UNIVERSITE

@"’: YORK

‘“r-...-.-*“*’ UNIVERSITY

Bunches for Object-Oriented, Concurrent, and Real-Time Specification

Richard F. Paige and Eric C.R. Hehner

Technical Report CS-1999-02

February 23, 1999

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Bunches for Object-Oriented, Concurrent,
and Real-Time Specification

Richard F. Paigeand Eric C.R. Hehnér

! Dept. of Computer Science, York University, Canguge @cs.yorku.ca
2 Dept. of Computer Science, University of Toronto, Can&dner@cs.utoronto.ca

Abstract. We show how a collection of object-oriented concepts can be directly
expressed in predicative programming [6]. We demonstrate how these features
can be used in cooperation with the existing refinement, real-time, and concur-
rency features of predicative programming in several examples, thus providing a
simple integration of object-orientation, real-time, and concurrency.

1 Introduction

Formal methods—like Object-Z [3], VDM++ [7], and many others—have been de-
veloped for rigorously specifying and proving properties about object-oriented (OO)
systems. Similarly, methods have been developed for specifying and reasoning about
real-time and concurrent systems, e.g., CSP, CCS, and the various real-time refinement
calculi. There has been much recent interest in integrating these different paradigms.
Work on combining CSP and Object-Z [13], Timed CSP and Object-Z (TCOZ) [2],
VDM++ (which integrates VDM with concepts from Ada and process algebras), has
aimed at producing notations and methods that combine object-oriented, concurrent,
and real-time features.

The thesis of this paper is that integrating notations is not necessary to be able
to write specifications that combine object-orientation, real-time, and concurrency. We
justify this claim by showing how predicative programming [6] and its type system can
be used, without modification, for specifying and reasoning about OO systems. This
would not be a particularly novel contribution by itself. However, predicative program-
ming currently provides a wealth of specification and reasoning support for real-time,
concurrency, and communication. By showing how the method can also be used for
object-orientation, we can obtain an immediate integration of OO with real-time, con-
current, and communication techniques.

Our aim in this paper is to introduce predicative programming and to show how
it can be used without modification to specify and reason about a collection of OO
concepts in cooperation with its existing real-time and concurrent features. We do not
intend to extend or generalize existing OO theories, e.g., those from [1]. Instead, we
show how to use predicative notation to specify a core collection of object-oriented
techniques, like classes, inheritance, redefinition, and dynamic binding, and show how
these features can be used with concurrency and real-time.

1.1 The Paper

The organization of the paper is as follows. We commence with an overview of pred-
icative programming [6]. We summarize the predicative type system, which is based on
bunche$5], and which will be used to specify OO concepts. We then show how to spec-
ify classes and class interfaces, single and multiple inheritance, and explain how to deal
with redefinition of feature semantics under inheritance. Section 4 contains examples
that demonstrate the techniques, including examples that integrate OO and real-time, as
well as OO and concurrency. Finally, in Section 5, we discuss limitations, and suggest
directions for future work.

2 Predicative Programming

Predicative programming [6] is a program design calculus in which programs are speci-
fications. In this approach, programs and specifications are predicates on pre- and post-
state (as in Z, final values of variables are annotated with a prime; initial values of
variables are undecorated). The weakest predicate specificafioff‘ieue”), and the
strongest specification is (“false”). Refinement is just boolean implication.

Definition 1. A specificationP on prestater and poststate’ is refined by a specifica-
tionQif Vo,o' - (P < Q).

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. As well, specifications can be combined using the
familiar operators of boolean theory, along with all the usual program combinators, as
well as combinators for parallelism and communication through channels.

Predicative programming can be used to specify objects and classes. To do so, we
need to introduce the predicative notation for types, namely bunches.

2.1 Bunches and types

Bunches were introduced in [5], and are used in [6] as a type system. They are applied in
[11] in formalizing selected static diagrams of UML. A bunch is a collection of values,
and can be written as in this examp#3, 5. A bunch consisting of a single element
is identical to the element. Some bunches are worth haming, suchllaghe empty
bunch),nat (the natural numbersint (the integers)ieal (the bunch of realsghar (the
bunch of characters) and so on. More interesting bunches can be written with the aid of
the solution quantifie, pronounced “those”, as in the exampie int - i = 4. We use
the asymmetric notatiom, ..nfor §i : int-m<i < n.

Bunches can be used as the contents of sets, as in

{2,3,5} {§icint-i> =4}

though we might choose not to wri¢an the latter example. Bunches can also be used
as a type system, as in the declaratian x : nat (perhaps with restrictions for easy
implementation). Any bunch, including the empty bunafil, can be used as a type.

For example, the declaratiaar x : 1 says thak can take on one valué, A variable
declared with a bunch for a type can be used to represent zero or more elements of the
type [5] (constraints on bunch size can be added uging

Bunches can also be used in arithmetic expressions, where the arithmetic operators
distribute over bunch union (comma):

nat=0,nat+1

We have twice previously used a colon in expressions involving bunches; more gener-
ally, A:Bis a boolean expression saying tlas a subbunch dB. For example,

2 : nat nat: int

We write functions in a standard way, as in the examyaie nat-n+ 1. The domain of
a function is obtained by tha operator. If the function body does not use its variable,
we may write just the domain and body with an arrow between. For exathpbe3 is
a function that map$ to 3, which we could have writtea n : 2 - 3 with n unused.

When the domain of a function is an initial segment of the natural numbers, we
sometimes use a list notation, as[3 5; 2; 5]. The empty list ignil]. We also use
the asymmetric notatiojm; ..n] for a list of integers starting witm and ending before
n. List length is#, and list catenation i$ (raised plus). A list of characters, such as
“abc’ can be written within quotes.

Function formation distributes over bunch union, and so a function whose body is a
union is equal to a union of functions.

(Av:D-AB)=(Av:D-A),(Av:D-B)

A union of functions applied to an argument gives the union of the resultgfi.g),x =
fx, gx. A functionf is included in a functiory according to théunction inclusion law

(f:9) =((Ag: Af) A (VX : Ag-fx: gx))

Thus we can provéf : A— B) = ((A: Af) A (Va: A-fa: B)). Using inclusion both
ways round, we find function equality is as usual.

(f =g) = ((Af = Ag) A (VX : Af - fx = gX))
By defininglist aslist = AT : Alist - 0, ..#(list T) — T, thenlist T consists of all lists
with items of typeT, andlist T can be used as a type.

The selective uniof | g of functionsf andg is a function that behaves likewhen
applied to an argument in the domainfofind otherwise behaves like

A(f | g) = Af, Ag

(f | g)x = if x: Af thenf x elseg x
One of the uses of selective union is to write a selective list update. For example, if
L=1[2; 5; 3; 4then2 — 6 | L = [2; 5; 6; 4]. Another use is to create a record

structure, as irfnamé — “Smitl¥ | “ageé’ — 33 which is included in“namé& —
list char | “age’ — nat

2.2 Functional refinement

A refinementelation can also be applied to functions. A functidis refined by a func-
tion Sif and only if all results that are satisfactory accordingstare also satisfactory
according tdP. Formally, this is just bunch inclusio,: P. When writing refinements,
we prefer to write the problen®, on the left, and the solutio, on the right. Thus, we
write P :- S(informally read as P is refined byS’), which meansS: P.

2.3 Real-time and concurrency

Predicative programming is well-suited to specifying and reasoning about real-time,
concurrent, and communicating systems. To talk about time, a time vatigtdelded,;

the theory need not be changed at all, sincan be treated as any other variable. The
interpretation oft as time is justified by how it is used.can be used as the initial
time (where execution starts), atidfor final time (where execution ends). To allow
for nontermination, the domain of time is a number system extended with an infinite
numberoo. The number system can be naturals, reals, et cetera.

Predicative programming includes notations for concurrent specification and for
communication. We will not use the communication notations explicitly herein, but we
will use concurrency; we direct the reader to [6] for further details on communication
and concurrency.

The independent composition operafioapplied to specification® andQ is de-
fined so thaP || Q (pronouncedP parallelQ”) is satisfied by a machine that behaves
according toP and at the same time, in parallel, accordingtorhe formal meaning
of || is as follows. Let the variables used ByandQ be denoted by (o may be any
number of variables).

Pl|Q=3op,00-
Plop/o'] A Qlog/d']| A
(cp=0=0"=0qg)A(og=0=0c"=0p)

(P[a/b] means “substituta for b in P".) Informally, if P leaves a variable unchanged,
thenQ determines the final value, while@ leaves a value unchangétidetermines its
final value. The time for the independent composition is the maximum of the process
times.

The|| operator was not invented for passing information between parallel processes,
e.g., via shared variables; the communication constructs of predicative programming
can be used for that purpose.

3 Using Bunches for Object-Oriented Concepts

We now outline how bunches and predicative notation can be used to specify a core
collection of OO concepts, including classes, objects, class features (namely, attributes,
functions, and procedures), inheritance, and redefinition of feature semantics (which
leads to a form of dynamic binding). Our intent is not to present a new object-oriented
theory; rather, it is a step towards being able to use OO, real-time, and concurrent tech-
nigues together in one notation.

3.1 Specifying classes and objects

Several different definitions of the notion of a class have been presented in the literature.
The definition of a class that we use is adapted from [8].

Definition 2. A classis an abstract data type equipped with a possibly partial be-
havioural specification.

A class consists of a number of features, whichadtebutes, functionsor procedures.
A predicative class specification has three parts:

— aclass interfacewhich declares the attributes and functions of the class and gives
their signatures (class interface names are always suffixaut oy

— aclass definitionwhich defines the functions (class definitions will always be in
upper case).

— zero or more procedures.

A separation of a class into interface and definition is useful, because it lets us define
inheritance in terms of both interfaces and class definitions. Note that our notion of
interface is more general than that in Java, since we allow attributes in an interface,
as well as interface instantiation, and the definition of some, but not necessarily all,
functions. In this last respect, our notion of interface is closer to the Eiffel notion of
deferred clas$8].

We illustrate these mechanisms with a simple example: a stack of integers. The stack
has one attributegzontentswhich is a list of integers. It also has three routinassh
pop, andtop. The interface specification of the sta&ackint declares the attributes
and functions, and gives their signatures.

Stackint= “content§ — list int | “top” — int

A specific behavior is required for the parameterless fund¢tpnThe definition oftop
is given in terms otontentsand is specified in the class definitiSTACK

STACK= §s: Stackint s“top” = s“contentd(#s“contents — 1) Q)

STACK:is the bunch of all elements &tacklintthat satisfy the definition abp: top is
the last element of the lisontents(We could, in fact, write a gener®@TACKclass, by
replacing thent type for elements by a generic parameéfeiSubstitution of a bunch
for the generic parameter can thereafter be used to generate specific instances of the
generic class.)

For procedures of a class (e gushfor a stack), we use a different approach, which
is described in the next subsection. In the interim, we turn to objects, which are instances
of classes.

Definition 3. An objectis a variable with a class for its type.

Since a class is expressed as a bunch, an object is a variable of bunch type. To declare
an object of clasSTACK we can writevar s : STACK and can access tloontents
field of objects by dereferencing, written s“content8. A dereferenced field may be

any function or attribute of the object. To assign a value to fieldtentswe just carry
out a record field assignment, written eitheisésontent? := valug or (as a selective
union), ass := “content — value| s. This approach does not support any notion of
information hiding; visibility of class features is enforced only by specifier discipline.

We are not limited to statically declared objects: objects can also be created dy-
namically. To specify that a system may contain multiple objects of a class, we simply
declare a variable of that class. Because a bunch can represent zero or more instances of
a type, the same declaration can be used for one instance as is used for many instances.
See [9] for a case study that applies this approach.

3.2 Specifying procedures

The formalization of classes is sufficient for specifying attributes and functions, but
is insufficient for capturing procedures; in a typical stack, the featur@udshing an
element changes stack state.

In predicative programming, each procedure of a class is a function that takes an
instance of the class as argument, and returns a changed, new instance of the class.
Supposd is to be a procedure of clags We define a functiof : C — C. To use
f applied to an object of classC, we write c.f which is sugar for the assignment
c:=f(c). The syntax.f allows specifiers to use procedures in a syntax similar to what
is found in languages like C++ or Java. This formalization of procedures is identical to
how many compilers translate feature calls. Note that this procedure does not have side
effects; it maintains the command/query separation suggested in [8].

Returning to the stack example, the procecaogpwould be specified as

pop= As: STACK: “content — s“content3|[0; ..#ts“content8 — 1] | s
The method to push integeito aSTACK ds
push= \s: STACK: Ax: int - “content§ — s“content§*[x] | s

pushcan be used by writing.pushx), which is sugar fos := push s xAfter apush
or apophas been applied to a stagkthe value of functiors“top” will have changed.
Note that the definition a$“top” will not change, only its value.

3.3 Implementation

The preceding formalization of classes and objects is straightforward to structurally
transform into an object-oriented programming language, e.g., Eiffel. A class definition
T can be transformed into an Eiffel claBsAttributes are transformed into objects that
are features of the class; for example, awaptentsof classSTACKcould be mapped

to aninstance of clagsRRAYin Eiffel. Function definitions are transformed into bodies

of functions in Eiffel; for example, the function definition wfp, given in equatioril),

can be easily transliterated into the following Eiffel function of cl&83ACK

top : INTEGER is do
result := current.contents.item(contents.upper-1)
end

References to the bound varialslen equation(1) are replaced with references to
the current objecturrent , in the Eiffel program. In general, a simple transliteration
of predicative specification to Eiffel program will not be possible (predicative program-
ming can express unimplementable specifications), thus refinement may have to take
place before mapping to Eiffel.

Functions on objects in predicative notation can be transliterated into procedures of
a class; explicit reference in the function to the object that is passed as an argument can
be replaced by explicit reference to the current object. For exampp#on STACKs
could be transliterated into the following Eiffel proceduapend is a feature of class
ARRAY.

push(x:INTEGER) is do
current.contents.append(x)
end

3.4 Single and multiple inheritance

We now give a brief overview of inheritance in predicative programming. There are
many different definitions and types of inheritance, e.g., see [1, 8]. The definition we use
in this paper is one cfubtypingif a (child) classB inherits from a (parent) clag3 then
B can be used everywhe@can be used. We take this approach predominantly because
we want to ensure behavioral compatibility between classes related by inheritance.

It is straightforward to determine if a class definitiBrs derived from class defini-
tion C. Since each class is just a type, we can apply bunch inclusion notation directly.

Rule 1. [Inheritance Relation] ClassB inherits from clas< if B : C.

This rule is valid if there are functions in the class definitions; we just apply func-
tion inclusion. When applying function inclusion, we must take care with function do-
mains and ranges: functions are anti-monotonic in their domains, and monotonic in
their ranges (see Section 2.1: function inclusion).

We also need to show how to build one class from another using inheritance. Sin-
gle class inheritance is expressed in predicative notation by merging the definition or
interface of the parent class with any new features that the child class will provide; this
produces a definition or interface for the child class.

Definition 4. Let C be a class definition or interface. If claBsingly inheritsC, then
B=C|“Dy” =Ty |...|“B" = Ti|...| “b — Tk
where they; are attribute names arid throughT, are bunches.

By definition,B : C, because every value satisfactoryBds also satisfactory t€. In
other words, clas€ includes all its extensions [6].

The names of attributes @fandb,, ..bx.; can coincide. Ify; is also the name of an
attribute ofC, then the attribute i€ will be replaced by new attributg in B. In order to
maintain the subbunch relation of Rule 1, constraints must be placed on the types of the
replacements. If & overrides an attribute i€, then the type of the new attribute must

be a subbunch of the original. This is thentravariantrule [8]. This is weaker than

the restrictions on overriding in C++, where parameter types of the overriding method
must match the types of the originals (the return type may be a subtype). A discussion
of the weaknesses and advantages of contravariance is in [8].

An implication of using selective union to specify inheritance is that in class hi-
erarchies, the order in which features appear in class definitions or interfedts's.
ConsidemB, above: ifC had appeared after all the new featusgshen the features i@
could override the new features — which is probably not what the specifier intended. To
get around this complication, we follow the convention that, when using single inheri-
tance, the parent class will always appear first in the child class interface or definition.
Most OO programming languages enforce this by syntactic means. (We discuss the
effect ordering of parent classes will have on multiple inheritance shortly).

Procedures of a parent class are inherited by a child class in the following sense. If
there is a procedure: C — C, and clas®B inherits fromC, thenf can be applied to
objects of clas®, and type correctness is guaranteed on the u$elmécausdd : C.
Thereforef can be specialized for the methods of clBss

3.4.1 Overriding and redefinition We have defined inheritance in terms of selective
union, which allows us to override features of a parent class in a child class. In partic-
ular, it lets us give different definitions to functions in child classes than are present in
parent classes; this allows us to specify a kindeofefinition In a class, functions can
always be redefined (as is the case with Java and Eiffel, as opposed to C++).

Let C be a class interface or a class definition with function T, and possibly
some more attributes. L&Int inherit fromC, i.e.,,BInt = C | X — U | ... By
constructionBInt : C. Redefine functiof in the class definitio:

B = §b: Bint- (b“f” = body)

wherebodyis a subbunch of. Functionf in B can therefore have a definitidrody
different from that given td in the definition ofC. There are constraints on the redef-
inition body a definition forf is inherited fromC, sayP. In the class definition foB,
functionf is being further constrained. Thus, the new constraintlthfit = bodyis
effectively being conjoined with the original constraihfrom classC. Thus, whatever
new definition off is provided must not contradict the original definition. That is, the
specification

b“f” = P A b“” = body

must be satisfiable; this can be ensured most easily by mékidga (functional) re-
finement of the original definitioR. This is akin to the correctness constraints on redef-
inition in Eiffel [8], where redefined features must satisfy the contracts of the original.
Procedure redefinition can be simulated by overloading procedure names; each in-
stance of the procedure is defined on a different class in a hierarchy. The types of argu-
ments to the procedure dictate the instance of the procedure that is to be used.
Redefinition allows us to support a form of dynamic binding of functions, where
the instance of a function that is used in a call is dependent on the dynamic type of an

object, rather than its static type. Suppose we have a Alagith featuref, and class
B inherits fromA and redefine$. Declare a list ofAs, and an instance &, and set
element of ato referencé.

vara:listA-varb:B-“3” - b|a

The static type 0&(3) is A; its dynamic type iB. Then, a call ta(3) “f” will use the
B version off.

3.4.2 Multiple inheritance Multiple inheritance allows a child class to have several
parents. It has been suggested as being useful in describing the complex class relation-
ships that occur in domain modeling, as well as for building reusable object-oriented
libraries. In predicative programming, we can easily adopt the simple yet powerful Eif-
fel approach to multiple inheritance. We summarize some details here.

Multiple inheritance, in predicative programming, takes two or more parent class
definitions or interfaces, and produces a child class definition or interface (to simplify
the discussion, we will refer only to ‘parent’ and ‘child’ classes, which we allow to
mean class definitions or class interfaces). We first provide a preliminary definition of
multiple inheritance, and then briefly touch on its limitations.

Definition 5. LetCy, .., Cys1 be classes. IB multiply inherits fromC;, .., Ccy1 then
B=C |Cy|...|Ck

B can also add new features that are not in any of the base classes, and these new
features can override attributes in any@f, ..Cy.1. The restriction on overriding is
that the types of the overriding features must be subtypes of the original features.

3.4.3 Name clashesSuppose that the name of a feature is declared in two or more
parents, and the parents are multiply inherited. Should there be one or two occurrences
of the shared name in the derived class? Following [8], we can treat this problem syn-
tactically, and use one of two mechanisms to resolve name clashes.

1. Order the base classes in the definition of the derived class, so as to override those
features that we do not want in the derived class. In this way, we can select the
reoccurring feature that we want to inherit in the derived class.

Unlike multiple inheritance in some languages, in predicative programming the
order in which base classes are multiply inherifleésmatter, and we can use this
to our advantage to resolve name clashes.

2. Apply a renaming to all the commonly named features of the base classes in order
to eliminate name clashes. This approach can be used in Eiffel [8]. An example
is shown in Fig. 1: attribute is common to bothC1 and C2. If we need two
occurrences of the attribute in the derived clBssve rename the occurrencesof
in the definition oD.

Renaming in predicative notation is just substitution. The definition of dlass
from Fig. 1 would beD = C1[aCl/a] | C2[aC2/a], whereaCl andaC2 are fresh

rename ato aCl rename ato aC2

aCl: A
aC2:B

Fig.1. Renaming to avoid name clashes

names of feature® can add new attributes and functions as necessary. We place
one restriction on the names of new features k¥ : they cannot take on any of

the names that are being changed.

If we rename features to avoid clashes in a child, the child is no longer (provably)
a subtype of its parents. The proof rule for inheritance involving multiple parents
and renaming is therefore slightly more complex.

Rule 2. [Multiple Inheritance Relation] Let D inherit from both classe€1 and
C2, and suppose nanwis shared betwee@1 andC2. D is derived fromC1 if
there exists a substitutida/aCl] such thaD[a/aCl] : C1 (and similarly forC2).

Feature renaming must also be applied to the procedur€s aind C2 that are
inherited byD. If a methodf : C1 — C1 uses the attributa : A, then clas® must
have a new procedure, sB¥ : D — D, with definition

Df =f[aCl/q]

Multiple inheritance can be expressed and used in predicative notation, but it is not
always convenient to use the renaming facility to avoid its problems: the specifier must
keep track of all the renamings. For large OO specifications, this will be impractical.
Automated support for keeping track of renamings, e.g., as provided by a compiler, is
essential for this solution to be feasible.

3.4.4 Repeated inheritancelf a class is a descendent of another through two or
more paths, then repeated inheritance has occurred. Under repeated inheritance in bunch
notation, a function or attribute from a common ancestor will yield a single method or
attribute if it is inherited under a single name (this matches the notimirtofal base

classin C++). If a renaming is applied to one or more features, a derived class can
have two or more instances of a feature; [8] gives examples of when this is useful.
The solution that we applied for resolving name clashes can also be used in resolving
repeated inheritance (as is the case with Eiffel).

4 Examples

We present several short examples of specifying object-oriented systems. In our first
example, we specify SEQUENCEclass and derive QUEUE class, so as to demon-
strate the basic approach to inheritance. Then, we reformulate part of the quadrilaterals

example of [15]; this can be used for comparison. Finally, we show how object-oriented
specification can be combined with real-time (in a specification of the gas burner), and
concurrency (in a specification of a solution to the dining philosopher’s problem).

4.1 Sequences and Queues

Our first example simply aims at illustrating some of the main concepts of the previous
sections. We define8EQUENCElass, and derive@QUEUECclass from it. A sequence
consists of the following features: a lisbntentsof data elements; aadd operation,
which puts an elememtat position of the sequence;@eleteoperation, which removes
the element at positionof the sequence; andexoperation, which returns the element
at positioni, or —co if there is no element af and, aremptypredicate. We first provide
a class interfaceseqint where the sequence is to contain integ8egjintdeclares the
attributes plus the signaturesinflexandempty

Seqint=“contentd — list int

| “indeX’ — (nat— int) | “empty — bool

This interface has two functionsidexandempty which we now define.

SEQUENCE= §s: Seqint
s“empty = (#s“content = 0) A
s“‘indeX = (Ai: nat-if i < #£s“content’ then s“content(i) else —o0)
We next specify the methaatid. If an addition at index occurs where an entry exists,
the entry is overwritten witlx; otherwise, list catenation occurs.
add= As: SEQUENCE \i: nat- Ax:int-

if 0 <i < #s“content8 then “contentd — (i — x| s“content8) | s

else“contentd — (s“content$*[x]) | s
The deletemethod is defined as follows: to remove an entry that exists, all following
entries are shifted left by one; otherwise, the sequence is returned unchanged.
delete= As: SEQUENCE \i : nat-

if (0 <i < #s“contentd) then
“contentd — (s“content$[0; ..i] T s“contentd[i + 1; ..#s“contentd]) | s
elses

Thethen branch of thedeletemethod can be refined using standard predicative tech-
niques. The ability to use standard refinement in developing programs is one benefit
of using predicative programming in specifying object-oriented systems. To refine the
then branch, we introduce a new functishift, defined as follows.

shift= As: SEQUENCE \i,j : nat-

if j > #s“content8 — 1 then [nil]
else ifj = i then [s“content’ (i + 1)]"shift s i(j + 2)
else[s“content¥(j)] Tshift si(j + 1)

shiftimplements a left shift of all elements to the right of the to-be-deleted element,
Using the functional refinement laws from [6], it is straightforward to prove that

delete ;- A\s: SEQUENCE Ai,j : nat-if 0 <i < #s“contentd then shift s i0 elses

SEQUENCEcan now be used in constructing a deriv@EUE class.QUEUE is
like a SEQUENCE except it is used in FIFO order. We deriveQd EUE class from
SEQUENCEadding a new state attribute callfednt, which is an index to the front of
the QUEUE, and a new function calldadead which gives the element at the head of the
queue. First we specify the interface of the new class.

Queuelnt= SEQUENCH “front” — 0 | “head — int
To define the functiolead we give the class definition f@UEUE
QUEUE = §qg: Queuelnt g“head = g“indexX g“front”

headis the value stored in theontentsattribute, in entryfront. It follows immediately
that QUEUE : SEQUENCE(since SEQUENCEIncludes all its extensions), and so
QUEUEIs derived fromSEQUENCE

We now specify the procedures@JEUE; in doing so, we specialize procedures of
SEQUENCEThere are two: aanqueu@peration that adds an elementto the rear of the
QUEUE, and adequeu@peration that removes the front-most element ofQHEUE.
To enqueu@n element, we carry out anldin the last position in the sequeneaqueue
changes only those parts of the queubat are affected bsdd.

enqueue= \q: QUEUE- Ax:int-add q(#g“content8) x| q

addreturns aSSEQUENCEwhich is part of ZQUEUE. The selective union in the body
of enqueueherefore overrides tteEQUENCH:ields ofq, while not changing the parts
of g that are defined IQUEUE, but not inNSEQUENCE

To dequeuan element, weeletethe element at positiofnont.

dequeue=)\ qg: QUEUE- delete g(q“front”) | q

4.2 Quadrilaterals

The quadrilaterals example is described in [15]; it is used to compare several different
object-oriented methods based on Z. The example requires specifying different sorts of
guadrilaterals which may be used in a drawing system.

The classes of interest in the system arguadrilateral the general four-sided
figure; aparallelogram a quadrilateralthat has parallel opposite sidestreombus a
parallelogramwith identical-length sides; eectangle which is aparallelogramwith
perpendicular sides; andsguare which is both aectangleand arhombus

We assume the existence of a cl®$SCTOR The usual vector operations are as-
sumed to be availabl& ECTORalso has a zero. The edges of a four-sided figure are
defined as a list.

EDGES= (0,..4) » VECTOR

A quadrilateral class consists of edges and a position vector, the latter intended to be
used in drawing the quadrilateral on the screen. The class definition and interface defi-
nition of QUAD (it has no functions) is

QUAD = “edge8 — EDGES| “pos’ — VECTOR

The class hierarchy in the quadrilateral system is depicted in Fig. 2, using BON nota-
tion. Each ellipse represents a class in the system, while directed edges indicate inheri-
tance relationships. Inheritance will be defined predominantly on interfaces.

Fig.2. The class hierarchy

We construct the classes in the system by inheritance. In the process, we add a func-
tion angleto each class, whemngleis the angle between ed@eand1. The hierarchy
is described by first specifying class interfaces. Then, class definitions are provided,
which give further details on constraints specific to each class.

Parint = QUAD | “angle’ — real Rectint= Parint
RhomInt= Parint Squarelnt= Rhomint| RectInt

Renaming of attributes frofarintin SquarelneandRhomintdoes not have to be done,
since we need only one occurrence of eaclirafint's attributes. InSquarelnt it is
expressed that a square is both a rectangle and a rhombus. However, singeditith
andRhominthave the same class interface, their merge simplifi€att.

The derivation hierarchy states that a parallelogram is a quadrilateral, a rhombus is
a parallelogram, et cetera. But there are extra constraints associated with these special-
case quadrilaterals—e.g., that a rectangle is a parallelogram with perpendicular sides.
These constraints can be placed in the class definitions.

SQUARE= §s: Squarelnt IsSquarés“edge’) A s“angle’ = 7/2
RECTANGLE= §r : Rectint: IsRecfr “edge$) A r“angle’ = /2
RHOMBUS= §r : Rhomint IsRhonfr “edge$) A r “angle’ = cos™'(...)
PARALLELOGRAM-= §p : Parint - IsPar(r “edge$) A r“angle’ = cos™'(...)

We omit the full definitions of thanglemethods oRHOMBUSandPARALLELOGRAM
(they are in [15])IsSquares true if and only if the list of edges forms a squaréthe
body oflsSquards dot product.)

IsSquare= Ae: EDGES (e0-el =0Ael +e2=0)

The predicatessRect IsPar, andIsRhomare similar. We next define an operation to
translate a quadrilateral.

TranslateQuad= A\ q: QUAD- Av: VECTOR “pos — q“pos’ + V| q
To build a translation operation on rhombi, for example, we speci@liaeslateQuad
TranslateRhom= Ar : RHOMBUS A\v: VECTOR TranslateQuad r y r
The generic quadrilateral initialization method is as follows.
InitQuad= Aq: QUAD- Ae: EDGES Av: VECTOR “edge8 — e| “pos’ — v |
It can be reused in the initializers of the other classes, for examRplg,

InitRect= Ar : RECTANGLE A e: EDGES \v: VECTOR
if (e0-el =0) A (el + €2 = 0) then InitQuad r e velse[nil]

If the edges provided do not form a rectandietRectproduces the empty list.

4.3 Areal-time example: gas burner

The gas burner problem has been treated by many researchers [14]. The problem is
to specify the control of a gas burner. The inputs of the burner come from a sensor, a
thermometer, and a thermostat. The inputs are:

— arealtemp indicating the actual temperature,
— arealdesired indicating the desired temperature,
— a boolearflame indicating whether there is a flame.

The outputs of the burner are

— gas which is set tmnif the gas is on, or toff if the gas is off,
— spark which maintains the gas and causes a spark for the purposes of ignition.

Heat is wanted when the desired temperature &dtislow the actual temperature, and
is not wanted when the desired temperature réisabove the actual temperatureis
small enough to be unnoticeable, but large enough to prevent rapid oscillation.

To obtain heat, the spark should be applied to the gas for atllesstond (to give
it a chance to ignite and to allow the flame to become stable). A safety regulation states
that the gas must not remain on and unlit for more thaeconds. Another regulation
states that when the gas is shut off, it must not be turned on again for &(esestonds

to allow any accumulated gas to clear. And finally, the gas burner must respond to its
inputs within 1 second.

We formulate an object-oriented, real-time specification. Thus, we will need to talk
about time. As discussed in Section 2.3, to talk about time, global time variables are
introduced and are manipulated. In a pure object-oriented specification of a system,
there are no global variables; there are only classes and objects. In order to talk about
real-time, we therefore formulate a simple class interfatE, which will be used to
represent the passage of time over the lifetime of an obJé®tE has one attributd,
of typereal.

TIME = “t” — real

(TIME can be used to introduce a local clock. To introduce a system cldblg can

be inherited by theoot class in our system, from which computation will begin.) We
also specify, implicitly, a functiomddtime which will be used to describe a nondeter-
ministic increase in timeaddtimetakes three real numbars ro, r3, as parameters, and
satisfies the following property.

r+r, <addtimeg rarz <rq+rs

The similar specificatiotakeonewhich takes one real number as a parameter, will
be used to specify a nondeterministic increase in timat aiostone second.

r, <takeoner <ry+1

The gas burner will be specified as a class. We begin by specifying its interface, giving
the names of the attributes and functions local to the class.

Burnerint= TIME | “temyy — real | “desired — real |
“flame& — bool| “spark — bool| “gas’ — status|
“toocold” — bool| “toohot — bool

In its interface, the burner inherits froflME. The bunchstatusis status= on, off.
Now, we can define the functions of the class.

BURNER= §b : Burnerint-

b“toocold’ = (b“temp’ < b“desired —¢) A
b“toohot’ = (b“temp > b“desired + ¢ A b“flamé’)

This completes the specification of the burner’s attributes and functions. Now we spec-
ify its procedures.

ignite= Ab: BURNER “gas’ — on| b
shutoff= Ab: BURNER “gas’ — off | b

ignite and shutoff are used to turn the gas on or off, on request. The next two proce-
duresactivateandcutoff, are responsible for activating the spark of the burner (for the

requested time period) and for turning the spark afftivateturns the spark on and
leaves it on for between 1 and 3 secoragoff turns the spark off.

activate= Ab: BURNER “spark — T | “t” — (addtime Bt” 1 3) | b
cutoff = Ab: BURNER “spark — L | b

Finally, the procedurvait causes the burner to wait for 20 to 21 seconds (the safety
constraint).

wait = A\b : BURNER “t” — (addtime Bt” 20 21) | b

The behaviour of the burner system can now be specified as two proceglasssn
andgasisoft gasisofftests if the temperature is too cold; if it is, the gas is turned on,
and the spark is activated for at most three seconds, then it is cut off, and the test is
repeated,; if it is not too cold, one unit of time is taken, and then the test is repeated.

gasisoff= Ab : BURNER
if b“toocold’ then
gasison cutoff activate ignite b
elsegasisoff “t” — (takeone Bt”) | b

gasisoris as follows. If the temperature is too hot, then the gas is shut off and the burner
waits for 20 to 21 seconds; then the temperature is tested. If it is not too hot, then one
unit of time is taken, and then the test is repeated.

gasison= A b : BURNER
if b“toohot’ then
gasisoff wait shutoff b
elsegasison“t” — (takeone Bt”) | b

The OO specification of the gas burner is then

var b : BURNER b.gasison v b.gasisoff

4.4 A concurrent example: dining philosophers

We formulate a simple concurrent and object-oriented specification of the dining philoso-
phers synchronization problem. We assume that we have five philosophers who are ei-
ther thinking, eating, or hungry. The philosophers are sitting at a circular table which is
laid with only five chopsticks, placed between neighbouring philosophers. From time to
time, philosophers get hungry and try to pick up the two nearest chopsticks. A philoso-
pher can pick up one chopstick at a time, and cannot pick up a chopstick in the hand
of a neighbour. When a hungry philosopher has both his chopsticks at the same time,
he eats without releasing the chopsticks. When he is finished eating, he puts down both
chopsticks and starts to think again.

We commence by assuming that we have a class calEdAPHOREuUsed to rep-
resent semaphores. This class has two procedseeswaitand semsignal We also
assume that we have uss#MAPHOREo specify a class callec@ONDITION, which
specifies condition constructs. Condition constructs have two operatgigaal which
resumes exactly one suspended processcaait, which makes the invoking process
wait until another invokessignal Formulations of both semaphores and condition con-
structs can be found in [12]. We will use the classes to specify mutual exclusion via a
monitor.

A monitor consists of two semaphoresutexandnext and a countenext.count
which keeps track of the number of waiting processes. It also has two proceshtegs,
andleave used by a process to enter and leave the monitor. Here is the class definition.

MONITOR= “muteX — SEMAPHORE “next — SEMAPHORHE “nextcount — int
Theenterprocedure callsemwaiton themutexsemaphore.
enter= Am: MONITOR- “muteX — (semwait nimutexX) | m
Similarly, leavehandles the exit of a process from the monitor.

leave= Am: MONITOR-
if m“nextcount’ > 0 then “next’ — (semsignal rfinext’) | m
else“muteX — (semsignal mfmuteX) | m

Continuing with the object-oriented approach, we specify a philosopher as a class,
PHIL, which has two attributes and four procedures.

PHIL = “stat¢ — Status| “self” — CONDITION

(The bunchStatuss thinking hungry, eating) The procedures fdPHIL can be used
to change the state of an invoking object to onéwrfigryor thinking

sethungry= Ap: PHIL - “stat¢ — hungry| p
setthinking= Ap: PHIL - “stat¢ — thinking| p

A philosopher uses theatprocedure to move to the eating state. A move to the eating
state also requires a call to thsignalprocedure of clas€ONDITION, which resumes

a suspended process. Thus, a paht(wherep is a philosopher) changes the philoso-
pher’s state t@ating and calls thesignalprocedure of the philosophesslf attribute.

eat= Ap: PHIL- “self” — (csignal p‘self’) | “staté’ — eating| p

The dining philosophers system is specified as a clRid$ING, which is aMONITOR
extended with five philosophers and a number of procedures.

DINING = MONITOR| “phils” — [5 x PHIL]

The first procedure we specifigst moves a philosophéeto eatingstatus, if possible,
and signals the change to the system. A philosopher can meagitgif he can obtain

both the chopsticks to his sides and he is hungry. We view this procedprivage it
will only be used by other procedures and functions in the dining philosopher system,
and is not an entry procedure of the monitor.

test= Ad: DINING- \k:0,..5-
if (d“phils”’(k — 1 mod 5) # eatingA d“phils’ (k) = hungryA
d“phils’ (k+ 1 mod 5) # eating
then
“phils” — k — (eat d“phils’(k)) | d
elsed

The procedur@utdownputs a philosopherinto athinking state, and puts down the
chopstickstestis then applied to the neighbours of the philosopher involimiglown

putdown= Ad: DINING- Xi:0,..5-
test
test(“phils” — i — setthinking dphils”(i) | d) (i — 1 mod 5)
(i+1 mod}5)

However, the specification gfutdownignores synchronization issues. In order for a
call to putdownto synchronize with the actions of all other philosophgnstdown

must be embedded in synchronization primitives. This is expressed in the procedure
entry putdown

entry_putdown= Ad: DINING - \i: 0,..5 - leave(putdown(enter d| d) i) | d

The procedurgickupsets a philosopher toungry, then attempts to pickup the chop-
sticks. If he succeeds, he eats, but if he cannot pickup the chopsticks, he suspends
himself by a call to thevait procedure of clasBINING.

pickup= Ad: DINING- \i:0,..5-
wait test(“phils’ — i — sethungry dphils’ (i) | d) i i

wait causes a philosopher to enter a waiting state, when chopsticks are not available.

wait = Ad: DINING- \i:0,..5-
if (d“phils”(i)“stat¢’ = eating thend
else“phils’ — i — “self” — (cwait d“phils’ (i) “self”) | d

As was the case witputdown the specification opickupignores synchronization.
Thus, we must extenglickupwith synchronization details. This is expressed in proce-
dureentry_pickup

entry_pickup= Ad: DINING - \i: 0,..5 - leave(pickup(enter d| d) i) | d

The initialization of theDINING class will be to set all philosophers to tht@nking
state, and to initialization the monitor details. This can be implemented by a simple
functional overriding.

init = Ad: DINING - “phils” — 0 — setthinking dphils”(0) |
“phils’ — 1 — setthinking dphils” (1
“phils’ — 2 — setthinking dphils’ (2
“phils” — 3 — setthinking dphils’ (3
“phils” — 4 — setthinking dphils”’ (4
“muteX — 1| “next — 0] d

) |
) |
) |
) |

The dining philosophers system can then be specified as follows. We first create an
object,d, of classDINING. The object must be initialized, and then it will enter an
indefinite concurrent iteration.

d.init. iterate
where
iterate= (|)i.0,..5 d.entry_pickup(i). Eat d.entry_putdowri)). iterate

The procedur&at performs the activity of eating the food. This specification will not
allow deadlock, nor will it allow two neighbours to eat simultaneously. However, it is
possible for a philosopher to starve to death.

5 Discussion and Conclusions

That the predicative programming notation can be used to directly specify many key
object-oriented concepts is not surprising, since the notation is sufficient to model any
form of computation. Without having to change the notation, we can express key object
concepts and still make use of the standard predicative method and all its features, such
as timing, concurrency, and refinement.

Part of the reason for the simplicity of specifying object-oriented concepts is due
to the bunch notation for types. In the predicative notation, all types are based upon a
bunch representation, including lists and records. Because of this, classes and functions
can be developed from bunch notation, and therefore object instantiation can be given
its usual interpretation as variable declaration. This differs from the approach in [4],
where objects are specified in terms of their effect on a global system state. Further-
more, inheritance can be given an interpretation akin to that which is available in many
programming languages. The interpretation, as selective union, is easy to implement in
any programming language that has lists, arrays, or records (overriding of a field can be
implemented as assignment to the field of a record instance)..

The formalization of OO concepts is not without limitations. Visibility and export
of features is left entirely up to the discipline of the specifier; there is no equivalent to
C++'spublic orprivate notation, nor Eiffel'sexport clause. Further, it would be

useful to be able to include procedures within a class definition, but it is not possible
within the existing type system of predicative programming. Encapsulation of proce-
dures is left, to an extent, informal, based on the signatures of the features. However,
procedures can be specified, and are associated with objects and classes by type rules:
procedures associated with a class are only (consistently) applicable to objects of that
class or of a derived class. Misusing procedures results in unsatisfiable specifications.

A key benefit of using predicative programming to specify and reason about object-
oriented systems, is that all existing predicative theory applies immediately to such
specifications. This implies that we can specify and reason about key object-oriented
concepts, as well as the real-time, interactive, concurrent, and timing characteristics
of systems, using one notation and method, as the examples in Section 4 showed. A
heterogeneous notation, in the sense of [10, 13], does not have to be created in order to
integrate the concepts of OO, real-time, and concurrency.

In the future, we intend to work on improving and extending the object-oriented
theory, and will formulate examples that combine use of OO and predicative program-
ming’s communication features.

References

1. M. Abadi and L. CardelliA Theory of ObjectsSpringer-Verlag, 1996.

2. B. Mahony and J.S. Dong, Blending Object-Z and Timed CSP: an introduction to TCOZ. In
Proc. ICSE '98 IEEE Press, 1998.

3. R. Duke, G. Rose, and G. Smith, Object-Z: A Specification Language advocated for the
description of standard§omputer Standards and Interfackg5) (1995).

4. A. Hall, Specifying and Interpreting Class Hierarchies in ZFroc. Eighth Z User Meeting,
Workshops in Computing Series (Springer-Verlag, 1994).

5. E.C.R. Hehner, Bunch Theory: A Simple Set Theory for Computer Sciénfm@mation

Processing Letters,2(1) (1981).

. E.C.R. Hehner Practical Theory of Programmin@Springer-Verlag, 1993).

. K. Lano,Formal Object-Oriented Developmer8pringer-Verlag, 1995.

. B. Meyer,Object-Oriented Software Constructidbecond Edition (Prentice-Hall, 1997).

. R.F. Paige, Using an Object-Oriented Predicative Style to Solve the Invoicing Case Study,

in: Proc. INVOICING 1998Nantes, France (IRIN, 1998).

10. R.F. Paige, Heterogeneous Notations for Pure Formal Method Integration, to appear in
mal Aspects of Computing999.

11. R.F. Paige, Integrating a Program Design Calculus and UML, to app8édreifComputer
Journal 1999.

12. A. Silberschatz and P. Galvi@perating System Concep#&fth Edition, Addison-Wesley,
1997.

13. G. Smith. A Semantic Integration of Object-Z and CSPHroc. FME’'97, LNCS 1313,
Springer-Verlag, 1997.

14. E.V. Sorenson, A.P. Ravn, and H. Rischel, Control Program for a gas burner, Technical Re-
port ID/DTH EVS2, Computer Science Department, Technical University of Denmark, Lyn-
gby, Denmark, 1989.

15. S. Stepney, R. Barden, and D. Coofiadnject-Orientation in ZSpringer-Verlag, 1992).

©O© o0o~NO»

