
            

Semantic Query Optimization in IBM DB2: Initial Results

Jarek Gryz Linqi Liu Xiaoyan Qian

Technical Report CS-1999-01

February 19, 1999

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada



Page 1

Semantic Query Optimization in IBM DB2:
Initial Results

Jarek Gryz Linqi Liu Xiaoyan Qian

Computer Science Department, York University, Toronto, Canada, Feb. 1999

Abstract

Semantic query optimization can play a very important role in database systems. Dramatic improvements
in performance may be achieved by using semantic query optimization techniques.

In this report, we present some experiments over large databases, which show the power of semantic
query optimization and determine the research direction for the project. Four semantic query optimization
techniques are discussed here, including join elimination, predicate introduction, detection of unsatisfiable
conditions and predicate elimination. For each technique, we run queries on IBM DB2, and collect their
execution times and I/Os using IBM DB2 tools. Afterwards, we optimize the queries using one of the
semantic query optimization techniques. The optimization is performed only by hand, because no commercial
implementations of semantic query optimization exist today.

1 Testing Beds

1.1 Environment

A Sparc SUN Ultra-1 workstation acts as the server. The operating system is UNIX Solaris 2.5.1.

1.2 Database

The DBMS that the experiments use is IBM DB2 Universal Database for the Solaris Operating Environment
Version 5.0. Two databases are created according to TPC-D Benchmark 1.2.1 with the sizes of 12MB and
1GB.

1.3 Tools

To acquire comprehensive information about queries, some explain tools and monitor tools are used,
including:

♦ db2exfmt: collect predicted information about queries,
♦ Snapshot monitor: collect actual I/O information about queries, and
♦ Event monitor: collect actual CPU information about queries.

1.4 Criteria

The following criteria are used to compare the results of queries:



Page 2

For predicted costs, the criteria are Cumulative Total Cost (s) and Cumulative I/O Cost (pages). Both of
them come directly from the outputs of db2exfmt.

For execution costs, the criteria are Total Cost (s) and I/O Cost (pages), where

Total Cost (s) = operation close stop time - operation prepare start time

I/O Cost (pages) = buffer pool data physical reads + buffer pool data writes +
                               buffer pool index physical reads + buffer pool index writes

2 Testing Samples

2.1 Join Elimination (using foreign key constraints)

When there exists a foreign key constraint between two joined tables, the system guarantees that, for each
row in the child table with a non-null value in all of its foreign key columns, there is a row in the parent
table with a matching value in its primary key columns. So if the purpose of join is only to check if any
value in foreign key columns also appears in primary key columns, we are able to eliminate the join. This
technique is called Join Elimination (using foreign key constraints).

Example 1: find the return flags and the sums of items whose ship dates are after January 1 1993.

Original query:

select l_returnflag, sum(l_quantity) as amount
from tpcd.lineitem, tpcd.orders, tpcd.part, tpcd.supplier
where l_orderkey = o_orderkey
and l_partkey = p_partkey
and l_suppkey = s_suppkey
and l_shipdate >= '1993-01-01'
group by l_returnflag
order by amount desc.

The integrity constraints are as follows:

l_orderkey is a foreign key and refers to orders,
l_partkey is a foreign key and refers to part, and
l_suppkey is a foreign key and refers to supplier.

According to the first IC, any value that appears in the l_orderkey field of the table tpcd.lineitem also
appears in the o_orderkey field of the table tpcd.orders. Moreover, the fields of the table tpcd.orders neither
appear in the output list of the query nor appear in other predicates except join predicates. So the join
between the table tpcd.lineitem and the table tpcd.orders can be eliminated, that is, the parent table
tpcd.orders can be eliminated.

According to the second IC and the third IC, we can eliminate the join between the table tpcd.lineitem and
the table tpcd.part and the join between the table tpcd.lineitem and the table tpcd.supplier as well.



Page 3

Optimized query:

select l_returnflag, sum(l_quantity) as amount
from tpcd.lineitem
where l_shipdate >= '1993-01-01'
group by l_returnflag
order by amount desc.

Tables 1 and 2 show the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 13.821 2596 16.504 3514
Optimized 10.689 2505   2.270 2814

Table 1: Join Elimination Example 1 (12MB DB)

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 3229.7 240935 5969.3 240884
Optimized   772.8 208305   806.2 208365

Table 2: Join Elimination Example 1 (1GB DB)

Example 2: find the order status and the total prices of orders whose order dates are after January 1 1993
and order priorities are '2-HIGH'.

Original query:

select o_orderstatus, sum(o_totalprice) as price
from tpcd.orders, tpcd.customer
where o_custkey = c_custkey
and o_orderdate >= '1993-01-01'
and o_orderpriority = '2-HIGH'
group by o_orderstatus
order by price desc.

The integrity constraint is as follows:

o_custkey is a foreign key and refers to customer.

According to join elimination, the join between the table tpcd.orders and the table tpcd.customer can be
eliminated.



Page 4

Optimized query:

select o_orderstatus, sum(o_totalprice) as price
from tpcd.orders
where o_orderdate >= '1993-01-01'
and o_orderpriority ='2-HIGH'
group by o_orderstatus
order by price desc.

Tables 3 and 4 show the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)
Original 2.507 541 2.120 487

Optimized 2.292 534 0.619 322

Table 3: Join Elimination Example 2 (12MB DB)

Predicted Cost Execution Cost
Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)
Original 204.7 44864 194.7 44907

Optimized 177.9 44408 130.6 44446

Table 4: Join Elimination Example 2 (1GB DB)

2.2 Join Elimination (detection of empty join)

Sometimes the results of some joins are empty in a database. If we find them in advance, we may optimize
the original query by eliminating the empty joins.

Example 3: find the keys, the names and the account balances of customers who make orders after January
1 1993 and have the same names as those of suppliers.

Original query:

select c_custkey, c_name, c_acctbal
from tpcd.supplier, tpcd.customer, tpcd.orders, tpcd.lineitem
where c_custkey = o_custkey
and o_orderdate >= '1993-01-01'
and o_orderkey = l_orderkey
and l_returnflag = 'R'
and s_name = c_name.



Page 5

The integrity constraint is as follows:

No customers have the same names as those of suppliers.

According to the IC, the predicate s_name = c_name is not satisfied by the database. So the result of the join
between the table tpcd.supplier and the table tpcd.customer must be empty, that is, the result of the query
must be empty. In this case, the query doesn't need to be evaluated. But in current commercial DBMSs, the
query is evaluated, and then we can find that the result of the query is empty.

Tables 5 and 6 show the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)
Original 9.134 2098 0.320 87

Optimized 0.000       0 0.000   0

Table 5: Join Elimination Example 3 (12MB DB)

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 207.0 59851 39.3 7256
Optimized     0.0         0   0.0       0

Table 6: Join Elimination Example 3 (1GB DB)

2.3 Predicate Introduction (using index introduction)

We sometimes may infer from integrity constraints and some existing predicates in a query, that some new
predicates also must be satisfied. If there are some indices on the new predicates, we may introduce them
into the query to speed up the evaluation of the query. We call it Predicate Introduction (using index
introduction).

Example 4: find the revenues of items whose extended prices are less than or equal to 1K and discounts are
less than or equal to 0.05 and receipt dates are before January 1 1997.

Original query:

select sum(l_extendedprice*(1-l_discount)) as revenue
from tpcd.lineitem
where l_extendedprice <= 1000.0
and l_discount <= 0.05
and l_receiptdate <= '1997-01-01'.



Page 6

The integrity constraint is as follows:

l_shipdate <= l_receiptdate

In a TPC-D database, there is an index on the fields l_shipdate + l_extendedprice + l_discount + l_suppkey
+ l_partkey. But we cannot make use of the index to evaluate the original query efficiently because
l_shipdate, the first item of the index, is not used by any predicate. Note that l_receiptdate <= '1997-01-01' is
a predicate of the original query, so the IC l_shipdate <= l_receiptdate implies l_shipdate <= '1997-01-01'.
According to predicate introduction, we can introduce a new predicate l_shipdate <= '1997-01-01' into the
original query. Now we can use the above index to speed up the evaluation of the query.

Optimized query:

select sum(l_extendedprice*(1-l_discount)) as revenue
from tpcd.lineitem
where l_shipdate <= '1997-01-01'
and l_extendedprice <= 1000.0
and l_discount <= 0.05
and l_receiptdate <= '1997-01-01'.

Tables 7 and 8 show the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 6.372 824 6.502 907
Optimized 4.657 596 1.370 668

Table 7: Predicate Introduction Example 4 (12MB DB)

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 832.8 208305 503.0 208365
Optimized 681.2 53862 361.5 52420

Table 8: Predicate Introduction Example 4 (1GB DB)

2.4 Predicate Introduction (using scan reduction)

Similar to Index Introduction, we sometimes may introduce some new predicates into a query. The new
predicates reduce search range for some fields thereby improving the performance. The technique is called
Predicate Introduction (using scan reduction).

Example 5: find the return flags, the line status and the sums of items whose order dates are after October 1
1995 and ship dates are before October 7 1995.



Page 7

Original query:

select l_returnflag, l_linestatus, sum(l_quantity) as sum_aty
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1995-10-01'
and l_shipdate <= '1995-10-07'
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus.

The integrity constraint is as follows:

o_orderdate <= l_shipdate

The IC o_orderdate <= l_shipdate and the predicate o_orderdate >= '1995-10-01' imply l_shipdate >= '1995-
10-01'. If we introduce l_shipdate >= '1995-10-01' as a new predicate, we can reduce so much search range
for the field l_shipdate.

Optimized query:

select l_returnflag, l_linestatus, sum(l_quantity) as sum_aty
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1995-10-01'
and l_shipdate <= '1995-10-07'
and l_shipdate >= '1995-10-01'
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus.

Table 9 shows the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 11.347 2567 2.759 3680
Optimized   1.066 184 0.460 239

Table 9: Predicate Introduction Example 5 (12MB DB)

2.5 Detection of Unsatisfiable Conditions

In the WHERE clause of a query, some conditions may conflict with integrity constraints or be self-
contradictory. So the result of query must be empty. If we may detect the conditions early, we will be able to
avoid evaluating the empty query. We call it Detection of Unsatisfiable Conditions.



Page 8

Example 6: find the keys, the order dates and the ship priorities of orders whose total prices are greater than
or equal to 65K and order dates are after January 1 1994 and commit dates are before July 1 1993.

Original query:

select o_orderkey, o_orderdate, o_shippriority
from tpcd.orders, tpcd.lineitem
where o_orderkey = l_orderkey
and o_totalprice >= 65000.0
and o_orderdate > '1994-01-01'
and l_commitdate < '1993-07-01'
order by o_orderdate.

The integrity constraint is as follows:

o_orderdate <= l_commitdate

According to the IC, the predicate o_orderdate > '1994-01-01' and the predicate l_commitdate < '1993-07-01'
cannot be satisfied simultaneously. So the result of query will be empty. We need not evaluate the query.
But in current commercial DBMSs, the unsatisfiable condition cannot be found in advance and the query
will be evaluated.

Table 10 shows the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 11.478 2665 1.980 3492
Optimized   0.000       0 0.000       0

Table 10: Detection of Unsatisfiable Conditions Example 6 (12MB DB)

Example 7: find the revenues of items whose ship dates are between January 1 1994 and January 1 1995
and discount are between 0.05 and 0.07 and quantities are greater than 0 and less than -24.

Original query:

select sum(l_extendedprice*l_discount) as revenue
from tpcd.lineitem
where l_shipdate >= '1994-01-01'
and l_shipdate < '1995-01-01'
and l_discount between 0.05 and 0.07
and l_quantity < -24
and l_quantity > 0.

In the WHERE clause, there exists an apparent contradiction, l_quantity < -24 and l_quantity > 0. But IBM
DB2 cannot find out the contradiction in advance so it will evaluate the query. Using the semantic query
optimization - Detection of Unsatisfiable Conditions, it will be easy to solve this problem.



Page 9

Table 11 shows the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
        Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 10.717 2505 1.490 3288
Optimized   0.000       0 0.000       0

Table 11: Detection of Unsatisfiable Conditions Example 7 (12MB DB)

2.6 Predicate Elimination

From integrity constraints, we sometimes may infer that some predicates always hold for a query. So we can
eliminate the redundant predicates to improve the performance if no index is on the predicates. This
technique is called Predicate Elimination.

Example 8: find the return flags and the sums of items whose order dates are after January 1 1994 and
commit dates are after January 1 1992 and receipt dates are after June 1 1992 and taxes are greater than or
equal to 0 and total prices of orders are greater than or equal to 0.

Original query:

select l_returnflag, sum(l_quantity) as sum_quantity
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1994-01-01'
and l_commitdate >= '1992-01-01'
and l_receiptdate >= '1992-06-01'
and l_tax >= 0.0
and o_totalprice >= 0.0
group by l_returnflag
order by sum_quantity desc.

The integrity constraints are as follows:

o_orderdate <= l_commitdate
o_orderdate <= l_shipdate
l_shipdate <= l_receiptdate
l_tax >= 0.0
o_totalprice >= 0.0

The IC o_orderdate <= l_commitdate and the predicate o_orderdate >= '1994-01-01' imply l_commitdate >=
'1994-01-01'. So the predicate l_commitdate >= '1992-01-01' is redundant and we can eliminate it according
to predicate elimination. Please note that there is not any index on the field l_commidate in a TPC-D
database so the elimination will speed up the evaluation of the query definitely.



Page 10

Optimized query 1:

select l_returnflag, sum(l_quantity) as sum_quantity
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1994-01-01'
and l_commitdate >= '1992-01-01'
and l_receiptdate >= '1992-06-01'
and l_tax >= 0.0
and o_totalprice >= 0.0
group by l_returnflag
order by sum_quantity desc.
Similarly, the IC o_orderdate <= l_shipdate and the IC l_shipdate <= l_receiptdate imply o_orderdate <=
l_receiptdate. So we know l_receiptdate >= '1994-01-01', that is, the predicate l_receiptdate >= '1992-06-01'
is redundant. Eliminate the predicate.

Optimized query 2:

select l_returnflag, sum(l_quantity) as sum_quantity
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1994-01-01'
and l_commitdate >= '1992-01-01'
and l_receiptdate >= '1992-06-01'
and l_tax >= 0.0
and o_totalprice >= 0.0
group by l_returnflag
order by sum_quantity desc.

According to the IC l_tax >= 0.0, we know that l_tax >= 0.0 holds for the database. Moreover, there is not
any index on the field l_tax in the database. So the predicate l_tax >= 0.0 should be eliminated.

Optimized query 3:

select l_returnflag, sum(l_quantity) as sum_quantity
from tpcd.lineitem, tpcd.orders
where l_orderkey = o_orderkey
and o_orderdate >= '1994-01-01'
and l_commitdate >= '1992-01-01'
and l_receiptdate >= '1992-06-01'
and l_tax >= 0.0
and o_totalprice >= 0.0
group by l_returnflag
order by sum_quantity desc.

Similarly, the predicate o_totalprice >= 0.0 is eliminated.

Optimized query 4:

select l_returnflag, sum(l_quantity) as sum_quantity
from tpcd.lineitem, tpcd.orders



Page 11

where l_orderkey = o_orderkey
and o_orderdate >= '1994-01-01'
and l_commitdate >= '1992-01-01'
and l_receiptdate >= '1992-06-01'
and l_tax >= 0.0
and o_totalprice >= 0.0
group by l_returnflag
order by sum_quantity desc.

Table 12 shows the execution times and I/Os of the original query and the optimized query.

Predicted Cost Execution Cost
          Queries Total Cost (s) I/O Cost (pages) Total Cost (s) I/O Cost (pages)

Original 15.052 3218 8.342 3399
Optimized 1 14.907 3218 8.131 3360
Optimized 2 14.770 3218 7.592 3310
Optimized 3 14.686 3218 7.101 3302
Optimized 4 13.144 2785 7.022 2831

Table 12: Predicate Elimination Example 8 (12MB DB)

3 Lessons Learned

Based on the above experiment results, we have ranked several types of semantic query optimization
techniques with respect to the estimated difficulty of their implementation and with respect to the expected
improvement in query execution time.

Join Elimination

♦ very good optimization
♦ easy to implement (for primary-foreign key joins)
♦ relatively common

Predicate Introduction

♦ good optimization
♦ medium difficulty to implement
♦ more work needed to specify precisely when it should be applied

Detection of Unsatisfiable Conditions

♦ very good optimization
♦ moderate difficulty to implement
♦ not likely to be common



Page 12

Predicate Elimination

♦ medium optimization
♦ easy to implement
♦ common

Table 13 summarizes these estimations.

Techniques Implementation
Difficulty

When
Applicable

How often
applicable

Join Elimination L (H) VH M
Predicate Introduction M H L
Detection of Unsatisfiable Conditions M VH L
Predicate Elimination L M H

Table 13: Ranking of Semantic Query Optimization Techniques



Page 13

Chart 1: Join Elimination Example 1 (12MB DB) – Total Cost (s)

Chart 2: Join Elimination Example 1 (12MB DB) – I/O Cost (Pages)

0

5

10

15

20

Predicted Execution

Optimized

Original

0

1000

2000

3000

4000

Predicted Execution

Optimized

Original



Page 14

Chart 3: Join Elimination Example 1 (1GB DB) – Total Cost (s)

Chart 4: Join Elimination Example 1 (1GB DB) – I/O Cost (Pages)

0

2000

4000

6000

Predicted Execution

Optimized

Original

190000
200000
210000
220000
230000
240000
250000

Predicted Execution

Optimized

Original



Page 15

Chart 5: Join Elimination Example 2 (12MB DB) – Total Cost (s)

Chart 6: Join Elimination Example 2 (12MB DB) – I/O Cost (Pages)

0

1

2

3

Predicted Execution

Optimized

Original

0

200

400

600

Predicted Execution

Optimized

Original



Page 16

Chart 7: Join Elimination Example 2 (1GB DB) – Total Cost (s)

Chart 8: Join Elimination Example 2 (1GB DB) – I/O Cost (Pages)

0

50
100
150

200
250

Predicted Execution

Optimized

Original

44000

44200
44400

44600

44800
45000

Predicted Execution

Optimized

Original



Page 17

Chart 9: Predicate Introduction Example 4 (12MB DB) – Total Cost (s)

Chart 10: Predicate Introduction Example 4 (12MB DB) – I/O Cost (Pages)

0

2

4

6

8

Predicted Execution

Optimized

Original

0

200
400
600

800
1000

Predicted Execution

Optimized

Original



Page 18

Chart 11: Predicate Introduction Example 4 (1GB DB) – Total Cost (s)

Chart 12: Predicate Introduction Example 4 (1GB DB) – I/O Cost (Pages)

0

200
400

600

800

1000

Predicted Execution

Optimized

Original

0

50000
100000

150000

200000
250000

Predicted Execution

Optimized

Original



Page 19

Chart 13: Predicate Introduction Example 5 (12MB DB) – Total Cost (s)

Chart 14: Predicate Introduction Example 5 (12MB DB) – I/O Cost (Pages)

0

5

10

15

Predicted Execution

Optimized

Original

0

1000

2000

3000

4000

Predicted Execution

Optimized

Original



Page 20

Chart 15: Predicate Elimination Example 8 (12MB DB) – Total Cost (s)

Chart 16: Predicate Elimination Example 8 (12MB DB) – I/O Cost (Pages)

0 5 10 15 20

Execution

Predicted Optimized 4
Optimized 3
Optimized 2
Optimized 1
Original

0 1000 2000 3000 4000

Execution

Predicted Optimized 4
Optimized 3
Optimized 2
Optimized 1
Original


