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Abstract

The sets of compact and of closed subsets of a metric space endowed with the Hausdorff metric are
studied. Both give rise to a functor on the category of 1-bounded metric spaces and nonexpansive
functions. It is shown that the former functor has a terminal coalgebra and that the latter does not.

Introduction

In the seventies, the use of trees was quite popular in denotational semantics of programming languages.
Infinite computations were modelled by infinite trees. These infinite trees were obtained by providing the
set of finite trees with an order and by completing the ordered space. In the late seventies, Maurice Nivat
defined a distance function on finite trees. When this distance function turned out to be a metric, even
an ultrametric, the following question arose naturally: How are the completed ordered space of finite trees
and the completed metric space of finite trees related? It turned out that the latter is the set of maximal
elements of the former. This result may be seen as the start of the use of metric spaces in denotational
semantics. It was published by André Arnold and Maurice Nivat in [AN80]. At the Third Advanced Course
on Foundations of Computer Science, held at the Mathematical Centre in Amsterdam in August/September
1978, Nivat presented joint work with Arnold about metric spaces and how they can be used to give semantics
to recursive program schemes. Nivat’s lecture notes [Niv79] are his most cited publication.

Together with Jan van Leeuwen, Jaco de Bakker organized this course. At that time, De Bakker was
completing his book [Bak80]. Jeff Zucker contributed an appendix to the book and assisted in preparing
the final version. In the summer of 1981, De Bakker visited Zucker at Bar-Ilan University. Inspired by
Nivat’s work, they addressed the following question: Can metric spaces be used in denotational semantics
of concurrency? Several visits of Zucker to Amsterdam followed and led to various publications including
[BZ82]. In the latter paper, metric spaces were successfully exploited to give denotational semantics to
various languages with concurrency. Besides showing that metric spaces can be used for that purpose,
De Bakker and Zucker also demonstrated in [BZ82] how to solve recursive equations over metric spaces.
Amongst others, they solved the equation

X =P, (Ax LX),

where A is a set endowed with discrete metric, % multiplies the metric of a metric space by a half, and
P. denotes the set of closed subsets of a metric space endowed with the Hausdorff metric. That is, they

constructed a metric space X which is isometric to P. (4 x % - X). In [BZ83], the closely related equation
XZ’Pk(AX%-X),

where P}, denotes the set of compact subsets of a metric space endowed with the Hausdorff metric, was
solved. The elements of these two metric spaces are sometimes called De Bakker-Zucker processes. These
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processes can be viewed as tree-like structures. They have been used as denotations of programs of a large
variety of languages. The metric structure on these processes admits the modelling of infinite computations
as limits of finite computations.

[BZ82] is the first paper of the Amsterdam Concurrency Group. This group was (and still is) directed
by De Bakker and consists of members of CWI’s department of software technology and a number of close
affiliates at Dutch universities. The main focus of this group has been on the use of metric spaces to give
semantics to programming languages and to relate different semantic models for a given language. A selection
of papers by members of the Amsterdam Concurrency Group can be found in [BR92]. Two of its members,
Jaco de Bakker and Erik de Vink, wrote a textbook on metric semantics [BV96].

Bisimulation has been a key notion in concurrency theory for the last two decades. This notion is due to
Robin Milner and David Park [Mil80, Par81, Mil94]. Not long after the introduction of De Bakker-Zucker
processes, several members of the Amsterdam Concurrency Group suspected that these processes are closely
related to bisimulation (see, e.g., [BBKM84]). More than half a decade later, Rob van Glabbeek and Jan
Rutten made this suspicion precise. In [GR89], they showed that De Bakker-Zucker processes represent
bisimulation equivalence classes.

In the early eighties, a link between recursive equations over ordered spaces and terminal coalgebras was
established. During a train ride between Amsterdam and Eindhoven in May 1989, Gordon Plotkin sketched
to Jan Rutten how recursive equations over metric spaces can be solved exploiting the techniques used in the
order-theoretic setting. A few years later, Rutten worked out all the details [RT92]. Rutten also showed that
the obtained solutions are carriers of terminal coalgebras. Furthermore, he demonstrated that the above
introduced equations defining the metric spaces of De Bakker-Zucker processes can be solved in this way and
hence are carriers of terminal coalgebras. Terminal coalgebras provide us with coinductive definitions on the
elements of the solution of the equations and coinductive proofs, a powerful technique for proving properties
of those elements (see, e.g., [JR97] for more details).

In the original equations of [BZ82, BZ83], the multiplication of the metric by a half—denoted above by
1+ —was not made explicit (cf. [BR92, page 79]). Only in the constructions of the solutions of the equations
the halves turned up. These halves were overlooked by Javier Thayer. In [Tha87], he sketched that there
does not exist an ultrametric space which is the solution of the equation

X =P, (A xX) 1)

(for the details, see [BW99]). In the construction of the solution of a closely related equation, De Bakker
and Zucker forgot one half. This missing half was spotted by Mila Majster-Cederbaum and Frank Zetzsche
[MZ91]. They showed that the space constructed by De Bakker and Zucker (with the missing half) is not
a solution of the equation. The presence of the halves (or some other positive constant smaller than 1) is
essential for De Bakker and Zucker’s method for solving recursive equations and for the generalization of
their method by Pierre America and Jan Rutten [AR89]. They are also a key ingredient of Rutten’s above
mentioned metric terminal coalgebra theorem.

In this paper, we consider the following questions: What happens if we leave out the halves? Do we still
have terminal coalgebras? We consider the equations

X =P (X) and X =Py, (X).

We show that there does not exist a terminal coalgebra which solves the first equation and that there exists a
terminal coalgebra which solves the second one. The former result is based on Cantor’s theorem. The proof
of the latter contains the following three main ingredients: an adjunction from the category of 1-bounded
metric spaces to the category of sets, a result of Claudio Hermida and Bart Jacobs about adjunctions
between categories of coalgebras, and a result of Michael Barr about the existence of terminal coalgebras in
the category of sets. These results can easily be extended to equations like (1),

X=Pk(AXX)andX=A—>Pk(X).

Of course, we still have to answer the following question: Why would we drop the halves? First of all, by
dropping the halves we obtain simpler equations. If we can solve these equations, as we can in the compact
case, we may want to use them instead of the equations with the halves. We cannot solve equation (1).
However, the closed case (even with the half) is known to be problematic (see, e.g., [BR92, page 130]).



Secondly, in some cases the metric structure can be used other than for modelling infinite computations as
limits. It may be exploited to capture the difference of computations quantitatively. For example, metrics
have been used in this way for probabilistic systems (see, e.g., [GJS90, DGJP99]). In those cases, we don’t
want any halves in the equations as they blur the quantitative picture.

We assume that the reader is familiar with metric spaces, coalgebras and categories. For more details we
refer the reader to, e.g., [BV96, JR97, Mac71].
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1 Quotient of a metric space

Given a 1-bounded metric space, we will define an equivalence relation on the underlying set. The set of
equivalence classes “best approximates” the metric space as we will see in the next section. Furthermore,
we will prove a few properties of the equivalence relation, which we will exploit in later sections.

The equivalence relation is introduced in

DEFINITION 1 Let X be a metric space. Let ~ be the smallest equivalence relation on (the set underlying)
X containing

A={(zy) e X xX|d(x,y) <1}

.
PROPOSITION 2 Let X and Y be metric spaces. Let f : X — Y be a nonexpansive function. If x ~ y then
fx) ~ fy)
PRrOOF It suffices to prove that z ~ y implies f (z) A f (y). This follows immediately from the nonexpan-
siveness of f. O
PROPOSITION 3 Let X be a metric space. Let Y be endowed with the discrete metric. Let f : X — Y be a
nonexpansive function. If x ~ y then f (z) = f (y).
PROOF Similar to the proof of Proposition 2 exploiting the discreteness of Y. d

Given a 1-bounded metric space X, the set P, (X) of closed subsets of X endowed with the Hausdorff metric
is also a 1-bounded metric space. The equivalence relations of these two metric spaces are related as follows.

PROPOSITION 4 Let X be a 1-bounded metric space. For all A, B € P.(X),
if A~ BthenVa€e A:dbe B:a~bandVbe B:Jda€ A:a~b.
ProoF It suffices to observe that
A~B
dp, (x) (4,B) <1

inf dx (a,b) <1 and sup inf dy (a,b) <1
sup inf x (a,b) <1an sup inf x (a,b)

VaGA:big]fng(a,b)<1andVbEB: irelgdx(a,b)<1
Va€e A:Fbe B:dx (a,b)<landVbe B:Ja€ A:dx (a,b) <1
VacA:FbeB:a~bandVbe B:Ja€ A:a~bh.

¢t ¢ ¢

The implication in the other direction does not hold. Consider the set IN endowed with the metric
d(m,n) = min {3 - |m — nl|,1}.

Both {0} and IN are closed subsets of the metric space. Clearly, IN ¢ {0}. However, n ~ 0 for all n € IN.



2 An adjunction from metric spaces to sets

We present an adjunction from the category Met of 1-bounded metric spaces and nonexpansive functions to
the category Set. This adjunction will be exploited in the next section.

By endowing a set S with the discrete metric we obtain a 1-bounded metric space. This space is denoted
by D (S). Each function f : S — T is a nonexpansive function from D (S) to D (T"). Obviously, this defines
a functor D from Set to Met.

The functor Q assigns to each 1-bounded metric space X the set Q (X) of ~-equivalence classes. The
equivalence class containing x € X is denoted by ¢x (x). The functor Q maps a nonexpansive function
f: X =Y to the function Q (f) : Q (X) = Q(Y) defined by

Q(f) (gx (2)) = qv (f (2))

(cf. Proposition 2). Clearly, Q is a functor from Met to Set.

PROPOSITION 5 Q is a left adjoint for D.

PRrROOF Let X be a 1-bounded metric space. From the definition of ~ and the fact that X is 1-bounded
it follows that gx : X — D (Q (X)) is nonexpansive. For a 1-bounded metric space Y and a nonexpansive
function f: X — Y we have that gy o f = D (Q(f)) o gx, i.e. ¢ is a natural transformation.

x —ED(Q(X)
7 LD(Q(J‘))
Y~ D(Q(V)

Hence, according to, e.g., [Mac71, Theorem IV.1.2(i)], it suffices to observe that for all 1-bounded metric
spaces X and sets S and nonexpansive functions f : X — D (S) there exists a unique function g : Q (X) — S
defined by

9(gx (z)) = f (z)
(cf. Proposition 3) such that D (g) o gx = f.

a9x

X D(Q(X) Q(X)

3 Compact sets
The functor Py assigns to each 1-bounded metric space X the set of compact subsets of X endowed with
the Hausdorff metric. A nonexpansive function f : X — Y is mapped to the nonexpansive function
Pr (f) : Pr (X) = P (V) defined by
Pr(f)(A)={f(a) |lac A}.

This functor has a terminal coalgebra as is shown in

PROPOSITION 6 There exists a terminal Py-coalgebra.



Proor Let P; denote the finite powerset functor on Set. Since D o Py is isomorphic to P o D, we can
conclude from Proposition 5 and [HJ98, Corollary 2.15] that there exists an adjunction from the category of
‘Pr-coalgebras to the category of Py-coalgebras.

Py

Set Set

oo (e

Met Tk Met

According to [Bar93, Theorem 1.2], there exists a terminal Pg-coalgebra. Since right adjoints preserve
terminal objects (see, e.g., [Mac71, Theorem V.5.1]), there also exists a terminal Pj-coalgebra. O

4 Closed sets

The functor P. maps each 1-bounded metric space X to the set of closed subsets of X endowed with
the Hausdorff metric. A nonexpansive function f : X — Y is assigned to the nonexpansive function
Pe(f) : P.(X) = P (Y) defined by

P.(f)(A) = the smallest closed set containing { f (a) | a € A }.

This functor does not have a terminal coalgebra.

PROPOSITION 7 There does not exist a terminal P.-coalgebra.

ProOOF Towards a contradiction, assume that f : X — P, (X) is a terminal P.-coalgebra. Hence, X is
isomorphic to P, (X) according to, e.g., [JR97, Lemma 6.4(ii)]. In the next paragraph, we will show that X
carries the discrete metric. Since every subset of a discrete metric space is closed, we can conclude that X
has the same cardinality as P (X). This contradicts Cantor’s theorem.

We define the P.-coalgebra g : D (Q (X)) — P. (D (Q(X))) by

g(gx (7)) ={ax () |y € f () }.

Note that for all z1, z2 € X,

Ty~ To
= f(x1) ~ f(z2) [Proposition 2]
= Vi€ f(x1):Fy2 € f(x2):y1 ~y2 and Vyz € f(x2) : Jy1 € f(z1) :y1 ~ y2 [Proposition 4]
= {ax ) [y € f(z1) } ={ax (y2) [y2 € f (22) }-

The function gx : X — D (Q (X)) is nonexpansive (cf. the proof of Proposition 5) and a P.,-homomorphism
since for all z € X,

(90 4x) (x)

9(ax (2))

{ax W) lyef(2)}

= Pelax) (f (@)

(Pe (ax) o f) (@)

Let h: D(Q (X)) — X be the unique P.-homomorphism from the P.-coalgebra on D (Q (X)) to the terminal

P.-coalgebra. Then hoqx is a P.-homomorphism from the terminal P.-coalgebra to itself. Also the identity
function on X is such a P.-homomorphism. Again using the fact that the P.-coalgebra on X is terminal,



we can conclude that h o gx is the identity function on X. Hence, gx is one-to-one. Obviously, gx is onto.
Therefore, X and D (Q (X)) are isometric. Thus, X carries the discrete metric.

hogx
DQ(X) X
h
9 Lf
Pe(ax)
P (D(Q (X)) P. (X)
Pe (h)

O

Note that there do exist metric spaces X which have the same cardinality as P, (X). For example, the set
[0,1] endowed with the Euclidean metric and P. ([0, 1]) have the same cardinality (cf., e.g., [Jec97, page 32]).
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