

Using an Object-Oriented Predicative Style to Solve the Invoicing Problem

Richard Paige

Technical Report CS-98-03

March 26, 1998

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Using an Object-Oriented Predicative
Style to Solve the Invoicing Case Study

Richard F. Paige

Department of Computer Science, York University,
Toronto, Ontario, Canada, M3J 1P3.paige@cs.yorku.ca

Abstract. We apply the predicative programming formal method of [2] in spec-
ifying and designing a solution to the invoicing case study. The method is used
in an object-oriented style: first-class citizens of the descriptions are classes and
objects. We discuss some of the advantages to using the predicative method in its
object-oriented style, as well as its limitations in this problem domain.

1 Introduction

This paper constitutes a formal specification and design for the invoicing system [3].
The particular method used in solving the problem is predicative programming, a pro-
gram design calculus due to Hehner [2]. Because predicative programming may be
unfamiliar to some readers, we include a short section on its introduction, emphasizing
its notations for describing state, and for specifying operations on a system.

While predicative programming is not considered to be an object-oriented method,
according to most standard definitions, it can be used in such a style. In our solution to
the invoice case study, we apply predicative programming in an object-oriented style.
We do this because the use of classes and objects has been shown in practice to be ap-
propriate for describing requirements, system specifications, and designs. Furthermore,
the requirements, as we understand and formalize them, lend themselves naturally to
an object-oriented style of description. Section 2.2 introduces the object-oriented style,
which is new.

We apply the predicative programming style with two goals in mind: to help under-
stand the problem clearly; and, to eventually allow us to refine our system descriptions
to programs. While we do not have the space to present detailed refinements here, it has
been shown that predicative programming is well-suited for refinement [2].

In the process of solving the case study, we also describe how using the predicative
method and its object-oriented style has helped us (or hindered us). We clearly describe
our design decisions with respect to the requirements, and explain how the decisions
are reflected in the descriptions of system components.

2 Predicative Programming

Predicative programming is a program design calculus like Morgan’s refinement calcu-
lus [5], but unlike the latter treats programs as specifications. In this approach, programs

and specifications are predicates on pre- and post-state (final values of variables are an-
notated with a prime; initial values of variables are undecorated). The weakest predicate
specification is> (“true”), and the strongest specification is? (“false”). Refinement is
just boolean implication.

Definition 1. A predicative specificationP is refined by a specificationQ if 8�; �0 �
(P(Q); where� and�0 denote the pre-state and post-state, respectively.

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. As well, specifications can be combined using the
familiar operators of boolean theory, along with all the usual program combinators, as
well as combinators for parallelism and communication through channels. One partic-
ular novelty with predicative programming is that recursive programs can be developed
rather than iterative programs, using recursive refinement rules. It has been suggested
that this can simplify the process of developing certain programs [2], since it eliminates
the need to construct invariants before developing loops.

Predicative programming can be used to describe objects and classes. In order to
describe such entities, we need to introduce the predicative notation for types, i.e.,
bunches.

2.1 Bunches and Types

A bunch is a collection of values, and can be written as in this example:2; 3; 5. A
bunch consisting of a single element is identical to the element. Some bunches are
worth naming, such asnull (the empty bunch),nat (the bunch of natural numbers),
int (the bunch of integers),char (the bunch of characters) and so on. More interesting
bunches can be written with the aid of the solution quantifierx, sometimes pronounced
“those”, as in the example

xi : int � i2 = 4

And we use the asymmetric notationm; ::n for xi : int �m� i < n. Bunches can also be
used as a type system, as in

var x : nat

perhaps with restrictions for easy implementation. Any bunch (even an element, ornull)
can be used as a type. Bunches can also be used in arithmetic expressions, where the
arithmetic operators distribute over bunch union (comma):

nat= 0; nat+ 1

We have twice previously used a colon in expressions involving bunches; more gener-
ally, A:B is a boolean expression saying thatA is a subbunch ofB. For example,

2:nat

nat: int

When we use a bunch as a type, like in the declaration ofx above, we can thereafter
use the variable to represent zeroor moreelements of the specified type. So, for our
example declaration ofx : nat, x can stand for zero, one, two, or any other quantity
of natural numbers. Sox could be the element1, or the bunch5; 6; 7. The subbunch
relationx : natholds true in both cases.

In predicative programming, we write functions in a standard way, as in the example
� n : nat�n+1. The domain of a function is obtained using the� operator. If the function
body does not use its variables, we may write just the domain and body with an arrow
between. For example,2 ! 3 is a function that maps2 to 3, which we could have
written� n : 2 � 3, with an unused variable.

When the domain of a function is an initial segment of the natural numbers, we
sometimes use a list notation, as in[3; 5; 2; 5]. The empty list is[nil]. We also use the
asymmetric notation[m; ::n] for a list of integers starting withm and ending beforen.
List length is#, and list catenation is+.

Function formation distributes over bunch union, and so a function whose body is a
union is equal to a union of functions.

(� v : D � A;B) = (� v : D � A); (� v : D � B)

A union of functions applied to an argument gives the union of the results

(f ; g) x = fx; gx

A function f is included in a functiong according to thefunction inclusion law.

(f : g) = ((�g : �f) ^ (8 x : �g � fx : gx))

Thus we can prove

(f : A! B) = ((A : �f) ^ (8a : A � fa : B))

Using inclusion both ways round, we find function equality is as usual:

(f = g) = ((�f = �g) ^ (8 x : �f � fx = gx))

By defininglist as

list = �T : �list � 0; ::#(list T)! T

thenlist T consists of all lists whose items are of typeT.

The selective unionf j g of functionsf andg is a function that behaves likef when
applied to an argument in the domain off , and otherwise behaves likeg.

�(f j g) = �f ; �g

(f j g)x = if x : �f then f x elseg x

One of the uses of a selective union is to write a (selective) list update. For example, if
L = [2; 5; 3; 4] then

2! 6 j L = [2; 5; 6; 4]

Another use is to create a record structure, as in

\name"! \Smith" j \age"! 33

which is included in

\name"! list char j \age"! nat

2.2 Object-oriented style

With the bunch notion of types, classes can be described as records, where each attribute
of the class may be a state component or a functional method. There are three compo-
nents to a predicative class description: an interface specification, where the types of
attributes and functional methods are provided; a class definition, where the bodies
of functional methods are provided; and finally, specifications of state-change meth-
ods. For example, a stack ADT can be specified as follows. A stack has one attribute,
contents, which is a list of elements of typeT. It also has three methods,push, pop, and
top. The former two methods are state-changing methods that concatenate or remove
elements from the top of the stack; we explain how this kind of method is specified in
a moment.top is a functional method. In describing a stack class, we first specify its
interface.

StackInterface= \contents"! list T j \top"! T

The interface of the class describes acontentslist attribute, and the interface of thetop
method. To specify the definition of thetopmethod, we refine the bunchStackInterface
to include only those values oftop that satisfy the usual definition of the operation.

Stack= xs : StackInterface� s\top" = s\contents"(#s\contents"� 1)

The Stackclass is a bunch. The bunch contains those elements ofStackInterfacein
which thetopattribute is the value of the last element in thecontentslist.

An object is an instance of a class. Since a class is just a type, object creation is just
variable declaration. To declare an object of classStack, we write

var s : Stack

and access thecontentsfield of objects by dereferencings, ass\contents". In general,
the dereferenced field may be any functional method or attribute of the object. To assign
a value to fieldcontents, we just carry out a record field assignment, written either as
s\contents" := value, or as the overriding\contents"! valuej s.

According to the declaration of theStack, above,s is an object of typeStack. But
because types are bunches, we can also uses to represent an arbitrary number ofStacks,
as we saw in Section 2. We will make use of this capability in the case study.

We are not limited to specifying static collections of objects: objects can be created
dynamically (either by a system, or by the environment in which the system is operat-
ing) and added to a system. This is demonstrated in the second part of the case study in
Section 5, where new orders can be be added to the invoice system.

To describe state-change methods, each method of a class is a function external
to the class: each function takes an instance of the class as argument, and results in a
(possibly changed) instance of the class. Supposef is to be a state-change method of
classC. Then we definef : C ! C, which takes an object of classC as argument, and
returns the changed object. To call the methodf , applied to an objectc of classC, we
write c:f which we define as sugar for the specification

c := f (c)

In practice, a programmer would likely implement the specification as a state change to
the objectc. In effect, this model of state-change methods is the same as that used in
compilers for object-oriented languages: for a method of a class, there is one copy of
the method which can be applied to any object of that class.

With this formulation of classes, inheritance (both interface and class) is easy to
define: interface inheritance is catenation of class interfaces; while class inheritance is
catenation of class definitions. Derived classes are then subclasses (and subbunches)
of their parent classes. State-change methods associated with base classes are inherited
by derived classes in the following sense. The derived classes can use the state-change
methods within their own state-change methods, because of bunch typing rules.

3 The Invoice Problem

In studying the problem, we follow the suggestions of Jackson [4], and consider the
phenomena of theapplication domainand the phenomena that are shared between the
application domain and themachine(which is the system that we want to build). Some
phenomena of the application domain include: warehouse, products, quantities, orders,
stocks, customers, and so on. Phenomena shared between the application domain and
the machine include: orders, products, quantities, and stocks. In our design, we describe
the shared phenomena in a system specification. Detailed design involves implementing
the specification, typically in a programming language.

The general method associated with the predicative programming style requires us
to answer the following questions, with respect to the shared phenomena.

– What information should be represented in the machine?This includes descrip-
tion of phenomena solely in the machine, and may include description of shared
phenomena.

– How should this information be represented in an object-oriented style?This cor-
responds with the usual step in most object-oriented design methods: identification
of classes and objects, and their interrelationships.

– What are the operations that the system should be able to perform?The operations
will be described, according to the style, as features of classes (i.e., functional or
state-change methods).

3.1 What information should be represented?

We identify two important shared phenomena from the requirements: theorders, and
thestock. Two questions immediately raise themselves at this point.

1. What constitutes an order?From the requirements, an order has exactly one ref-
erence to a product in a certain quantity. As well, since the focus of the system is
to invoice orders (i.e., change their status from “pending” to “invoiced”), an order
must also include its status. Furthermore, a reference to a product may be on two
or more different orders. Therefore, our data description of orders must somehow
maintain the distinctiveness of orders that reference the same product.

2. What is stock?Stock is a quantity of some product that is available to be invoiced.

The predicative method suggests that an order be represented as aclass, while stock
should be represented as a function from product to available quantity. This will be
expressed in our formalization, starting in Section 4.

We have not distinguished between part 1 and part 2 of the case study in describing
information representation: our analysis of the requirements, and the predicative style,
suggests that the same information should be represented in both part 1 and part 2.
Only the system operations should change. An object-oriented or object-oriented style
is therefore appropriate for describing such reusable system components.

3.2 What are the system operations?

In answering this question, we are concerned with the issue of how the system can
be used (directly or indirectly) by clients. The operations of the invoicing system will
change the system state. For the first part of the case study, we identify only one opera-
tion,UpdateSystem, which changes the status of an order from “pending” “to invoiced”.
In the second part of the study, we require several further operations:

– an operation to add a new order to the system
– an operation to remove an order (e.g., after it has been invoiced, or after cancellation

by a customer) from the system
– an operation to add more stock to the system (e.g., after invoicing all of the quantity

currently in stock)
– an operation to add a new stock item to the system

In formalization, when applying the predicative method, we will need to ask more de-
tailed questions, such as “When can an order be added to the system?” and “When can
the order be invoiced?”

The next section describes a formalization of the information representation and the
system operations, for the first part of the case study. Section 5 describes the system
operations for the second part of the study.

4 Case 1: Invoicing Orders

We now refine the informal descriptions of information representation, and operations,
given in the preceding section. From our answer to the questionWhat constitutes an
order?, we construct a model of the shared phenomena of orders as a class.

Order= \product"! PRODUCTj \quantity"! nat j

\status"! STATUSj \id"! ID

Each attribute of the class corresponds with an attribute identified from the require-
ments, with one exception: the attributeid, which we discuss momentarily. The bunch
typesPRODUCTandID are left unspecified. In applying the predicative method, we
analyze the requirements and determine that they say nothing about what constitutes a
product.ID will be described shortly. The bunchSTATUScan be defined directly from
the requirements. It is a bunch of two values:

STATUS= PENDING; INVOICED

It is useful at this time to briefly contrast the definition ofOrderwith a Z definition.
To describe exactly one order in Z, we could write the state schema

Order
product: PRODUCT
quantity: N
status: STATUS
id : ID

wherePRODUCT;STATUS; andN would be sets (and not bunches). In a Z specifica-
tion, operations onOrders would then be written—as Z operation schemas—and the
state of the invoicing system would be modeled, most likely via a set ofOrders.

The definition ofOrder includes an attributeid. This attribute arose in response to
the question:can the same product and the same quantity be referenced on differ-
ent orders? The id field (of type ID) is used to uniquely identify orders; without it,
there would be no way of distinguishing two identical, but distinct orders. We require
that a system invariant states that all orders have distinctid attributes. We maintain
this invariant through operations: in each operation that adds an order to the system,
we ensure that the operation maintains the invariant. An alternative approach would be
to add a functional method to our specification of the system that states the invariant.
Then, an order cannot be added to the system if it violates the invariant. This latter
approach is akin to that used in Z: schema invariants can be used to express invariant
system constraints. We do not use the Z-like approach here, because there will be only
one operation (AddNewOrderin the second part of the case study, Section 5) that could
potentially violate the invariant. For reasons of conciseness, we include a verification
of the invariant in the operation itself. We could use the more Z-like approach without
difficulty.

We now address the question:what is stock?According to the requirements, stock
is a quantity of some product that is available to be invoiced. The stock in the system
is described using a function fromPRODUCTs to natural numbers, where the range
of this function represents the quantity ofPRODUCTs in stock. A function is used for
several reasons: so that it is easy to describe lookups; because it is, in our opinion, an
appropriate way to describe the shared phenomena of stocks in the problem domain;
and, because it makes the addition of extra stock (or new products) easy to describe.

stock: PRODUCT! nat

The next question that arises is:what is the invoicing system?We have identified its
two key components—orders, and stock—but we must now describe the whole. The

predicative method suggests that the invoicing system itself be modeled as an object
with two attributes:orders, of classOrder, and astockentity.

var System: \orders"! Order j \stock"! (PRODUCT! nat)

The Systemis an object, and not a class, because it is unique, according to our in-
terpretation of the requirements and our formalization. The predicative method allows
specification of a uniqueSystementity, by declaration.

Another question arises at this point, due to our formalization:is there a limit on
the size of the system?According to our formalization, theSystemcan contain an
arbitrary number ofOrders, limited only by the cardinality of theID bunch. Thestock
is limited only by the cardinality of thePRODUCTbunch in its domain. By studying
the requirements, we find no hint of limits that are required on the number of orders or
on the number of stocked products, so the formalization seems reasonable.

Notice that because the attributeordersis of typeOrder, which is a bunch, the sys-
tem can use theordersattribute to represent more than one order. Equally, we could
have defined theordersfield of theSystemobject as a set, which would allow repre-
senting multiple orders as well. We use bunches instead of sets because bunches are the
standard in predicative programming.

After modeling the system data, we turn to modeling operations and the invoicing
process. In doing so, we address the following questions.

– What are the system operations for this part of the case study?We do not have
to take into account data flows. Therefore, we are only worried about the opera-
tions for the transformation of an order’s status. There is only one system opera-
tion: UpdateSystem, which, given an order, changes its status fromPENDING to
INVOICED. Invoicing is therefore an atomic, mutually exclusive operation: no two
invoicing operations can occur simultaneously. If we wanted to model a more com-
plex system where this is allowed, then predicative programming would be well-
suited to the task: the method can be used for describing monitors or semaphores,
which could be used by concurrent processes (also describable in predicative nota-
tion) to access the system stock and orders state.

– When can an order be invoiced?The answer comes directly from the require-
ments: whenever the quantity of the ordered product that is requested is in stock.
The requirements suggest that an order cannot be invoiced if the quantity requested
is not in stock. Successful invoicing of an order will also have a side-effect: it
changes the stock available, providing the invoice can be made, by decreasing the
amount of product in stock by the amount ordered.

– How do we ensure that invoicing can actually occur?A request for invoicing
cannot be satisfied if the requested stock is not available. But the system, in this
part of the case study, is not able to add stock or add orders. Therefore, it is as-
sumed that the environment will initialize the stock and available orders in some
way. According to the requirements, the machine that we describe in this part does
not perform any stock maintenance (beyond that associated with updates after an
order), nor should it add or remove orders.

– Can orders be placed for products that are not in stock?A product that is not
in stock may have quantity 0, or may simply not be in the domain of thestock

component of theSystem. Our formalization suggests that an order can indeed be
placed for a product that is not in stock. We assume that the mechanisms for adding
stock will be used at some point. However, such an order cannot be invoiced, at
least until sufficient stock has been added.

The operationUpdateSystem, identified from the requirements, changes an ordero
from PENDINGto INVOICED, providing that the quantity of product requested in the
order is in stock. Before describing theUpdateSystemoperation, we provide a piece of
sugar. We letamountstand for the stocked amount of a product that is requested on an
ordero.

amount= System\stock"(o\product")

TheUpdateSystemoperation is then as follows.

UpdateSystem= � o : Order �

if (o : System\orders" ^ amount� o\quantity") then

\orders"! UpdateOrder(o;System\orders") j

\stock"! (o\product"! (amount� o\quantity") j System

elseSystem

UpdateSystemtakes one ordero, and invoices it (changes thestatusof o to INVOICED),
providing that sufficient quantity of the requested product is in stock. Simultaneously,
thestockis updated to remove the requested amount from stock.

To write such an operation in Z, we could either writeUpdateSystemas a function
on objects of typeOrder (whereOrder is the state schema as given earlier), or, we might
expect that we could just write an operation schema, such as

UpdateSystem
�Order
�System

Order2 System:orders
System:stock(Order:product) � Order:quantity
: : :

(we have omitted postcondition details). Note that in this caseOrder represents a single
order. ButUpdateSystemshould be applicable to any object of classOrder. So the Z
schema as given is insufficient: we really need to talk about the set of allOrders in
our system, not just a single order. A convention for solving this problem is given in
[1]; Hall defines syntactic devices for describing updates of a system, after changing a
single object within that system.

Returning to the predicative formulation of the problem, we now concern ourselves
with usingUpdateSystem. To update the system by changing an ordero fromPENDING
to INVOICED, we would use the syntaxSystem:UpdateSystem, which is sugar for

System:= UpdateSystem(o)

TheUpdateOrderfunction takes twoOrder parameters,o andsystemOrders, whereo
is in systemOrders. It replaceso in systemOrderswith an identical order, except with
thestatusfield changed toPENDING.

UpdateOrder= � o : Order � � systemOrders: Order �

xi : Order � (i : systemOrderŝ :i : o) _ (i = \status"! INVOICED j o)

UpdateOrdersresults in the bunch of all orders insystemOrders, excepto itself, which
is replaced by an order identical too, but with changedstatusattribute.

5 Case 2: Updating the invoicing system

In this version of the invoicing system, new orders can be created, orders can be can-
celled, and new stock can be added. The advantage of using the object-oriented pred-
icative style now becomes apparent to us: addition of new system operations to handle
the new phenomena of the application domain is a straightforward process. We do not
have to alter the descriptions of state components; the description of theSystem, as well
as its componentsordersandstock, remain the same as in the first part. The state com-
ponents do not have to change because they are bunches, and as such can represent an
arbitrary number of orders and stocked products. However, reusing the formalization
from Case 1 means that a number of questions have to be answered before proceeding.

– Can data flows arrive at the system concurrently?That is, can new orders, can-
cellation of orders, stock updates, et cetera, arrive at the system simultaneously?
According to ourSystemformalization, operations that change the state of the sys-
tem must be guaranteed atomic access, otherwise the system will enter an incon-
sistent state. All operations that we identify must therefore be atomic and mutually
exclusive; that is, orders may be added or deleted, or stock changed, but in the
process of making such a change, no other operation may be active. Notice that
we could describe a system that permits concurrent attempts to change state by
describing a mutual exclusion mechanism. Formalizing thestockandordersusing
predicative notation helps to clarify this requirement: stock cannot be changed (i.e.,
via functional overriding) by an operation unless the operation has exclusive access
to the stock function. And similarly, an order cannot be updated unless an update
operation has exclusive access.

– What is the initial state of the system?An initial state for the system must be pro-
vided. This is ensured by describing a new system operation,InitSystem. Predica-
tive notation clarifies this point: because we formalize orders as a bunch, addition
of the very first order cannot be carried out unless the bunch of orders is originally
null—which isn’t guaranteed unless there has been initialization ofordersat some
point.

– How do we maintain order identity uniqueness?Recall that a constraint identi-
fied in Case 1 is that all order identities are unique. This is so that customers can
make multiple references to the same product of the same quantity. Order unique-
ness is ensured by assigning a uniqueid field to each order, and by ensuring that
the system operation to add a new order maintains the identity invariant. Predicative

programming requires us to have this constraint; without it, bunches—like sets—
will not allow representation of multiple instances of the same element (and there-
fore will not allow multiple references to the same product and quantity on differ-
ent orders). Formalizing in predicative notation clearly suggests thatid uniqueness
must be an invariant of all state-change operations.

To initialize the system, the operationInitSystemis used. It sets the attributes of the
Systemto their respective zeros. SinceSystemis a record of bunches, it is initialized by
assigning to its fields the value of the empty bunch.

InitSystem= \stock"! null j \orders"! null j System

To add a new order to the system, an order is constructed (in the environment), and the
AddNewOrderoperation is invoked.

AddNewOrder= � o : Order �

if :o\id" : xi : System\orders"\id" then

\orders"! (System\orders"; o) j System

elseSystem

If the id field of the new order is possessed by an order already present in the system,
theAddNewOrderoperation cannot change the system, as suggested by our answer to
the questionhow do we maintain order uniqueness?, above.

Cancelling an order occurs by passing an orderid as a parameter, and removing the
corresponding order from the system, providing that the order is present. This raises an-
other interesting question:when can an order be cancelled?One constraint is that the
order is present in the system. But the system can contain two types of orders: those that
arePENDING, and those that areINVOICED. An order that isINVOICEDhas, presum-
ably, been sent to the customer. Cancellation of an invoiced order seems impossible!
(Though the customer might obtain satisfaction by returning their invoiced order—a
feature that seems to be outside of the problem frame for our system). Therefore, a
second constraint on cancellation is that the order isPENDING, and notINVOICED.

CancelOrder= � id : ID � \orders"! (System\orders"	 cancelOrders) j System

where

cancelOrders= xj : System\orders" � j\id" = id ^ j\status" = PENDING

The bunch difference operator,	, is defined asA	 B = xi : A � :i : B. It is the bunch
of all i in A that are not inB. Note that difference is defined even ifB andA do not
coincide.

We turn now to the facilities for entering quantities in the stock. One question imme-
diately appears:can we add new stock items?By examining the stock formalization,
we see that it is permissible, by extending the functionstock, using selective union. The
requirements do not seem to prohibit adding new items. Therefore, we express such
functionality in our formalization. Stock can be added by applyingAddStock. A quan-
tity q of productp is supplied. Ifp is already recognized by the invoicing system, its

in-stock quantity is updated. Otherwise, a new stock entry is added, by extending the
functionstock.

AddStock= � p : PRODUCT� � q : nat �

if p : �stockthen

\stock"! (p! System\stock"(p) + q j System\stock") j System

else\stock"! (p! q j System\stock") j System

To add new stock, the callSystem:AddStock(p; q) is used. This is sugar for

System:= AddStock(p; q)

Finally, one last question arises:should we be able to delete items from stock?Our
formalization suggests that we already have some means to do this: by invoicing. Each
invoice operation removes a quantity from stock. Once that quantity has been reduced
to 0, thePRODUCTis effectively removed from stock (subject to future additions of
quantity). The requirements do not suggest that deleting stock items is a part of the
domain of the machine. Therefore, we omit such an operation from our formalization.

6 Discussion

The predicative programming method of [2] is well-suited to describing any kind of
computation, and any kind of system, be it real-time, concurrent, object-oriented, or
interactive. The object-oriented style introduced herein can be used to describe many
important object concepts: classes, class interfaces, instantiation, inheritance (which we
have not needed to use for this problem), assembly, overriding, and (limited) encapsu-
lation. It is also useful for reuse: specifications for base-class operations can be reused
in derived classes (though we do not show this here).

In using the predicative object-oriented style to solve the invoicing problem, we
noted the following.

– Because we use bunch types as classes to represent orders and multiple orders, we
needed a way to uniquely identify a possibly arbitrary number of orders which are
otherwise indistinguishable (in terms of product and quantity). To do this, we added
anid field to the classOrder. It is not reasonable to disallow different orders for the
same product and in the same quantity.

– Using the predicative style allowed concise representation of the status-change:
functional overriding was used to write the change of an order fromPENDINGto
INVOICED.

– Moving from a system where new orders did not have to be processed to a system
where they did, required no change in data representation; this was an artifact of
using the object-oriented style, as well as bunches as types. Also, we could use a
consistent style of specification: functional overriding was used in describing the
methods to add new stock, or to add or delete an order from the system.

In the second part of the case study, we were tempted to describe the system in more
detail, i.e., in terms of how orders or objects are created (i.e., how quantities, products,
and identities are determined by the system or the user). However, we decided that such
details were beyond the scope of the study: the problem was to specify an invoicing
system, and not how it is used. We therefore left the specification of order creation
undescribed (as is usual practice in predicative programming and other similar methods,
e.g., Z): operations can be invoked by the system, or by the environment, as needed.

The style of specification supported by the predicative method is very similar to
that used with Z. A specifier defines system state (in our case, classes and objects), and
operations upon that state. Our approach differs somewhat from the usual Z ‘style’ in
that we have emphasized using an object-oriented style of specification. Our object-
oriented style differs from styles for Z [1], primarily because we describe classes as
bunches, which are just types. Specifying objects, hierarchies, and operations on objects
then uses standard predicative notations, and does not require conventions to deal with
the effects of operations on a system that may contain many object instances.

In applying the predicative method, we were forced to think hard about the repre-
sentation of the orders and the stock. From analysis of the requirements, we determined
that the orders and the stock could be represented by bunches (of, respectively, type
Orderand typePRODUCT! nat). We considered an ordered representation ofOrders
(e.g., onid fields), but decided that the requirements did not describe any need for an
ordering mechanism. Certainly, representingOrders as functions fromid to an appro-
priate record type would make describing order updates much simpler. However, when
implementing the system, different ways of arranging orders or of adding orders to the
system may be required. Therefore, we thought it best to interpret the requirements lit-
erally, and have an unordered bunch representation of orders (which can easily be data
transformed to an ordered representation, as we discuss in the next section).

A final motivation for using the predicative programming method is because it is a
program design calculus—for both imperative and functional programs. Thus, given the
specification of the system above, we can apply standard predicative refinement rules
[2] in developing an implementation.

6.1 Refinement

Refinement, as discussed in [2], involves the following tasks.

– Designing a new (concrete) state representation, which typically is produced so
that it can be straightforwardly implemented on a machine. In the case study, the
new state representation might include implementing bunches of orders as lists (or
arrays), and implementing functions as arrays.

– Transforming specifications based on the original state representation, to the new
state representation. Thedata transformationproof techniques in [2] can be used
to do this. In particular, data transformation of classes can be carried out, giving us
implementations of design classes. Predicative programming data transformation
techniques can be used without change for data transforming classes.

– Algorithmically refining method specifications to implementations, either by pro-
cedural or functional refinement.

Implementation of theordersattribute of classSystemcould be through use of a list
indexed byIDs,newOrders: ID ! Order. A data transformer (i.e., a ‘coupling invari-
ant’) for such a refinement is

orders= newOrders(orders\id")

That is, each component ofordersis in the range ofnewOrders, mapped there by itsid
attribute.

In refinement, algorithms that implement the operations of the system are designed.
Abstract operations, e.g., bunch inclusion and union, function overriding, etcetera, are
refined to “concrete” implementations, in terms of entities that are directly executable
on a machine. For example, after applying the data transformation above, theorders
attribute ofSystemwould be represented as a list, indexed byid. The data transformation
would also be applied to the operations likeUpdateSystem, changing bunch inclusion to
a function invocation. Algorithm refinement could be used to further refine the function
invocation, e.g., to list indexing.

6.2 Questions and answers

In formally expressing the requirements, and making design decisions, we answered a
number of questions about the system.

– How do we distinguish between identical orders for the same product and in
the same quantity?Orders must be uniquely identifiable; an order from one cus-
tomer for productP in quantityq must be distinguishable from an order from a
different customer ordering productP of quantityq. We enforced this by extending
the description of orders to include identity.

– When can orders be invoiced?Orders can be invoiced precisely when the system
has the requested product in stock. We discovered that the system (or the environ-
ment, i.e., a customer) can ask for an order to be invoiced, but if sufficient stock is
not available, the invoicing will not succeed. A useful extension of the order rep-
resentation would be to record “date of first invoice attempt”, so as to be able to
determine how long customers have been waiting for their order to be invoiced.
Then the system could organize invoices by priority, based upon wait time.

– Is it necessary to describe when the system updates stock, or when orders are
invoiced? Our formalization of the requirements suggested no: the system’s pur-
pose (in our interpretation) was to manage orders that it receives—it is outside of
the application domain to describe the phenomena associated with when orders are
created. We provided features that allowed such updates or invoicing; but they are
to be invoked by the system, or the environment.

– How many orders can the system handle?We placed no constraints; an arbitrary
number of orders can be added, an arbitrary number of products may be kept in
stock (which is also unrealistic, since warehouse storage is limited) and an arbitrary
amount of each product may be kept in stock. It is easy to add extra constraints,
e.g., on the size of bunchorders, or on the domain or range ofstock, to express
such constraints if it is important to do so.

– When can orders be cancelled?A cancellation can be requested, but if the order
has already been invoiced, it is assumed to have been sent to the customer. There-
fore, invoiced orders cannot be cancelled (other mechanisms would have to be used,
e.g., for returning invoiced orders).

– What stock updates can be performed?Addition of quantities of existing stock
can be carried out, but also new stock items can be added.

– Is the description of the system, in the way we have done it, useful?It appears
so, in particular, because we did not have to change the description of data in mov-
ing from part 1 to part 2 of the case study. This is an artifact of using predicative
programming, and its style for dealing with objects.

7 Summary

The invoicing case study has been formalized in a object-oriented predicative style,
based on the formal method of [2]. Formalization in predicative notation allowed an-
swering of several questions that arose from the requirements:how can we distinguish
between identical, but separate orders?, when can an order be invoiced?, can orders be
placed for products not in stock?, are there limits on the size of the system?, andwhen
can an order be cancelled?

Applying the predicative method refined our understanding of the problem. We un-
derstood what constituted an order—in particular, the need for some way of uniquely
identifying an order. We understood that orders can only be invoiced when the stock
of a product was sufficient, but also thatPENDINGorders can reside in the system,
presumably indefinitely. This also suggested that orders could be placed for products
not in stock. We found that cancellation of an order can occur only when an order
is PENDING, and not afterINVOICING. And, we found that while new quantities of
stock can be added to the system, and new products could be added, products could not
be removed from the system—such a feature being outside the frame of the problem
description.

References

1. A. Hall, Specifying and Interpreting Class Hierarchies in Z, inProc. ZUM 1994,Springer-
Verlag, 1994.

2. E.C.R. Hehner,A Practical Theory of Programming, (Springer-Verlag, 1993).
3. Call for Papers from the International Workshop on Comparing System Specification Tech-

niques, available atwww.sciences.univ-nantes.fr/info/manifestations/invoice98.
4. M.A. Jackson,Software Requirements and Specifications, (Addison-Wesley, 1995).
5. C.C. Morgan,Programming from Specifications,Second Edition, (Prentice-Hall, 1994).

