits within the amount of memory available, which occurs
when FSD = 8, more frequent collections increase execu-
tion time (when FSD = 16). It is worth pointing out that

this is also the only application that incurs a real garbage
collection when FSD = 1 (besides the one that is incurred
to initialize the collector). Since the first collection is re-
ally only a quick initialization phase and only two collec-
tions are performed, the reported average pause time in
this case (8262 ms) is a bit misleading. The actual pause
time for the one real collection is 16502 ms (as can be
seen in the column labelled Max Pause).

The results in Table 2 demonstrate that for the Java ap-
plications shown, the frequency with which garbage is
collected can have a substantial impact on their execution
and that a sweet spot exists in terms of minimizing execu-
tion times. Additionally, we see that for the BDW collec-
tor no one FSD value works best for all applications and
that increasing the frequency of garbage collection does
not appear to reduce the time spent in garbage collection
for some applications.

Table 3 shows the results of the same experiments con-
ducted on a system with 128 MB of memory (rather than
64 MB as in the previous experiments). Because the algo-
rithm being used does not take into account the memory
available in the system (it is based on the size of the heap),
the garbage collection frequency is unchanged when com-
pared with the 64 MB case. Consequently, the results for
fred are unchanged, since it can easily execute within
the available memory even without garbage collection. In
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Alg Runtime GCs GC time Avg Pause Max Pause Avg Foot Faults GCfaults

fred
Off 1633 +/- 5.6 1 5 5 5 12199 7546 24
FSD 1 1662 +/- 11.8 1 5 5 5 12199 7546 24
FSD 2 2180 +/- 14.5 7 498 70 236 3456 5755 33
FSD 4 3022 +/- 8.2 16 1329 82 302 1978 5249 35
FSD 8 4220 +/- 7.2 26 2500 96 322 1457 5155 35
FSD 16 6224 +/- 6.8 41 4470 108 320 1137 5050 35

db.100
Off 56011 +/- 174.8 1 32 32 32 56246 31749 24
FSD 1 55924 +/- 124.5 1 24 24 24 56246 31772 24
FSD 2 55345 +/- 4.3 14 2259 161 223 6862 7681 42
FSD 4 56916 +/- 4.1 24 3918 163 219 4330 6354 45
FSD 8 62588 +/- 3.9 52 9501 182 225 2709 5461 45
FSD 16 69033 +/- 5.1 89 15949 179 219 2170 5170 45

javac.100
Off 399141 +/- 7286.2 1 24 24 24 137320 190045 24
FSD 1 264869 +/- 3400.5 2 439 219 402 88588 133386 42
FSD 2 37959 +/- 170.7 17 6937 391 1022 15788 19328 67
FSD 4 45374 +/- 112.0 37 14284 385 1001 8958 16787 62
FSD 8 58524 +/- 240.0 65 27196 416 975 5968 13369 72
FSD 16 86473 +/- 1647.9 120 54664 451 945 4366 11634 69

Table 3: Impact of garbage collection frequency in BDW with 128 MB system; times are in milliseconds and sizes are
in KB

the case of thedb.100 application all measured aspects
of the application are unchanged relative to the 64 MB
case (within confidence intervals), except the execution
time of the application. While the sweet spot is still ob-
served to occur when FSD = 2, we see that the execution
time is only slightly better than when garbage collection
is turned off.

Fairly significant and important differences are seen
in the execution of thejavac.100 application. When
compared with the 64 MB case, the execution time is sub-
stantially reduced in many of the cases. However, the ap-
plication now executes fastest when an FSD value of 2 is
used (38.0 seconds), as compared with the 64 MB case
when a best execution time of 61.6 seconds is obtained
using FSD = 8.

Interestingly, when FSD = 1 is used, the overhead in-
curred by the one real garbage collection is significantly
lower in this case than when executed on a system with 64
MB of memory. In both cases the collection is triggered
when the heap size is 64 MB (recall that about 45-50 MB
is available for the application) so the heap has exceeded
the amount of memory available in the system. In this case
the reachable composite objects can be traced without in-
curring many page faults (42 faults are incurred during
collections) while a total of 3099 faults are incurred dur-
ing collection in the case when a 64 MB system is used.

In a system with 128 MB of memory the differences
in maximum and average garbage collection times as the
collection frequency increases for FSD = 2, 4, 8, and 16
are not nearly as dramatic as in the 64 MB case. In fact
when garbage collection is less frequent (but not so in-
frequent as to cause paging) average and maximum pause
times are actually equal to or lower than when collection
is more frequent. For this reason the algorithm we develop
in the next section is able to postpone garbage collection
without incurring substantial costs (provided it isn’t de-
ferred too long).

When comparing the results in Table 2 with those in
Table 3 we see that for some applications the best FSD
value changes with the amount of memory available in
the system. This motivates us to develop a technique that
considers the memory available in the system in order to
attempt to execute each application at its sweet spot.

4 A New Approach

In analyzing the results obtained from the experiments
conducted in the previous section combined with lessons
learned from experiments in which we attempted to pro-
duce an improved algorithm, we have developed some
guidelines that we use in our new scheduling algorithm:
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1. If there is sufficient memory available, garbage
should not be collected and the heap should be grown
quite aggressively.

2. As the amount of available memory becomes low we
attempt to keep some memory available in order to
avoid paging if possible. This is done by more ag-
gressively (i.e., more frequently) collecting garbage
and less aggressively growing the heap (i.e., growing
by smaller amounts).

3. When the amount of available memory is low the ini-
tiation of garbage collection can become too aggres-
sive. Therefore, methods are required for ensuring
that frequency is tempered. We accomplish this by
tracking the amount of memory reclaimed on recent
collections and not collecting if recent collections do
not reclaim a sufficient amount of memory.

As mentioned earlier, a significant problem with using
the FSD to control garbage collection and heap growth
(and approaches used in other garbage collectors) is that
the amount of memory available in the system is not con-
sidered. Our new approach utilizes thresholds that are
based on and determined relative to the amount of avail-
able memory.

When the memory allocator is unable to find a suitable
block of memory in the existing heap for a new request, it
must either garbage collect or grow the heap. When mak-
ing this decision our modified runtime system determines
the amount of memory available in the system and makes
the decision based on: the amount of memory available;
whether or not a threshold has been exceeded since the
last garbage collection; and the amount of garbage col-
lected during the recent garbage collections (to ensure that
collections are not too frequent and that they are actually
reclaiming memory).

Until the amount of memory used by the application
exceeds the first threshold, garbage collection is effec-
tively off. When any threshold is exceeded for the first
time garbage is always collected. During a collection
caused by exceeding thresholdTi the amount of mem-
ory reclaimed is calculated (Ri) and is used in deciding
whether or not to collect garbage the next time thresh-
old Ti is exceeded (or any other thresholds crossed by
Ri). Garbage will be collected if a sufficient amount of
garbage was collected during recent collections. If the
amount of memory reclaimed crosses two or more thresh-
olds, we collect the next time each of those thresholds is
reached. In our current implementation we define a suf-
ficient amount of memory that should be collected when
crossing thresholdTi as follows:

S1 = T2 � T1 for T1 and
Si = Ti � Ti�1 for Ti wherei > 1.

We have also added another decision point to our
modified runtime system. This decision point considers
whether or not garbage should be collected even if there
is a considerable amount of free memory available in the
current heap. This is considered important because in the
BDW collector the heap size is never reduced and once
a heap grows, all decisions are made with respect to that
new heap size. Using the original FSD-based approach
to controlling garbage collection and heap growth, if an
application allocated a large amount of data (growing the
heap to a point beyond available memory), even if a subse-
quent garbage collection reclaimed substantial amounts of
memory, garbage collection would not be invoked again
until an allocation request could not be satisfied from the
existing heap. This can potentially result in paging when
it might not be necessary.

This new decision point is carefully added to the allo-
cator so as to limit its impact on the already highly opti-
mized allocation code. We track the memory used by the
application and when a threshold is passed we invoke the
garbage collector if a recent collection reclaimed a suffi-
cient amount of memory. Although this adds a few in-
structions to the allocation path it does not seem to im-
pact the execution time of our applications in a noticeable
way. In fact, this extra decision point is not included in the
BDW version of our experiments and we have observed
that we are typically able to obtain application execution
times that are as low or lower than those obtained with the
BDW version.

Finally, when growing the heap we grow quite ag-
gressively, targeting a doubling of the heap size on each
growth, until the heap size reaches the first threshold (care
is taken to grow only up to the first threshold). Subsequent
heap growths are done by growing to the next thresh-
old. We propagate these targeted growth sizes through the
original BDW code which ensures that the heap is grown
by at least a minimum increment and no more than a max-
imum increment (256 KB and 16 MB respectively, as de-
fined in the original version of our BDW implementation).

Figure 2 shows an example of how thresholds are used
to control both garbage collection and heap growth. In this
example each decision point is marked. A circle denotes
that the heap was grown, a square denotes that garbage
was collected and a diamond denotes that the decision
was to do neither. The program starts with an initial heap
(in our experiments we use the default initial size used in
the BDW collector, 256 KB). As the program allocates
memory the heap is grown as shown by pointsA andB.
Once the amount of memory used by the application has
reached thresholdT1 (at pointC), the garbage collector
will be invoked because the allocator is not able to find
an appropriate block in the heap to satisfy the request. At
pointC garbage collection reclaims memory to pointD.
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The amount of memory collected from pointC toD,R1,
is not considered large enough for garbage to be collected
the next timeT1 is reached (becauseR1 is less thanS1).
Therefore, the next time the allocator fails to satisfy the
current request (at pointE) the heap is expanded up to the
next threshold,T2.

T1E

Avail Memory

C

A

B

F

D

H

G I

J

T

T

2

3

4

5
T
T

Figure 2: Example operation using thresholds

As the application continues to use memory, the collec-
tor will be invoked at pointF because a new threshold,
T2, has been reached. This time a substantial amount of
garbage is collected, reducing the amount of memory con-
sidered live to pointG. This is considered to be a good
collection because it collected more thanS2 = T2 � T1

bytes of memory. Therefore, the next timeT1 or T2 are
reached the garbage collector will be invoked. From this
point onward the heap does not need to be expanded for
some time because the heap size is atT2 and it is never
reduced (compaction is not implemented in the BDW col-
lector).

As the program continues to allocate objects, the
amount of memory being used will grow until pointH
is reached (again atT1). Since our approach is to try to
keep the amount of memory below each threshold (pro-
vided the recent collection reclaimed a sufficient amount
of memory), garbage collection will be invoked at point
H . Since not a lot of garbage is collected to reach point
I , the next timeT1 is reached (at pointJ) the collector is
not invoked.

In the example described above we differentiate
garbage collection pointsC andF as being initiated as a
result of the heap becoming sufficiently utilized and col-
lection pointH as being initiated by the allocator passing
a threshold that we would like to avoid exceeding.

As can be seen in the example in Figure 2, we have
chosen thresholds so that as less memory is available the
thresholds are closer together. This permits us to collect
garbage more aggressively (i.e., more frequently) and to
grow the heap less aggressively (i.e., by smaller amounts)
as the amount of memory available to the application de-
creases. Both of these actions are designed to avoid col-
lection and heap growth overheads when there is an abun-
dance of available memory. Moreover, they are designed

to try to free up unused memory and limit heap growth
in order to attempt to execute the application within the
amount of memory available in the system. Bouncing
above and below thresholds is prevented by ensuring that
a sufficient amount of memory is reclaimed by the previ-
ous collection.

Naturally the choice of the number of thresholds and
their locations can greatly influence application perfor-
mance. While we would prefer a technique that did not re-
quire parameter tuning, we didn’t find it difficult to choose
a set of thresholds that works quite well across the set of
applications used in our experiments. Our current imple-
mentation defines logical thresholds relative to the amount
of memory available in the system at the time of collec-
tion. For the experiments conducted with 64 MB of mem-
ory we used logical thresholds of:

0.40, 0.55, 0.70, 0.85, 0.92, 1.00, 1.15, and 30.00.

For experiments conducted with 128 MB of memory
we used logical thresholds of:

0.80, 0.85, 0.90, 0.95, 1.00, 1.05, and 10.00.

Note that each set of thresholds includes one threshold
at the point equal to available memory and one slightly
above. Again these are designed to attempt to collect
enough garbage so that the program will execute with
some memory available. However, we’ve set the next
threshold to a point well beyond available memory (this
point is not reached in any of our experiments). Prelim-
inary experiments we have conducted suggest (and it has
been pointed out in other work [12]) that it might be best
not to garbage collect when the amount of reachable data
is large (since the virtual memory subsystem will page out
inactive data). We hope to conduct further research into
this issue in the future.

4.1 Threshold-based Experiments

One of the goals of this work is to develop an approach
to scheduling that results in faster application execution
times than achieved by the existing approaches. There-
fore, we begin by using an environment with 64 MB
of memory and comparing our threshold-based approach
with the original BDW algorithm with FSD = 4, FSD = 2,
and with garbage collection turned off. These environ-
ments are examined explicitly because the majority of the
applications used in our experiments execute very effi-
ciently in one of these three scenarios. The results of these
experiments are shown in Figure 3(a), 3(b), and 3(c), re-
spectively. Additionally, in Figure 3(d) we compare the
execution times obtained using our threshold based ap-
proach with the minimum execution times obtained across
all FSD values.
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(d) Best times over all FSD values

Figure 3: Comparing threshold-based algorithm with
BDW using different FSD values on a 64 MB system

In all graphs, the execution time obtained with our
scheduling algorithm averaged over 15 runs is normalized
with respect to the mean execution time over 15 runs of
the application when executed using the standard BDW
environment (for the FSD value used). The values are
shown using the taller, dark colored bars. We use light
colored bars to show the amount of time spent paused
during garbage collection using the threshold-based ap-
proach, as a percentage of the execution time obtained us-
ing the threshold-based approach.

Figure 3(a) shows that the set of Java applications used
executes quite well using the threshold-based approach
when compared with the standard BDW approach us-
ing FSD = 4 (the default value). Using the threshold-
based algorithm, many of the applications (10 of 26)
execute in roughly 80% or less of the time required
when using FSD = 4. Interestingly, one of these applica-
tions (espresso ) benefits significantly and executes in
roughly 60% or less of the time required when FSD = 4 is
used. Moreover, none of the 26 applications runs slower
using the threshold-based approach.

It is interesting to note that when using the threshold-

based algorithm and executing with 64 MB of mem-
ory, overheads due to garbage collection are relatively
small for all applications exceptjavac.100 (where it
is about 33%) andfred (where it is about 21%). For
javac.100 , execution time is significantly improved
especially when compared with FSD = 2 (Figure 3(b)) or
turning garbage collection off (Figure 3(c)). We discuss
thefred application in detail shortly.

The results observed in Figure 3(b), which compare
the threshold-based algorithm with FSD = 2, are simi-
lar to those seen in Figure 3(a) (for FSD = 4) but they
are not as dramatic. In this case, for all executions ex-
cept espresso and javac.100 the threshold-based
algorithm and FSD = 2 yield execution times that are
within approximately 5–10% of each other. However, we
point out that when using the threshold-based approach
javac.100 executes in less than 20% of the time re-
quired to execute with FSD = 2. We also point out that
when comparing the graphs in Figure 3(a) and 3(b), one
could conclude that a default FSD value of 2 would better
serve more of the applications in our test suite than the
value of 4 used in the current BDW distribution. How-
ever, the value of 4 appears to be more conservative and
prevents any one of the applications tested from suffering
from very poor performance.

Figure 3(c) compares the execution times of the
threshold-based algorithms with those obtained when
garbage collection is off. By comparing these results
with those in Figure 3(d) we can see that in our environ-
ment a number of applications execute most effectively
when garbage collections do not interfere with the exe-
cution of the application. For almost all of these appli-
cations the threshold-based algorithm is able to ensure
that the number of garbage collections is kept to a min-
imum and we see that execution times are as good as
when no garbage collections occur (and in fact in many
cases the garbage collector is not invoked after its ini-
tialization phase). However, for 8 of the 26 applications,
the threshold-based approach provides significant reduc-
tions in execution time because without garbage collec-
tion these applications incur considerable overheads due
to paging.

Unfortunately, one of the applications (fred ) exe-
cutes slower by a factor of 1.3 when using the threshold-
based algorithm than when garbage collection is turned
off (which is also whenfred executes fastest). This is
becausefred is a very short running program and the
two garbage collections initiated in the threshold-based al-
gorithm take a total of 447 ms and inflate execution time
by a factor close to 1.3. One possible remedy for this
situation would be to take into account how long an appli-
cation has been executing. The idea would be to further
delay collections until an application has executed for a
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sufficient length of time (assuming that its rate of mem-
ory allocation is not too high). This would ensure that
the cost of garbage collection is amortized over a longer
period of time, rather than only over the amount of mem-
ory allocated as is currently done. We have not tried this
approach yet.

As mentioned previously, one of the goals of the
threshold-based approach is to perform at least as well as
the best possible FSD value across all applications. That
is, to perform enough garbage collections to avoid pag-
ing for those applications for which that is a problem and
to avoid collecting garbage too frequently for those appli-
cations whose execution would be negatively impacted.
Figure 3(d) compares the mean response time of each ap-
plication with the mean response time obtained with the
best standard BDW collection method (i.e., the minimum
mean execution time obtained with garbage collection off
and using FSD values of 1, 2, 4, 8, and 16).3 This graph
shows that our approach to controlling garbage collec-
tion and heap growth is roughly as good or slightly better
than the best FSD value for all but one of the applications
(fred ).

To demonstrate that our approach also works with dif-
ferent amounts of physical memory, we conduct the same
set of experiments with 128 MB of memory and present
a similar series of graphs in Figure 4. The observations
here are similar to those made when executing using 64
MB, except that the threshold-based approach appears to
be slightly more consistent than in the 64 MB case. In
the 128 MB case all applications execute in time equal to
or slightly better than the best possible FSD value (Fig-
ure 4(d)). Additionally, the portion of the execution time
spent performing garbage collection is negligible in all
applications exceptjavac.100 where it is now about
13%.

5 Related Work

Moon [13] points out that users of some early Lisp ma-
chines found that garbage collection made interactive re-
sponse time so poor that users preferred to turn garbage
collection off and reboot once the virtual address space
was consumed. He also demonstrates that some applica-
tions execute fastest with garbage collection turned off.

Appel [2] and Cooper, Nettles, and Subramanian [8]
describe techniques for determining heap sizes in copying
collectors. Unfortunately, neither study specifically ex-
amines the impact that their decisions have on application
performance. Smith and Morrisett [15] describe a mostly-
copying collector that collects garbage whenever the heap

3Of the applications tested none of the execution times decreased
with FSD values of 32 or higher.
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(d) Best times over all FSD values

Figure 4: Comparing threshold-based algorithm with
BDW using different FSD values on a 128 MB system

is two-thirds full. This roughly corresponds to using an
FSD value of 1.5 in the BDW collector and will suffer
from the drawbacks described in Section 3.1.

Zorn [18] [19] points out that the efficiency of conser-
vative garbage collection can be improved if more garbage
can be collected during each collection phase and suggests
that one way to achieve this is to wait longer between col-
lections. However, he also warns that there is a tradeoff
between the efficiency of collection and program address
space. In addition, he describes a policy for scheduling
garbage collection that is based on an “allocation thresh-
old”. Namely, the collector runs only after a fixed amount
of memory has been allocated (e.g., after every 2 MB of
memory have been allocated).

A set of experiments conducted in our environment us-
ing Zorn’s allocation threshold approach yielded results
that are similar to those obtained using the different FSD
values for the BDW collector.4 Namely, no one allocation
threshold was suitable for all applications. Because the

4To be fair, Zorn devised this algorithm to fairly compare two differ-
ent garbage collection algorithms while ensuring that the scheduling of
garbage collections was done identically in each case and not to optimize
any performance metric.
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amount of memory available is not considered when ini-
tiating garbage collection, some applications exceed the
amount of memory available and overheads due to pag-
ing significantly increase execution time. While a smaller
threshold might reduce the execution time of such an ap-
plication it can increase the execution time of other appli-
cations where the overhead due to frequent collections is
significant.

Alonso and Appel [1] implement an “advice server”
that is used to determine how to take maximum advantage
of memory resources available to a generational copying
garbage collector for ML. After each garbage collection
the application contacts the advisor process to determine
how it should adjust its heap size. The advisor process
usesvmstat output to monitor the number of free pages
and page fault rates in order to tell each application how to
adjust its heap size. Although this is not explicitly stated
in their paper, we believe that garbage collections only oc-
cur when the free space portion of the heap is exhausted
(based on the ML implementation we believe they used
[2]). As a result, control over garbage collection only oc-
curs by modifying the size of the heap. Unfortunately this
approach can not be deployed in the BDW collector, since
the BDW implementation does not support shrinking the
heap. Although it might be possible to modify the BDW
collector to contact an advisor process when making de-
cisions regarding garbage collection and heap growth, we
believe that our approach obtains significant benefits by
occasionally deciding to garbage collect even when there
is sufficient memory available in the heap to satisfy a re-
quest. This is accomplished by carefully adding a simple
and efficient check that occurs during allocation. We be-
lieve that the overhead incurred in contacting an external
process to perform such a check would be highly detri-
mental to the performance of most applications. How-
ever, their work does demonstrate that garbage collection
can be controlled in a number of applications executing
simultaneously to provide reduced executions times.

Recently, Kim and Hsu [12] have analyzed the mem-
ory system behavior of several Java programs from the
SPECJVM98 benchmark suite. One of the observations
made in their work is that the default heap configuration
used in IBM JDK 1.1.6 results in frequent garbage col-
lection and the inefficient execution of applications. Al-
though the direct overheads due to garbage collection in
their environment appear to be more costly than in ours
(because the entire heap is swept on each collection and
because heap compaction is used), we believe that their
results also demonstrate the need to improve techniques
for controlling garbage collection and heap growth. They
also point out that although the direct costs of garbage
collection decrease as the available heap size is increased,
there exists an optimal heap size which minimizes total

execution time (due to interaction with the virtual mem-
ory subsystem).

One of the main differences between our work in this
paper and previous work is that we specifically study and
devise techniques for controlling garbage collection and
heap growth and directly consider the tradeoff between
execution time and application footprint.

6 Discussion

Decreased garbage collection times, whether they are
achieved by improvements to the implementation we’ve
used (e.g., by reducing cache misses during collections
[5]) or by utilizing a different collector, may mean
garbage collection can be invoked more frequently with-
out negatively impacting the application’s execution time.
While we believe that this would make it easier to obtain
a sweet spot in terms of collection frequency, we suspect
that it would still be necessary to prevent collections from
occurring too frequently.

Moreover, we’ve observed that in some cases the bene-
fits obtained from using our threshold-based approach are
a result not so much of controlling how frequently col-
lections occur but of controlling the point at which they
occur. For example, when executingjavac.100 using
our threshold-based approach on a 64 MB system, an av-
erage of 24 collections are performed and a mean execu-
tion time of 58 seconds is observed. In contrast, with FSD
= 2, 4 and 8 the collector is invoked an average of 17, 37
and 65 times respectively, while mean execution times are
311, 68 and 62 seconds respectively. Although the num-
ber of collections invoked using the threshold-based ap-
proach falls on a spectrum somewhere between FSD = 2
and FSD = 4, the execution time does not lie in the same
spectrum. In fact it is slightly better than that obtained
with the 65 collections performed when FSD = 8.

It also seems that garbage collection overheads are still
sufficiently large that our approach might prove useful in
combination with other garbage collectors. Recent exper-
iments conducted by Fitzgerald and Tarditi [9] show that
for one application (cn2 ) garbage collections account for
a minimum of 30% of the total execution time across three
different collectors used in their experiments. Addition-
ally, garbage collections account for roughly 15–25% of
the execution time for several combinations of applica-
tions and collectors. They also point out that for some
of their applications reducing the number of garbage col-
lections by half roughly halves the time spent in garbage
collection.

Of course, our technique may not work with all garbage
collectors. An unstated but underlying assumption is that
delaying garbage collection will not significantly increase
the time spent in garbage collection. While this is true
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in the BDW collector used in our experiments, this is not
true for all garbage collectors. For example, the mark-
and-sweep copying collector reported on by Kim and
Hsu [12] incurs overheads proportional to the amount of
garbage being collected. It is unclear what impact delay-
ing garbage collection would have in such environments.

As discussed in more detail in Section 5, Alonso and
Appel [1] demonstrate that garbage collection can be ef-
fectively controlled in a number of simultaneously exe-
cuting applications. Although we intentionally focus on
understanding how to minimize the run time of one appli-
cation executing in isolation, we have tried to keep mul-
tiprogrammed environments in mind. In such cases the
amount of available memory will be reduced and presum-
ably thresholds will be reached sooner. However, such an
environment might require us to dynamically adjust our
thresholds because we have found that for some applica-
tions it is important to be more aggressive about collecting
garbage when less memory is initially available. This is
reflected in differences in thresholds used for 64 MB and
128 MB systems (cf. Section 4).

7 Conclusions

In this work we evaluate the performance of, compare,
and design algorithms specifically to control the schedul-
ing of garbage collection and heap expansion. Collec-
tively we refer to these problems as the garbage collection
scheduling problem.

We have conducted a detailed study of the impact of
these scheduling decisions on the execution of several
Java applications (26 different executions using 19 differ-
ent applications) while using the highly-tuned and widely
used conservative Boehm-Demers-Weiser (BDW) mem-
ory allocator and garbage collector. Using this environ-
ment we observe that:

� The execution times of many of the applications we
tested varies significantly with the scheduling algo-
rithm used for garbage collection.

� No one configuration of the BDW collector results in
the fastest execution time for all applications. That
is, no one FSD value can be used to obtain the fastest
execution time for all applications. In fact choosing
the wrong FSD value can significantly and unneces-
sarily increase the execution time of the application.

� The best scheduling algorithm for an application (the
one which results in the fastest execution of an appli-
cation) also varies with the amount of memory avail-
able in the machine on which the application is exe-
cuting.

� Making decisions about whether to garbage collect
or grow the heap based primarily on how much of

the current heap is used is not a good choice when
the heap does not shrink (as is the case in the BDW
collector). We argue that in order to minimize the
execution time of an individual application it is bet-
ter to base such a decision on how much memory is
currently available.

We also design, implement, and experimentally eval-
uate a threshold-based algorithm for controlling garbage
collection and heap growth. We demonstrate that by us-
ing our new approach we are able to significantly reduce
the execution time of many applications when compared
with the method used by the standard BDW implementa-
tion. We believe that these benefits are obtained by taking
into account the amount of memory available to the appli-
cation when determining whether to collect garbage or to
grow the heap and by considering the amount of memory
reclaimed in previous collections.

We observe that with our threshold-based approach the
execution times of the applications tested are (except for
one case) at least as fast as the execution times obtained
using the best possible scheduling in the standard BDW
collector (i.e., over all FSD values).

In the future we plan to test our approach using different
garbage collectors, and to consider multiple applications
executing simultaneously, dynamic threshold values, and
techniques that do not require tuning.
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