
The Clock Language
Reference Manual

T.C. Nicholas Graham
York University

graham@cs.yorku.ca

Electronic Technical Report CS-ETR-95-01

Abst rac t :   This document serves as preliminary
documentation for the Clock language.   Clock is a purely
declarative language supporting the development of
highly interactive graphical user interfaces.  For now, this
document concentrates on the syntax of the language and
the predefined functions the language provides.



Acknowledgements

Clock was designed and implemented by T.C. Nicholas
Graham, Tore Urnes, Catherine A. Morton and Roy
Nejabi.  Other contributers to the Clock project were
Herbert Damker and Gekun Song.

We gratefully acknowledge the financial support of the
ITRC, NSERC, and the Royal Norwegian Research
Council.



Context Free Syntax of Clock

componentDef ::= { definition }

definition ::= equation

| typeDefinition

| dataDefinition

equation ::= id { simplePattern } + = expn .

typeDefinition ::= type  typeId = typeSpec .

dataDefinition ::= data  constructorId =
    constructorId { typeSpec }
  { |  constructorId { typeSpec }} .

expn ::= simpleExpn

| simpleExpn simpleExpn

| debug  simpleExpn

simpleExpn ::= id

| literal

| constructorId

| fn  { simplePattern } + ->  expn end  fn

| if  expn then  expn
{ elsif  expn then  expn }
else  expn
end  i f

| case  expn of
  { pattern ->  expn } +

end  case

| let  { pattern = expn } + in  expn end  let

| [  expn { ,  expn } ]

| unaryOp simpleExpn

| simpleExpn binaryOp simpleExpn

| (  expn )



simplePattern ::= _

| id

| literal

| constructorId

| [  pattern { ,  pattern } ]

| (  pattern )

pattern ::= simplePattern

| constructorId { simplePattern }

| simpleExpn :  simpleExpn

unaryOp ::= -

binaryOp ::= + | -  | *  | div  | mod

| = | ~= | < | > | <= | >=

| and  | or  | not

| @ | # | ++

typeSpec ::= Num | String  | Bool

| typeId

| [  typeSpec ]

| (  typeSpec { ,  typeSpec } )

Lexical Rules

numLiteral ::= [0-9]*

stringLiteral ::= "  [any char] *  "

boolLiteral ::= True  | False

id ::= [a-z] *  [a-zA-Z0-9_] *  [ ' ] *

constructorId ::= [A-Z] *  [a-zA-Z0-9_] *  [ ' ] *

typeId ::= [A-Z] *  [a-zA-Z0-9_] *  [ ' ] *



Predefined Functions

List manipulation functions:

take :: Num -> [a] -> [a]

Takes the first n elements of the given list; ie, take 3 [1,2,3,4] = [1,2,3] .

: :: a -> [a] -> [a]

The ‘cons’ function places a given element onto the front of a list.

append :: [a] -> a -> [a]

Appends the given value to the end of the given list.

++ :: [a] -> [a] -> [a]

Concatenates two lists.

assign :: [a] -> Num -> a -> [a]

Gives a list where the element at the given position is replaced with the new given 
element.  Ie, assign [10,11,12,13] 2 1001 = [10,1001,12,13] .

@ :: [a] -> Num -> a

Returns the value at the given position of the list.  Ie, [10,9,8] @ 2 = 9 .  List 
indeces are based at 1.  List indeces out of bounds result in an error.

# :: [a] -> (Num,Num) -> [a]

Returns all elements in the given list between the two given numbers.  Ie, 
[1,2,3,4,5,6] # (2,5) = [2,3,4,5] .  If the right index exceeds the left index by 
1, the null list is returned:  ie, [1,2,3] # (1,0) = [] .  If either index is otherwise 
out of bounds, an error results.

length :: [a] -> Num

Returns the number of elements in the given list.



Dictionary functions:

A dictionary is a list of key/value pairs.  The dictionary functions make it easy to 
retrieve values from a dictionary given a key.

enterDict :: a -> b -> [(a,b)] -> [(a,b)]

Given a key a,  a value b, and a dictionary, returns a new dictionary where b has 
been entered under key a.  If the key a already exists in the given dictionary, this 
operation overwrites the old value.

lookup :: a -> [(a,b)] -> b

Given a key a, finds the first value b with that key in the dictionary.

lookupPos a -> [(a,b)] -> Num

Given a key a, finds the position of the first occurence of that key in the dictionary.

lookupAll :: a -> [(a,b)] -> [b]

Given a key a, returns the list of all values b with that key in the dictionary.

index a -> [a] -> Num

In a simple list, finds the position of the first occurence of a value in that list.  Ie, 
index 3 [1,3,10,4] = 2 .

Combinators:

map :: (a->b) -> [a] -> [b]

Given a function f and a list of elements as, gives the result of applying f to each 
element of as.

fold :: (a->a->a) -> a -> [a] -> a

Given a function f, initial value a0, and list of elements [a1,a2,...,an], returns the 
result of applying  f a0 (f a1 (f a2 (..... (f an-1 an))).



Mathematical functions:

min :: Num -> Num -> Num
max :: Num -> Num -> Num

Return the min/max of the given pair of numbers.

Tuple functions:

fst :: (a,b) -> a
snd :: (a,b) -> b

Return the first/second items of a tuple.

String manipulation functions:

ord :: String -> Num

Returns the ordinal number of the first character of the given string; eg, in ASCII, 
ord ("A") = 65 .  The given string must not be null.

chr :: Num -> String

Gives as a string the character value of the given integer.  Eg, ord (65) = "A" .

numstr :: Num -> String

Converts an integer into a string.  Eg, numstr 123 = "123" .

strnum :: String -> Num

Converts a string into an integer.    Eg, strnum "123" = 123 .  The string must 
contain a valid integer; currently this is not checked, so if the string is not valid, a 
segmentation violation style of crash will result.



Date/time manipulation functions:

Date and Time are predefined abstract data types representing a date/time.  These 
functions implement computations based on dates.  Note that in Clock, there is 
currently no way of accessing the current date or time.

textToDate :: String -> String -> String -> Date

Creates a date type from the given day, month and year.  The month must be the 
full English name of the month:  "January", "February", etc.  For example, 
textToDate "10" "January" "1995"  gives the date for Jan 10, 1995.

dateToString :: Date -> String

Gives a string representation of a date.
dayOfWeek :: Date -> String

Returns what the weekday is of the current date.

daysInMonth :: Date -> Num

Returns how many days are in the current month.

daysInYear :: Date -> Num

Returns how many days are in the given year.  Does a reasonable job with leap years, 
but not perfect.

tomorrow :: Date -> Date

Gives the date following the given date.

yesterday :: Date -> Date

Gives the date preceding the given date.

stringToTime :: String -> Time

Converts a string to a time.  Time strings can be in two formats:  24 hour, such as 
stringToTime "13:45"  or 12 hour, such as stringToTime "1:45 PM" .  This 
function is very sensitive to format, and will crash if there is any deviation.



timeToString :: Time -> Num -> String

Returns a string version of the given time.  The time may be in 12 or 24 hour 
format, as specified by the numeric parameter. 

earlier :: (Date,Time) -> (Date,Time) -> Boolean

Determines whether the first of two given dates+times occurs earlier than the 
second.

Environment query functions:

getenv :: String -> String

Given the string name of an environment variable, returns the variable’s value.  Eg, 
getenv “PRINTER”  returns the name of the current printer.

homedir :: String

Returns the directory in which this program is located.  This function is useful if the 
program makes use of auxiliary files located in the program directory (e.g., image 
files.)



Views in Clock

Clock provides a simple language from which graphical displays can be constructed.
While the language is simple, the abstraction powers of functional programming
can allow complex displays to be easily constructed.  Currently, the view language
does not support all forms of graphical primitives or layout that would be desirable;
the most glaring problem right now is the lack of any circle or elipse primitives.

This presentation begins by outlining the primitive constructs from which views
are built, and then describes the predefined functions that simplify view
manipulation.

Primitive Constructs

Views are elements of the data type DisplayView .  This data type has the following
definition:

data DisplayView =
    Views [DisplayView]
  | Line Coord Coord
  | Arrow Coord Coord
  | At Coord Coord DisplayView
  | Box DisplayView
  | Text String
  | NumText Num
  | CharText Char
  | BooleanText Bool
  | InstanceOf SubViewName SubViewId

  | BorderStyle Num DisplayView
  | BorderColour Colour DisplayView
  | BorderWidth Num DisplayView
  | FillPattern Num DisplayView
  | FillColour Colour DisplayView

  | Font FontName DisplayView
  | FontColour Colour DisplayView
  | Inverted DisplayView
  | LineWidth Num DisplayView
  | LineStyle Num DisplayView
  | LineColour Colour DisplayView
  | SaveProps DisplayView
  | RestoreProps DisplayView

  | DarkReliefShade Colour DisplayView
  | LightReliefShade Colour DisplayView
  | ReliefWidth Num DisplayView
  | Relief String DisplayView
  | PolyLine [Coord]
  | Pile [(Num, DisplayView)]
  | Image String
  | Crop Coord Coord DisplayView.

Views in Clock are therefore values that are built from data constructors.  For
example, the view Box (Text “Hello world”)  represents the text “Hello world”
drawn with a box around it.

Text, NumText, CharText, BooleanText

These constructors are used to display text.  Text “Hello”  displays the text “Hello”.
NumText 123  displays the text “123”.  CharText 65  displays the text “A”.
BooleanText True  displays the text “True”.  The text is drawn in the current font
and current font colour.   For example, Font largeItalicFont (FontColour
red (Text “Hello world”))  draws the text “Hello world” in large, red, italic text.



Fonts are strings in the standard X font description format.  The Unix command
xlsfonts  will give you the complete list of X fonts available on your server.  The
file $CLOCKSYS/Source/clocklib/viewUtils  gives a list of predefined font
names.

Colours have the definition:

type Colour = (Num,Num,Num).

That is, colours are triples consisting of an integer value representing the red, green
and b lue  in tens i t ies  o f  the  des i red  co lour .   The  f i l e
$CLOCKSYS/Source/clocklib/colourUtils  gives a list of several hundred
predefined colour names.

Box

A box surrounds whatever its parameter view is.  E.g., Box (Text “Hello”)  draws
a box correctly sized to fit the text “Hello”.  By default, boxes are drawn in black, with
a width of one pixel.  The constructors BorderStyle , BorderColour , BorderWidth ,
FillPattern  and FillColour  permit the attributes of boxes to be adjusted.  For
example,

BorderWidth 3 (
  FillColour yellow (
    BorderColour green (
      Box (Text “Hello”)
    )
  )
)

displays the text “Hello” surrounded by a 3 pixel wide green border, on a yellow
background.  Border styles may be:  solidBorder  (default), dashedBorder , or
doubleDashedBorder .  Fill patterns may be:  solidFill  (default), hashedFill ,
screenDoorFill , or tiledFill .

A t

To place Clock primitives on the display, coordinates must be used.  Coordinates
refer to positions within the current canvas.  The contents of each box construct is
considered to be a separate canvas with its own coordinate space, thus giving Clock a
hierarchical graphics system.  The Coord data type defines the form of coordinates:

type Coord = (Ordinate,Ordinate).
type Offset = Num.
type OrdinateLabel = Num.

data Ordinate =
    XBaseOffset OrdinateLabel Offset | YBaseOffset OrdinateLabel Offset



  | Left Offset  | Bottom Offset | Right Offset | Top Offset
  | XSomewhere | YSomewhere.

The simplest form of coordinate is the absolute coordinate.  The form (Left 0,
Bottom 0)  is used to specify the position 0 units to the left of the lower-left corner
of the coordinate space.  Similarly, the form (Right 0, Top 0)  specifies the upper-
right corner of the coordinate space.  This form of absolute coordinate allows
primitives to be located without knowing the position or size of the coordinate
space itself:

(Left 0, Bottom 0)

(Right 0, Top 0)

(Left 10, Bottom 10)
x

x
(Right (-10),
      Top (-10))

Primitives can be positioned with the At  constructor.  For example:

At (Left 10, Bottom 10) (Right (-10), Top (-10)) (Box noView)

would display a box whose size would be adjusted to always be 10 pixels from the 
border of the canvas.

As a convenience, the functions:

x xpos = Left x.
y ypos = Bottom y.
origin = (x 0, y 0).

are predefined.  These functions allow simpler forms for coordinates that are 
expressed in terms of the lower-left corner of the canvas.

Sometimes, the programmer does not know the position of both coordinates for a 
primitive.  For example, when positioning text, it is possible to write:

At (x 20, y 13) (XSomewhere, YSomewhere) (Text “Hello”)

This states simply that the lower-left corner of the text is to be positioned at (20, 13)
within the current coordinate space, and the upper-right corner’s position is not
specified.



As a convenience, the function:

stretching = (XSomewhere, YSomewhere).

is defined.  With this form, text can be simply positioned as:

At (x 20, y 13) stretching (Text “Hello”)

Views

The views constructor allows multiple primitives to be placed in the same canvas.
For example,

Views [
   At (x 10, y 10) stretching (Text “Hello”),
   At (x 100, y 10) stretching (Text “there”)
]

places two text primitives in the same canvas.

In specifying the positions of primitives within a Views  construct, primitive
coordinates can also be expressed relative to the positions of other primitives.  For
example, to place two texts on the display separated by 10 pixels, one writes:

Views [
   At (x 10, y 10) (XBaseOffset 1 0, YSomewhere) (Text “Hello”),
   At (XBaseOffset 1 10, y 10) stretching (Text “there”)
]

The XBaseOffset  constructor takes two parameters:  the first is a numeric name for
a position on the display.  In this case, the name “1” is used to refer to the X-position
of the right extent of the text “Hello”, wherever that may be.  The second parameter
is an offset (positive or negative) from that position.  Therefore, the text “there” is
positioned at XBaseOffset 1 10 , which is 10 pixels to the right of the rightmost
position of the text “Hello”.

Line, Arrow, PolyLine

These constructors allow lines and arrows to be drawn.  For example,

Line origin (x 10, y 10)

is a line stretching from the origin to the position (10, 10) in the current canvas.
The constructors LineWidth , LineStyle  and LineColour  allow the attributes of
lines to be set.  Currently, arrows don’t have arrow heads.



PolyLine allows polygons to be built from a list of coordinates.  The current fill
colour is applied to the region contained by the polyline.

Arrow may have unpredictable effects in the current version of Clock.

SaveProps, RestoreProps

SaveProps  saves the current state of all properties (line colour, font, fill colour, etc).
RestoreProps  restores the last saved set of properties.  For example, to define a
function to draw a green box around a given view, we would write:

greenBox v = SaveProps (BorderColour green (RestoreProps v)).

Ie, we save the properties prior to changing the border colour, and then restore them
before evaluating v .

Image

The Image  constructor allows the inclusion of JPEG images in Clock programs.  For
example, Image “foo.jpg”  reads the image contained in the file “foo.jpg”.   Images
are first class Clock views; for example, Box (Image “foo.jpg”)  draws a box
surrounding the image.

Clip

Clip clips the given view to fit within the given coordinates.  For example,

Clip (x 10, y 10) (x 30, y 30) (Image “foo.jpg”)

displays the portion of the image contained in the region (10,10) -> (30,30).

Relief

Relief allows the current view to be given the 3D style of relief commonly used in
modern toolkits.  The form Relief “raised” v  draws v slightly raised over the
surrounding view; Relief “sunken” v  draws v slightly sunken.  Relief properties
include the ReliefWidth , the number of pixels wide the relief shading will be, and
DarkReliefShade  and LightReliefShade , which are used to specify the colours to
be used in relief shading.



Predefined View Functions

The last section introduced the low level primitives from which all Clock views are
constructed.  In fact, Clock programmers do much of their view construction using
predefined functions that abstract from the detailed level of the primitives.  These
definitions are all contained in the files $CLOCKSYS/Source/clocklib/viewTypes
and $CLOCKSYS/Source/clocklib/viewUtils .  Reading through these files is a
very useful way of finding out how to write sophisticated view functions in Clock.

Coordinates

x :: Num -> Ordinate
y :: Num -> Ordinate

Allow the specification of coordinates relative to the lower-left corner of the current 
canvas.  Eg, (x 10, y 20)  is a coordinate.

xOrigin :: Ordinate
yOrigin :: Ordinate

Return the lower left X- and Y-positions of the the current canvas.

origin :: Coordinate

Returns the lower-left coordinate of the current canvas.

mostHigh :: Ordinate
mostRight :: Ordinate
topRight :: Coordinate

Return the positions of the top-right extent of the current canvas.

    stretching :: Coordinate

Returns a coordinate at an unspecified location.

    noView :: DisplayView

Returns no view at all.  Useful in, for example Box noView , a box containing 

nothing.



Layout

    beside :: [DisplayView] -> DisplayView
    above :: [DisplayView] -> DisplayView

Given a list of display views, returns the views laid out horizontally/vertically 
respectively.  For example, beside [Text “a”, Text “b”, Text “c”]  would 
display the text “abc”.

    size :: (Num,Num) DisplayView -> DisplayView

Makes the given view into the specified size.  This is useful, for example, in creating 
a box of a specific size without having to specify its position:  Size (10, 10) (Box 

noView) .

   group :: DisplayView -> DisplayView

Introduces a new canvas around the given display view.  This allows a complex 
view to be included into a new view which may have a conflicting coordinate space. 

Shadows

    shadow :: Num -> DisplayView -> DisplayView

Draws a drop-shadow around the lower-left of the given view.  The current fill 
colour is used as the colour of the shadow.

whiteShadow :: DisplayView -> DisplayView
blackShadow :: DisplayView -> DisplayView
greyShadow :: DisplayView -> DisplayView
greenShadow :: DisplayView -> DisplayView

Draws shadows of the named colour.

    upperShadow :: Num -> DisplayView -> DisplayView

    whiteUpperShadow :: DisplayView -> DisplayView

Same idea as above, except the shadows are drawn to the upper-right.



Relief Helper Functions

    motifShading :: Bool -> Num -> DisplayView -> DisplayView

Adds a Motif-style border to the given display view.  The numeric parameter 
specifies the width of the shading.  The boolean parameter if True specifies sunken 
relief, if False specifies raised relief.

    groovyBox :: Num -> DisplayView -> DisplayView

Adds a “groovy” box of two times the specified width around the given display 

view.

Padding and Spacing

    pad :: Num -> DisplayView -> DisplayView

Adds a blank border of the specified number of pixels around the given display 
view.

    paddedText :: Num ->  String -> DisplayView

Returns a display view consisting of the string with a blank border of the specified 
number of pixels surrounding it.

    space :: Num -> DisplayView
    hSpace :: Num -> DisplayView
    vSpace :: Num -> DisplayView

Returns a space of the given size in pixels.  This function is useful for spacing out 
items listed in a beside or above function.  space returns a square space; hSpace and 
vSpace have height and width of 1 pixel respectively.

    spaceApart :: [DisplayView] -> [DisplayView]

Inserts a two-pixel wide space between each element of the given list of views.

    largeSpaceApart :: [DisplayView] -> [DisplayView]

Inserts a ten-pixel wide space between each element of the given list of views.



Grabbing

By default, input is directed to the component whose view is under the tracking 
symbol.  Ie, clicking input is directed to whatever is clicked.  Sometimes, it is 
desirable to explicitly grab inputs when some condition is met.  This grabbing is 
specified in the view language.  For example, the typical implementation for a 
button is:

    view =
        if isDepressed then
            GrabbingMouseButton (Box (Text myId))
        else
            Box (Text myId)
        end if.

Here, whenever the button is depressed, all next mouse button inputs will be sent to 
the button until it is released.  This means that if the user clicks on a button and 
then moves the mouse before releasing, the button “up” input will still be sent to 
the button.

The grabbing directives are:

    GrabbingMouseButton :: DisplayView -> DisplayView

Grabs subsequent mouse button inputs.

    GrabbingMouseMotion :: DisplayView -> DisplayView

Grabs subsequent mouse motion and relative motion inputs.

    GrabbingMouse :: DisplayView -> DisplayView

Grabs subsequent mouse button, motion and relative motion inputs.  This directive 
has the same effect as GrabbingMouseButton  and GrabbingMouseMotion  
combined.

    GrabbingKeyboard :: DisplayView -> DisplayView

Grabs subsequent keyboard inputs.

The grabbing directives are stack-based:  if a component grabs a resource currently 
belonging to another component, it takes the resource.  When the second 

component releases the resource, its ownership reverts to the first.



User Inputs

Clock supports a number of predefined user inputs to allow access to events 
generated by the mouse and keyboard input devices.  To access these inputs, an 
update function must be placed in the event handler taking the input.

Mouse Button

By default, mouse button input is directed to the nearest enclosing event handler 
over which the mouse is clicked.

    mouseButton :: String -> UpdateEvent

Registers that a mouse click has been performed over the view of the event handler 
taking the mouseButton  input.  The string parameter can be “Down” , indicating the 
mouse button has been depressed, or “Up” , indicating the mouse button has been 
released.  On multi-button mice, all buttons generate the mouseButton  input; there 
is no way of distinguishing which button was depressed. 

Mouse Motion

By default, mouse motion events are directed to the event handler whose view 
most tightly encloses the postion at which the mouse motion occurs.  The 
granualarity of mouse motion events is dependent on the windowing system; in 
most systems, moving the mouse rapidly causes motion events to be dropped, 
possible also leading to enter  events being missed.

    enter :: UpdateEvent

Indicates the mouse has entered over the view of the event handler taking this 
update.

    leave :: UpdateEvent

Indicates that mouse was over the view of the event handler taking this update, but 
now is not.

    motion (Num,Num) :: UpdateEvent

Indicates that mouse is now located at the given coordinate within the view of the 
event handler taking the update.  The coordinate system of this event handler is 
used, so the coordinate (0,0)  indicates the lower-left corner of the view.



    relMotion (Num,Num) :: UpdateEvent

Indicates that the mouse has moved by the given number of pixels in the X and Y 
direction since the last relMotion  update was given.

Keyboard

Keyboard input is directed to the last event handler to grab keyboard input.   If 
nobody has grabbed the keyboard, inputs are discarded.

    key :: Num -> UpdateEvent

Indicates that a key has been depressed.  The parameter represents the ordinal of the 
key clicked.

 
    arrowKey :: String -> UpdateEvent

Indicates that one of the arrow keys has been depressed.  The string parameter 
indicates which arrow key, and can have values of “Left” , “Right” , “Up”  or 
“Down” .

    editKey :: String -> UpdateEvent

Indicates that a special key has been depressed.  The string parameter indicates 
which key was depressed, and can have values of “Tab” , “Backspace” , “Delete” , 
“Escape”  or “Return” .

    functionKey :: String -> UpdateEvent

Indicates that a function key has been depressed.  The string parameter indicates 
which function key, and can have values of “1”  through “35” .



Predefined Updates

The following updates are predefined in the language.  There are currently no 
predefined requests.

All or Nothing

    all :: [UpdateEvent] -> UpdateEvent

In order to permit update functions to return more than one update, the all  update 
groups a list of updates into a single update.  All updates are performed, in no 
specified order.

    noUpdate :: UpdateEvent

The update noUpdate indicates that no update is to be performed.  This is 
equivalent to all [] .



Known Problems

Clock is still an experimental system, and has a number of known bugs and
shortcomings.  These will hopefully be resolved over time.

Layout

There is a known bug in the layout routine that sometimes causes views to be
allocated more space than they should.  The cases under which this occurs are hard
to describe precisely.  So far, only I have actually come up with an example that
triggers this error.

Type Checking

There is no type checker currently, so most type errors will result in “segmentation
violation” or “bus error” types of crashes.  Note that in functional languages, type
errors include type mismatches on operations, and providing too many or too few
parameters to functions or constructors.  Tracking down type errors is not actually
all that hard – use the trace option in cw to locate the component and function in
which the crash occurs, and use the ‘debug’ function to check that you are indeed
getting the values you expect at various points.

Request Caching

The incremental view update mechanism uses a complex algorithm based on
caching request values and triggering view recomputation when these values
change.  There are no known bugs in this caching/triggering code, but I wouldn’t be
surprised if there are still some lurking there.   If you find that views are not being
updated when they should, this may be the problem; please let me know of any such
cases.

2.5 D

Currently, 2.5 D layout is supported through an awkward and inefficient
mechanism.  This is due for a total overhaul.  In the current system, if you try
placing objects in a layered manner, you may get unpredictable results.

Output

There is no way in Clock of drawing circles, elipses, or splines.



Reals

Clock currently provides no support for real numbers.  The Num type is currently
integer.

External Interface

There is currently no way of accessing code written in other languages or the
environment in general.

Loading Libraries

Currently, when you load a library in ClockWorks, you get access to the class
definitions in the library, but not to the actual code of the library components.  If you
run programs using library components, you will get error messages of the form:

    Clint (Fatal Error):  Cannot open '/cs/u/graham/EClock/Programs/temp/Depressed'

To create links to the code of the library components, you must:

• cd to the project directory
• perform the command:   cplib  libraryName

For example, if the project is called ‘MyProject’, and the library name is ‘Buttons’,
then type:

• cd $CLOCKSYS/Programs/MyProject
• cplib Buttons

It is often convenient to include $CLOCKSYS/Programs  in your cdpath.


