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ABSTRACT

The computation of the optical flow using least squares needs a weighting scheme to
ensure that every constraint is taken into account with weight proportional to its reli-
ability and the closely correlated constraints are not considered many times. This
paper presents a method that introduces a simple weighting scheme using a convolu-
tion to the least squares minimization. We show how this technique can be applied in
conjunction with several other techniques in the literature and we apply the tech-
nique for the case of non uniform motion when filters with large support are used (as
is the case of hierarchical flow estimation). The method is tested on real and syn-
thetic images.
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1. Intr oduction

The estimation of the flow field of a moving image is an intermediate step for the struc-

ture from motion problem. Although it has been shown that in many cases the optic flow is an

overkill and we can do scene recovery without it [14, 13], any advances in the area of flow

estimation will have direct consequences on most of the field of structure from motion. This is

the reason that there so much work has been done and so many approaches proposed [7, 4, 9,

10, 11, 15] for the general solution of the problem. There are also several approaches to the

problem under adverse conditions like transparency [8, 3].

A wide class of approaches to the flow problem follows the following pattern. First a set

of constraints is established based on first principles or intuition. Then these constraints are

expressed as a least squares partial differential equation and the equation is then solved.

While the problem is underconstrained in its basic form, with additional constraints derived

from the application domain of the algorithm becomes overconstrained. Quite often the equa-

tions are weighted according to the reliability of each constraint for each pixel. Such a weight-

ing silently assumes that the residual error of the equations is uncorrelated among neighboring

pixels.

In this paper a weighting scheme is proposed to take care of the interdependence of the

constraints among neighboring pixels. The technique works by selectively attenuating the

noisier parts of the spectrum of the residual.We show how this method can be integrated

with other methods from the literature and we design filters that take care of the interdepen-

dence that arises when the flow is non uniform and filtering with wide support is being used

(as when we filter to get a pyramid of resolutions).



The organization of the rest of the paper is as follows. Sections 2 and 3 give the motiva-

tion for this approach by describing two cases where the residual is not independent among

pixels. Section 4 describes the technique in its basic form. Section 5 shows how this method

can be combined with several others. Section 6 deals with the selection of filters that mini-

mize the effects of spectral warping. Section 7 contains experimental results with real and

synthetic images. Section 8 concludes the paper.

2. SpectrumWarping

The flow of a moving image is hardly ever uniform. There are always regions that rotate,

dilate, sheer, move uniformly or just don’t move. There are also discontinuities in the flow

field where the flow cannot be meaningfully defined in which case the quality of an algorithm

can be judged only by how reliably it detects discontinuities and how close to the discontinu-

ity it can estimate the flow.

Uniform motion and no motion are fairly easy to handle. The problems start with non

uniform motion. So let’s examine it more closely.

The non uniform motion in a small region can be considered as a superposition of a uni-

form flow, a rotation, a dilation (may be different dilation along the two axes) and a sheer. The

Fourier transform of such an image is transformed itself by this flow. Due to the uniform

motion it undergoes a phase shift. Due to rotation, rotates. And due to dilation, contracts (neg-

ative dilation).

The problems start when we filter the image (the camera itself filters the image with a

lowpass filter otherwise would see infinite detail, or have infinite aliasing). Assume we filter



the image with a sharp lowpass filter (Fig. 2.1). Further assume that the image contains a

cosine which is just below the cutoff f requency. Then the cosine is still visible after the filter-

ing. But if the image contracts then in a subsequent frame the cosine will move beyond the

cutoff f requency and it will become invisible. Any flow algorithm will have real problems

with this. The residual error in the optical flow equation will be substantial.

But this is not the end of the world. This residual is mainly composed of frequencies

around the cutoff. The assumption behind the idea of minimizing the sum of the squares of the

residual is that the spectrum of the residual is flat i.e. white noise. When a particular area of

the spectrum is more “noisy” than the others then the neighboring points are statistically
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Figure 2.1 The figure shows the image of a cosine. The image shrunk as it moved, and the co-
sine went beyond the cutoff point of the filter and was attenuated.



correlated.

A flow algorithm that uses straight least squares will try to reduce this residual uni-

formly. It would be better though, to give less weight to the components of the spectrum that

are more noisy. To achieve this we convolve the residual with a filter that cuts the suspicious

frequencies around the cutoff point of the filter.

3. Changinglighting conditions

A common problem with the gradient based flow algorithms is the changing lighting

conditions. They can affect the algorithm seriously. One way out is to use the logarithm of

the intensity, in which case the lighting conditions become an additive component instead of

multiplicative. In most cases the lighting conditions vary slowly in the scene (specularities are

not among them), so we can use a filter to cut off all the very low frequencies. But we run into

a problem similar to the above. The frequency components around the cutoff might cross the

cutoff as the image changes.

The solution is to look at the residual of the optic flow equation. If the residual at a cer-

tain point has a non zero value then if this is due to the lighting conditions then the point next

to it will exhibit a very similar residual. In other words the residuals at neighboring points are

again correlated. The solution is now to filter the residual to cut the very low frequencies.

4. SpectrumSelective Flow Estimation

As in most flow estimation algorithms we try to minimize a measure of the residual of

the optic flow equation:



(4.1)Ierr = I xu + I yv + I t

This residualIerr is a random image (or two dimensional random process) every pixel of

which is not statistically independent of the rest. If we assume that it is a stationary process

though, then there is a templateW such thatI serr = W× Ierr is white noise. In other words,

every pixel of the process is a random variable independent of the rest and all of them identi-

cally distributed. The× is the convolution operator. We try to find au and av that minimize

the Sum of the Squared Errors (SSE).

SSE=
i , j
Σ I 2

serr[i , j ] =
i , j
Σ 


(I xu + I yv + I t)×W



2

i , j
=

i , j
Σ 


(I xu)×W + (I yv)×W + I t ×W



2

i , j

SSEis a quadratic function in the components of the flow fieldu and v. To get the linear

equations we take the derivatives with respect to the unknowns.

ρu[kl] =
∂SSE

∂u[k, l ]
, ρv[kl] =

∂SSE

∂v[k, l ]

First we compute:

∂

(I xu)×W

i , j

∂u[k, l ]
=

∂
m, n
Σ I x[i − m, j − n]u[i − m, j − n]W[m, n]

∂u[k, l ]
=

m, n
Σ I x[i − m, j − n]δ [i − m − k, j − n − l ]W[m, n] = I x[k, l ]W[i − k, j − l ]

where
∂u[r , s]

∂u[k, l ]
= δ [r − k, s − l ] becauseu and v are the independent variables of the system

andδ [. , . ] which is 1 at [0, 0] and 0 everywhere else, is Kronecker’s delta. Thesummation

was eliminated becauseδ is non-zero only form= i − k and n = j − l . In a similar way we

obtain the derivative of the other term. So:



ρu =
∂SSE

∂u[k, l ]
=

∂
∂u[k, l ] i , j

Σ 

(I xu)×W + (I yv)×W + I t ×W



2

i , j
=

2
i , j
Σ I x[k, l ]W[i − k, j − l ] I serr[i , j ] = 2I x[k, l ][W+×I serr]kl = 2I x[k, l ]


W+×W× Ierr


kl

=

2I x[k, l ][ Rw× Ierr ]kl

where Rw is the autocorrelation of W and+× is the correlation operator. Rw is the spectrum

selection filter.

Thus

(4.2)
ρu = I x Rw× Ierr

ρv = I y Rw× Ierr

where the factor 2 was dropped because it is a common multiplier to everything. These are

the two linear equations that we have to solve to find the flow. Simple inspection reveals that

they are not independent equations. In the next section we show how to get more constraints

considering various scales and stabilization factors like smoothness [7]. The new constraints

will be added linearly on these, so the above equations will serve as the core of the system of

equations.

Whether we use Jacobi iteration or Conjugate Gradient we need a preconditioner. The

most convenient choice would be the diagonal or the 2× 2 blocks on the diagonal. If we rep-

resent the matrix of (4.2) as an explicit matrix then getting these blocks would be straightfor-

ward. Butwe prefer to keep the equations in an implicit form so that computations are faster

and the storage minimal. To get the diagonal elements then we use differentiation:



B1 =
∂ρu[k, l ]

∂u[k, l ]
=

∂
∂u[k, l ]

(I x[k, l ](Rw×(I xu))) = I 2
x[k, l ]Rw[0, 0]

B2 =
∂ρu[k, l ]

∂v[k, l ]
=

∂
∂v[k, l ]



I x[k, l ](Rw×(I yu))


= I x[k, l ] I y[k, l ]Rw[0, 0]

B3 =
∂ρv[k, l ]

∂u[k, l ]
= B2

B4 =
∂ρv[k, l ]

∂v[k, l ]
=

∂
∂v[k, l ]



I y[k, l ](Rw×(I yv))


= I 2

y[k, l ]Rw[0, 0]

5. Combiningwith other techniques

One advantage of the spectrum selective technique is that it is almost orthogonal to sev-

eral other techniques used in flow estimation. With only a small penalty on the CPU time we

can combine a several of them, or at least all the ones that do not work opposite to each other.

In this section we present versions of the spectrum selective technique combined with hierar-

chical methods [1], window based methods [9] etc. In the experiments section we show how

all these can be combined together and discuss the results.

5.1. Secondorder iteration

The optic flow equation is a first order approximation of the optic flow constraint, which

in most cases is not enough. There are two alternatives: one is to include higher order terms,

which will clearly complicate the already difficult equations and the other is to use a guess for

the flow (for the first iteration the guess is zero) to get a better estimate for the time derivative.

This second approach is equivalent to applying an image warp based on the current estimate

of the flow, but we prefer to avoid the expensive and sometimes unstable operation of warp-

ing.



Starting from the constancy of the intensity constraint:

I (x, y, t) = I (x + ∆x + ∆∆x, y + ∆y + ∆∆y, t + ∆t)

where∆x, ∆y are the guess for the displacement and∆∆x, ∆∆y are unknowns. Then

I (x, y, t) = I (x, y, t) + I x(x, y, t)∆x + I x(x, y, t)∆∆x +

I y(x, y, t)∆y + I y(x, y, t)∆∆y + I t(x, y, t)∆t + O2

I (x, y, t) = I (x + ∆x, y + ∆y, t + ∆t) + I x(x, y, t)∆∆x + I y(x, y, t)∆∆y + O2

by rearranging and ignoring the higher order terms we get:

I x(x, y, t)∆∆x + I y(x, y, t)∆∆y + (I (x + ∆x, y + ∆y, t + ∆t) − I (x, y, t)) = 0

To this we add:

I x(x, y, t)∆x + I y(x, y, t)∆y − I x(x, y, t)∆x − I y(x, y, t)∆y = 0

and we get finally:

I xu + I yv = − I b
t

whereu =
∆∆x + ∆x

∆t
andv =

∆∆y + ∆y

∆t
and the better estimate of the time derivativeI b

t is:

(I (x + ∆x, y + ∆y, t + ∆t) − I (x, y, t)) − I x(x, y, t)∆x − I y(x, y, t)∆y

∆t

If we restrict ourselves to guesses that have integer values then the cost of computation is

small.

5.2. Hierarchical and window based approach

Although the window based approach dates back to early 80’s [9], it outperforms many

modern techniques in efficiency and stability [2]. It is definitely worth combining this method

with the spectrum selective techniques.



The hierarchical approaches on the other hand are of two kinds: the first kind uses the

result of the coarse levels as a guess for the finer levels [1] and the other fuses the equations

from all the levels in one set of equations with different weights which are modified as the

iteration progresses. This second approach is more general than the first, and we are going to

use this as our model. Another reason, though that we choose this, is that it leads to more ele-

gant and efficient solutions when combined with spectrum selective techniques and that it

allows for the design of better spectrum selection filters.

For the rest of the section we show that the window based methods are in many ways

similar to hierarchical methods of the second kind.

If we assume that the flow is, more or less, constant within a windoww† then

Ierr [m, n] = I x[m, n]u[i , j ] + I y[m, n]v[i , j ] + I t [m, n]

should be very small everywhere around [i , j ]. So

err[i , j ] =
m, n
Σ w[i − m, j − n] I 2

err =

m, n
Σ w[i − m, j − n]( I x[m, n]u[i , j ] + I y[m, n]v[i , j ] + I t [m, n])2

and then we minimize the sum of theerr’s as done in [9, 5, 6]. We find au and av that mini-

mize the weighted sum of squares of the optic flow equations in a small neighborhood.

Alternatively, we can minimize the sum of squares of linear combinations of the optic

flow equations in this neighborhood.

†Typically a window is defined as a box or a Gaussian function. In this case the window is the support of the function.



err[i , j ] =
q
Σ



m, n
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



2
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
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
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

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

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Σ I y[m, n]gq[i − m, j − n]




v[i , j ] +



m, n
Σ I t [m, n]gq[i − m, j − n]









2

wheregq are the weights of the various linear combinations. In the case of ordinary linear

systems, nothing changes if we replace the equations with their linear combinations (provided

that these linear combinations do not form a singular transformation). But in the case of least

squares, doing this we disturb the relative weights of the equations. The effect is the same as

introducing a weighting factor. So the two methods are the same modulo this weighting factor.

If need arises for a non arbitrary weight factor, it can always be added later.

It is generally accepted from the above that a good choice for the templatesgq is a set of

lowpass filters of different bandwidth that form a pyramid. An alternative is to havegq’s to be

shift operators. A shift operator is a template that is zero except for one pixel (other than the

[0, 0]). Convolution with such an operator is equivalent to shifting. Then the two approaches

can be made exactly the same.

As mentioned above, the typical hierarchical method [1] works by starting from the

coarsest resolution to the finer, using at each level the result of the previous level as a guess.

One can start by combining a few of the coarsest scales in one equation and moving to the

finer by combining finer and finer scales. An even more general scenario is to combine the

scales with different weights. At the beginning the coarsest levels have the highest weights

and as the computation advances the finer levels get more weight.



If we define

I
(gq)
x =

m, n
Σ I x[m, n]gq[i − m, j − n]

I
(gq)
y =

m, n
Σ I y[m, n]gq[i − m, j − n]

I
(gq)
t =

m, n
Σ I t [m, n]gq[i − m, j − n]

then

err[i , j ] =
q
Σ





I
(gq)
err [i , j ]





2

where

I
(gq)
err [i , j ] = I

(gq)
x [i , j ]u[i , j ] + I

(gq)
y [i , j ]v[i , j ] + I

(gq)
t [i , j ]

We can sum up all theerr[i , j ]’s and try to minimize the sum. But using the same line of

thought as before we can attempt to weight parts of the spectrum ofI
(gq)
err differently by using a

filter W with autocorrelationRw. And of course it makes sense to choose different filtersWq

for differentgq’s. So we finally get the sum of square errors

SSE=
q
Σ

i , j
Σ 


Wq× I

(gq)
err


i , j

2

and from this we get as before

ρu =
q
Σ I

(gq)
x Rwq× I

(gq)
err

ρv =
q
Σ I

(gq)
y Rwq× I

(gq)
err

and the preconditioners are



B1 =
q
Σ I

(gq)
x

2
[k, l ]Rwq[0, 0]

B2 =
q
Σ I

(gq)
x [k, l ] I

(gq)
y [k, l ]Rwq[0, 0]

B3 = B2

B4 =
q
Σ I

(gq)
y

2
[k, l ]Rwq[0, 0]

Simple inspection shows that unless the filtersgq and Rwq are poorly chosen, the equations

are independent. The determinantB2
1 − B2

2 can be used as confidence measure.

5.3. Choosingfilters

We have to select two sets of filters. Thegq’s and the Rwq’s where q = 1. .qmax. As

explained above, if an image dilates or rotates then its Fourier transform undergoes similar

transformations. If we choose thegq’s to have a Fourier transform that is not flat, then as the
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Figure 5.1 The amplitude of the Fourier transform of theg andw filters. The filterw should
cut the frequencies where the response ofg changes.



frequencies that compose the image move then they might go from a location of high response

in the spectrum to a location of low response. This would create a considerable residual error.

It would be best if the spectrum of thegq’s is constantα in a region and zero outside the

region. Then a good matching filterRwq would be one that is zero in the area around the bor-

der of the region. This way frequencies that may cross the border will be cut off.

6. Experiments

The algorithm was implemented on MediaMath [12] and tested on real and synthetic

images. Jacobi iteration was used as a linear system solver. Two levels of resolution were used

and a smoothing term withλ = 2. 0.

6.1. Syntheticimages

Two sets of synthetic images were used. One consisted of six blobs that were moving

independently. The other of two cosines in polar coordinates that were rotating.

Figure 6.1 The 64× 64 synthetic image of the blobs.



Figure 6.1 The optical flow of the moving blobs.

Figure 6.1 The 64× 64 synthetic image of the polar cosines.



Figure 6.1 The flow of the polar cosines.

6.2. Realimages

The real images used were the “NASA sequence” by Banavar Sridar that was made

available for the Workshop on Motion 1991. The other image was provided by David Fleet

and Leif Haglund.



Figure 6.1 The first and third images of the NASA sequense shrunk and trimmed to
128× 128.



Figure 6.1 The optical flow of the above sequence.



Figure 6.1 The diverging tree sequense trimmed to 128× 128. Theseare the 12th and
15th images from the sequense.



Figure 6.1 The optical flow of the diverging tree sequense.

7. Conclusions

The value of proper weighting is hard to overestimate. In this paper we presented a

method that can incorporate a weighting to counter the interdependance among pixels. This

technique can be applied in conjunction with several other techniques.

It is obvious that the attenuation of the “bad” areas of the spectrum cannot done by sim-

ply prefiltering the image. The prefiltering would simply strengthen the effects of spectrum

warping.



The method can be improved by studying the exact quantitative nature of the correlation

the pixels to design filters that are accurately tuned for flow estimation.
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