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ABSTRACT

A general method for optical flow computation is presented that uses an affine model
for the flow field. The method uses a hierarchy of filters and it is stable. It can work
with or without stabilizers like smoothness terms. An extreme variety of filters can
be used but we found the Gabor filters to be particularly good. Care has been taken to
address the issue of the differentiation and preconditioning. The method was tested
on real and synthetic images and compared with other methods. The performance
was excellent for images with or without discontinuities, large or subpixel flow and
rotating or dilating image sequences.
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1. Intr oduction

The progress in the computation of optic flow during the past 15 years has been slow but

steady. Up to now several algorithms have been proposed each one with strengths and weak-

nesses. There are several ways these all these algorithms can be classified. One way is to cate-

gorize them in gradient based (Lucas and Kanade [LUCA-84], Horn and Schunck [HORN-81],

Nagel [NAGE-83], etc), region matching (Anandan [ANAN-89], Singh [SING-91], etc) and spa-

tiotemporal filtering techniques (Heeger [HEEG-87], Fleet and Jepson [FLEE-90, FLEE-91,

FLEE-92] and Jenkin and Jepson [JENK-90]). Another is to classify them in global variational

methods (Horn and Schunck [HORN-81], Nagel [NAGE-83]) that are based on global minimiza-

tion of some continuous functional over the image and local matching (Fleet and Jepson

[FLEE-90], Lucas and Kanade [LUCA-84]) that work on a pixel or a small region to match

intensity, phase etc. There are several other ways an algorithm can be characterized like hier-

archical, regularization, phase based, etc, but the above are more relevant to our discussion.

The computation of optic flow presents several difficulties and this paper addresses some

of the most important ones. One of the most discussed is the problem of the derivatives. It is

well known that the numerical differentiation is a hard problem. In [KARA-91] where several

differentiation schemes were analyzed, was shown that all methods (finite differences, poly-

nomial fitting etc) fail for functions whose upper frequencies of the spectrum are very close to

the Nyquist limit. All gradient based methods suffer from this because they depend on deriva-

tives. In [BARR-93] a substantial improvement was reported when the finite differencing was

substituted by more accurate derivatives. In later section we describe techniques that drasti-

cally improve the differentiation.



Another difficulty is related to the non uniformity of the flow. Most methods explicitly or

silently assume that the flow can be considered uniform or smooth in every small region

which is not true for realistic images. This affects any algorithm that matches regions without

accounting for deformation [ANAN-89], and any algorithm that uses prefiltering (practically

all). In a later section we analyze the phenomenon in detail but the basic intuition is this: The

optic flow field is hardly ever uniform but in a small area it can be considered as a superposi-

tion of uniform motion and rotation, dilation and sheer, which is commonly referred to as

affine deformation. The local Fourier spectrum of an area that undergoes rotation or dilation

is transformed in a similar way. The dilation leads to shrinkage and the rotation to rotation. So

if the image is filtered, then, as the different components of the spectrum of the image move

their response will change as they hit different areas of the spectrum of the filter. This is

shown in Fig. 1.1 where a cosine is shown to shrink. In the one frame the cosine is not fil-

tered out, while in the next frame, where it shrunk and its frequency became higher, it was fil-

tered out. This phenomenon appears whenever the flow is described by a first degree polyno-

mial (affine flow) and we call it first order spectral instability. One solution to this is to isolate

regions of the image where this phenomenon is dominant [FLEE-91], or isolate the regions of

the spectrum that this phenomenon is generated [SPET-94a] or use an affine flow model like the

one we describe in this paper. The latest approach has the advantage that it does not reject the

information simply because it cannot use it, but it takes it into account.

Of course, one can have higher order spectral instabilities, when the variation of the flow

is so high that it cannot be described meaningfully in a region of certain size without second

order terms. In this case the local frequency of a cosine will change not only in time but in
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Figure 1.1 The figure shows the image of a cosine. The image shrunk as it moved, and the co-
sine went beyond the cutoff point of the filter and was attenuated.

space.

The third kind of difficulty, is related to the temporal alias. It means that the flow cannot

be more than one pixel otherwise it is hard to take time derivatives. This is dealt with very

successfully by methods that employ a hierarchical scheme [ANAN-89] or use several scales at

the same time [JENK-90, XU-87, OLIE-93]. The method proposed here can both employ several

scales in a single least squares minimization and use the result of the computation on a coarse

version of the image as a guess to the next finer level.

The use of affine flow was to a large degree motivated by biological evidence [VERR-92,

WERK-90] to model electrophysiological recordings and other observations. It has also been
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used to devise computational algorithms for flow estimation, e.g [VERR-87, OLIE-93] where the

most common approach is to estimate both the flow and its derivatives as independent

unknowns which are later used either directly or after interpolation. In this paper the formula-

tion allows one to estimate the derivatives and the flow as interdependent parameters to get

one consistent solution. A large variety of filters can be employed but Gabor filters seem to

have advantages like more accurate computation of derivatives and better localization in the

space and the frequency domain which results in better handling of discontinuities (the strip

around the discontinuity that the algorithm is inaccurate is smaller).

The formulation that combines the estimation of the flow and its derivatives has several

advantages. One is that the number of unknowns are still virtually two per pixel (ignoring the

boundaries) because the derivatives are directly related to the flow. Another is that the deriva-

tives are consistent with the flow and no extra step is needed to recover a single flow incorpo-

rating the information of the derivatives. A third is that the filters used do not have be circu-

larly symmetric to reduce the order of the computation and last and most important is that the

resulting equation is just a second order partial differential equation completely isomorphic

(but with very different coefficients of course) to the ones derived by regularization methods

like [NAGE-83].

The organization of the rest of the paper is as follows. Sec. 2 describes the classic

approach using a locally constant model for the flow and the problems associated with it.Sec.

3 describes the affine approach and how it solves the problem of first order instabilities.Sec.

4 describes the derivation of the Euler equations and the problems with differentiation and

how these problems are ameliorated with the use of complex Gabor filters. Other filters are
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also discussed. Sec. 5 describes experiments with real and synthetic images and final section

summarizes the advantages of this approach and presents some concluding remarks.

2. Constantmodel of optic flow

Most flow estimation algorithms try to minimize a measure of the residual of the optic

flow equation:

(2.1)Ierr = I xu + I yv + I t

where I is the image intensity, the subscriptsx, y and t denote the corresponding derivatives

andu andv are the two components of the flow field we are trying to find. The most common

measure of the residual is the Sum of Squared Errors (SSE).

But Eq. (2.1) has a few shortcomings that are well documented in the literature, like the

fact that it is one equation but has two unknowns, the dependence on derivatives etc. Among

the several ideas published so far, we choose the hierarchical approach [ANAN-89] and the

integration of the equations in a small region [LUCA-84] that have been proven very good

experimentally [BARR-93] and as we show immediately they have very nice generalizations.

Since we assume that the flow does not change much in a small region aroundx0, y0 we

can write the optic flow equation as

(2.2)Ierr(x0, y0; x, y) = I x(x, y)u(x0, y0) + I y(x, y)v(x0, y0) + I t(x, y)

and we seek a solution foru andv that makes the residualIerr as small as possible in a region

around (x0, y0). If we minimize the sum of the squares ofIerr in such a region then we get a

method similar to Lucas and Kanade. But we try something more general. We minimize the

sum of squares of linear combinations ofIerr in Eq. (2.2) in this neighborhood.
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wheregq are the weights of the various linear combinations. So the sum of squares can be

written

(2.3)SSE(x0, y0) =
q
Σ



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I (g)
x u + I (g)

y v + I (g)
t





2

where the superscript (g) denotes convolution with the filtergq.

The choice of filtersgq, determines the behavior of the algorithm. If the filtersgq are

successively narrower lowpass filters forq = 1. .qmax then we get a hierarchical algorithm. If

the templates of the filters are shift templates, eg. they are zero everywhere except for one

pixel that is one, so that convolution with them actually shifts the image, then we get Lucas

and Kanade. Another choice is Gabor filters of various orientations and resolutions and if we

use the phase of the Gabor filters instead, we get a variant of the phase based algorithms

[FLEE-84, JENK-90].

The above analysis assumes thatu andv do not vary much in a small region. This is a

restrictive assumption in that requires the spectrum of the flow to be confined around the zero

frequency. The obvious solution to avoid filtering does not help, because the filtering is
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introduced anyway as a noise reduction or image conditioning preprocessing step.To get a

better solution we have to see what happens if we apply (2.3) on an image that is filtered with

a filter gq that has responseGq(ω ). To do this, we follow one sinusoidal component of the

image through time restricting ourselves to one dimension

I (x, t = 0)= α ejω x

whereα is the corresponding Fourier coefficient. We assume that an affine model for motion

is enough for a small region, so the image intensity becomes

I (x, t) = α ej (ω (t)x + φ (t))

where the phase shiftφ is due to the uniform component of the motion andω now depends on

time to accommodate the shrinkage and dilation which is due to the non uniform component

of the flow. The filtered version of the image is

I (g)(x, t) = α Gq(ω (t))ej (ω (t)x + φ (t))

It is easy to verify that the optic flow equation on the unfiltered version of the image gives us

(2.4)I xdx+ I t dt = 0

whereI x = jω (t)I and I t = j (ω ′(t)x + φ ′(t))I and primes denote derivatives of functions of one

argument. Theflow of the unfiltered version of the image is essentially what we expect. But

if we replace the intensity with its filtered version we don’t get the same results. The deriva-

tives of the filtered version of the image are

I (g)
x = jω (t) Gq(ω (t)) I

I (g)
t = Gq′(ω (t)) ω ′(t) I + jG(ω (t)) 


ω ′(t)x + jφ ′(t)


I

where primed symbols indicate derivative of one argument functions. If we plug them in the

optic flow equation (2.4) we get
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(2.6)I (g)
x u + I (g)

t = Gq′(ω (t))ω ′(t)I

which in general is not zero and it is the cause of first order instabilities. As noticed in

[FLEE-91] the effects of the instabilities were more prominent when the amplitude of the

derivatives ofI (g) was crossing zero in which case the value of the r.h.s. of (2.6) dominates.

In any case the size of the filter is limited by the size of the area that we can consider as hav-

ing uniform motion.

3. Affine motion

But we can relax the restriction considerably, by using the assumption that the flow can

be, more or less, described by an affine equation in a small neighborhood. This basic idea has

been used in various forms in the past [BLAC-93, MEYE-92, CAMP-90]. The flow then takes the

form

u(x, y) = u(x0, y0) + ux(x0, y0) ⋅ (x − x0) + uy(x0, y0) ⋅ (y − y0)

v(x, y) = v(x0, y0) + vx(x0, y0) ⋅ (x − x0) + vy(x0, y0) ⋅ (y − y0)

This will allow the size of the filter (or the variation of the flow within a given area) to be con-

siderably larger. Then

Ierr(x0, y0; x, y) = I x(x, y)u(x0, y0) + I x(x, y)ux(x0, y0) ⋅ (x − x0) + I x(x, y)uy(x0, y0) ⋅ (y − y0) +

I y(x, y)v(x0, y0) + I y(x, y)vx(x0, y0) ⋅ (x − x0) + I y(x, y)vy(x0, y0) ⋅ (y − y0) +

I t(x, y)

We now take a linear combination over a small region defined by functiongq to get the affine

residual
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(3.3)

I aerr(x0, y0) =
∞

−∞
∫

∞

−∞
∫ Ierr(x0, y0; x, y)gq(x − x0, y − y0) dx dy=

I (g)
x (x0, y0)u(x0, y0) + I (g)

y (x0, y0)v(x0, y0) +

I (gx)
x (x0, y0)ux(x0, y0) + I (gx)

y (x0, y0)vx(x0, y0) +

I (gy)
x (x0, y0)uy(x0, y0) + I (gy)

y (x0, y0)vy(x0, y0) +

I (g)
t (x0, y0)

where the superscripts mean convolution with the corresponding filter. The filter gqx comes

from terms like

I (gx)
x (x0, y0) =

∞

−∞
∫

∞

−∞
∫ I x(x, y) ⋅ (x − x0) ⋅ gq(x − x0, y − y0) dx dy

Then the sum of squared absolute errors is

SSE=
q
Σ

∞

−∞
∫

∞

−∞
∫ (I aerr)

2 =
q
Σ

∞

−∞
∫

∞

−∞
∫







I (g)

x u + I (g)
y v + I (gx)

x ux + I (gx)
y vx + I (gy)

x uy + I (gy)
y vy + I (g)

t






2

We used absolute values because the filters can be complex valued, like Gabor filters.All we

have to do now is minimizeSSEfor all u’s and v’s. The terms likeI (gx)
x are convolutions of

the derivative of the image with respect tox with the templates likegqx. The Fourier trans-

form of gqx is

(3.4)F

gqx


= j

∂Gq

∂ω x

where j is the imaginary unit andGq is the Fourier transform ofgq.

We introduce the first derivative of the flow to use the affine model in an analysis similar

to the one in the last section.
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ux(x = 0, t) = −
ω ′(t)
ω (t)

becauseu(x, t) =
j (ω ′(t)x + φ ′(t))I

jω (t)I
. Then we try to find aβ such that

I (g)
x u + β I (g)

x ux + I (g)
t = 0

It is easy to see that

I (g)
x u + β I (g)

x ux + I (g)
t = − β jω (t)G(ω (t))I

ω ′(t)
ω (t)

+ G′(ω (t))ω ′(t)I

We can solve forβ and we get

β = j
G′(ω (t))

G(ω (t))

From Eq. (3.4) we can see that

β I (g)
x = jG′I x = I (gx)

x

So the affine model of Eq. (3.3) can deal with the first order instabilities.

4. Theminimization procedure

The objective now is to minimize the sum of squared errors of the affine optical flow

equation.

SSE=
q
Σ
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∫

∞

−∞
∫ (I aerr)
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q
Σ

∞

−∞
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−∞
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





I (g)

x u + I (g)
y v + I (gx)

x ux + I (gx)
y vx + I (gy)

x uy + I (gy)
y vy + I (g)

t






2

Using the standard techniques [HORN-86], we can get the Euler equations for this minimiza-

tion (we show it here for only one filter for simplicity)
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(4.1)

ρu = I (g)
x I *

aerr −
∂

∂x


I (gx)

x I *
aerr




−
∂

∂y


I (gy)

x I *
aerr




= 0

ρv = I (g)
y I *

aerr −
∂

∂x


I (gx)

y I *
aerr




−
∂

∂y


I (gy)

y I *
aerr




= 0

where the star superscript denotes complex conjugate.A common difficulty with such algo-

rithms is the computation of derivatives. It is well known that the derivatives amplify the

higher frequencies which are dominated by noise. But this is not the whole story. The deriva-

tives are numerically hard even with synthetic images where noise is not a problem. In

[KARA-91] is shown that the accuracy of the numerical differentiation depends on the method

used. If a two tap filter is used (finite differences) the result is accurate for the lower fre-

quency components of the signal (about one sixth of the spectrum) and less and less accurate

for higher frequencies. The accuracy can be increased using more expensive filters (more

taps). In effect using more taps one can increase the part of the spectrum that the computation

is accurate.

But using more expensive filters will not solve all the problems. The main difficulty is

introduced by terms like

∂
∂x



I (gx)

x I *
aerr




where we take the derivative of what is essentially the product of three signals:I (gx)
x is a signal

and I *
aerr is composed of sums of products of two signals: derivatives of the image and

derivatives of the flow components. The width of the spectrum of the product of two real sig-

nals is more or less the sum of the widths of the factors of the product. To see this consider an

image that is just a cosine cosω1x. If we multiply it by another image that is also a cosine

cosω2x, then the result will contain the cos(ω1 + ω2). So the spectrum of the result will be
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wider than each of the components.

If, on the other hand we use Gabor filters the bandwidth could even decrease.A signal

that has gone through convolution with a Gabor function

e
j (kx x + kyy)+

x2+y2

2σ 2

can be written in the following form

s1 = ej (kx x + kyy) f1(x, y)

where f1 is a bandlimited signal. If we multiply two signalss1s2
* we get f1 f2

* which with the

proper choice of the Gabor parameters can have a narrower band than the original signalss if

σ |k| ≥ 3.

4.1. Iterative solution of the linear system

The numerical analysis literature contains a wide variety of techniques to solve large lin-

ear systems iteratively, each one suitable for particular kinds of problems. For our experi-

ments we tried Jacobi iteration and Conjugate Gradient. We chose these two mainly because

of the reasonable convergence rate (Jacobi needs more iterations and some lowpass filtering

between iterations to avoid divergence), the simplicity of the algorithm and the fact that they

can be cast in terms of high level image operations that easier to port to SIMD hardware

(although Conjugate Gradient needs inner product computations that can be a problem on

some SIMD architectures).

Whether we use Jacobi or Conjugate Gradient we need a preconditioner e.g.a crude

approximation to the full linear system that is easy to solve.The easiest choice is the diagonal

of the system, which is typically used with the Jacobi iteration. Since we have two
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components in the flowu andv that are closely related, it is better to use the 2× 2 block diag-

onal.

The four elements of the 2× 2 block (which are of course images) are

B1[k, l ] =
∂ρu[k, l ]

∂u[k, l ]
= I (g)

x
2 + I (gy)

x
2
(|)d1

2 + I (gx)
x

2
(−)d1

2

B2[k, l ] =
∂ρu[k, l ]

∂v[k, l ]
= I (g)

x I (g)
y + I (gy)

x I (gy)
y (|)d1

2 + I (gx)
x I (gx)

y (−)d1
2

B3[k, l ] = B2[k, l ]

B4[k, l ] =
∂ρv[k, l ]

∂v[k, l ]
= I (g)

y
2 + I (gy)

y
2
(|)d1

2 + I (gx)
y

2
(−)d1

2

whered1 is derivative template†. The template is squared element by element and then con-

volved with the squared images. The (|) operator is convolution with an 1-D template oriented

vertically and (−) is horizontal convolution.But the result of this convolution may contain

high frequencies due to the squaring of both the images and the templates. In a sense this runs

contrary to the purpose of the introduction of the preconditioning, because instead of speeding

up the convergence, it amplifies the higher part of the spectrum where the instabilities seem to

come from, in a way independent of the underlying image. There is an easy remedy to this

though. Just convolve it with a low pass filter. This way the high frequency problems are

reduced and at the same time the preconditioner can play its role better trying to guess the

solution to the whole problem.The determinant of every 2× 2 block is a good confidence

measure for the estimate we get for this pixel. So we find the flow of which pixels to trust by

thresholdingB1 B4 − B2
2.

†If we want a noise suppressing first derivative template we can integrate the noise suppressing part of the template in the functiong
and use the generic1 × N derivative template
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4.2. Boundaryconditions and discontinuities

The solution of partial differential equations depends on the boundary conditions: a set

of equations that specify what happens at the border of the domain, in this case the flow field,

where our equations become meaningless. In fact in some cases, like the Lagrange equation

for electric fields, the solution depends almost exclusively on the boundary conditions. The

same observation should not apply to flow field estimation because the value of the flow in the

interior of the image should not depend on the choice of the boundary conditions although we

cannot expect the flow to be accurate near the border.

The boundary conditions we used in this implementation are “periodic”. This means that

the image is considered one of the tiles that cover the plane. Although other schemes are pos-

sible as well, the periodic boundary conditions are more convenient: just turn all the convolu-

tions to periodic and during the iterations we do not have to worry about the border equations.

The border is just a flow discontinuity.

One of the most difficult problems with optical flow if the one of discontinuities. The

flow is not defined on a discontinuity and in practice it cannot be computed reliably on a nar-

row strip around it. This algorithm has the advantage that the width of the strip can be

adjusted by changing theσ of the Gabor filter e.g. for aσ = 2. 0 the strip is at most 10 pixels

wide and in practice it is much narrower. The reason for this is explained in the experimental

analysis subsection.

In this version of the algorithm theσ remains constant for every particular filter through-

out the image (different filters have of course different σ ). In the future, we plan to apply

ideas in [SPET-94b] to vary the size of the Gabor based on the likelihood of a discontinuity.
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4.3. Stabilizationterms

As described so far, the algorithm does not contain any stabilization terms. The role of

these terms is to keep numerical instabilities in check, so that at regions of no information,

where the random noise dominates, the algorithm does not diverge. In a sense this is similar to

the regularization terms used extensively in computer vision but we use a very smallλ that

has no effects in regions of sufficient information, thus it introduces no smoothness. In the

experiments the effect of the stabilization terms was very small but since the cost of including

them is negligible we can use it. All we have to do is addλ to the terms involving second

derivatives of the flow. The rest is the same. Nagel type stabilization factors are slightly more

complicated but the cost is similar.

4.4. Coarseto fine estimation

The algorithm can tolerate large displacements even when the image contains high fre-

quency components. This is largely due to the ability of the Gabor filters to work on each

region of the spectrum separately. But for very high displacements one has to use a coarse to

fine strategy [ANAN-89]. An estimate of the flow is obtained by reducing the images and

applying the algorithm on them. Then we use the guess to deform the second image using two

dimensional quadratic or cubic interpolation (we did not find any appreciable difference

between the two) and the residual flow was computed from them. This combined with the use

of Gabor filters of multiple scales and orientations gave excellent results.
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5. Experiments

The experiments were done using both synthetic and real images. There were four sets of

images: the 6 dots, the rotating squares, the diverging tree, and the NASA sequence. The 6

dots move in various directions with anything between zero and 3 pixels. The image is not

very smooth so problems with derivatives are accentuated. The rotating squares is a set of

four squares containing textures with main frequencies varying from 4 pixels per cycle (half

the Nyquist limit) to 8 pixels per cycle. The second image was produced by rotating the first

image using cubic interpolation. The diverging tree sequence is a plane approaching the cam-

era so the flow field is diverging (images 10 and 19). The NASA sequence has a few objects

(a coke can, two pencils etc) on a table and the camera moves towards the center of the pic-

ture (images 1 and 5). The image flow is particularly small: between -1.5 and 1.5 pixels in

each direction, which make it a good exercise in subpixel motion estimation.

We applied three different algorithms to each of them: Lucas and Kanade, and two ver-

sions of the affine algorithm described in this paper one that uses shift filters and one that uses

Gabor filters. All the derivatives were calculated using 9 tap filters from [KARA-91]. The

Lucas and Kanade was run with region size 11× 11. The affine algorithm used Conjugate

Gradient iteration. The version with shift filters (which can be thought of as the affine version

of Lucas and Kanade) was run on a 11× 11 region. The Gabor version used 8 complex filters

arranged in two scales and four orientations, the scales differing by one octave, and the finest

scale had a wave numberk = 1. 5or about 4 pixels per cycle (the maximum value of the wave

number isk = π ).
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The results were presented in three formats: One is the classic needle map that offers a

general idea about the performance. The other is the deformable grid. The resulting optical

flow is applied to a square grid where one can see easily the various glitches that usually

result from some instability. The third is the inverse of the magnitude of the flow. This has the

highest resolution, the glitches are really visible but the direction information is lost. Darker

areas indicate large components of flow and bright areas small flow.

We compared our algorithm to Lucas and Kanade’s because this algorithm turned out to

be the second best in the comparisons in [BARR-93] with small difference from the best. More-

over it is simple and fast. We also experimented with our affine algorithm that uses simple

shift filters to see which part of the improvement comes from the use of affine flow and which

from the use of Gabor filters.

5.1. Experimentalcomparisons

The four images used in the experiments in this section are in Fig. 5.1.1

17



Figure 5.1.1The four image pairs used for the experiments.
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The results of applying the three algorithms to the “dots” sequence is in figures 5.1.2, 5.1.3,

5.1.4. The results for the “tree” and the “coke” sequence are in 5.1.5 to 5.1.10 and the

“squares” are in 5.1.11 to 5.1.13. It is obvious that the affine algorithm using Gabors performs

considerably better in all cases (no problems with derivatives, more stable output etc.)
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Figure 5.1.2 The result of the dots sequence with the Lucas and Kanade algorithm.
The problems with the derivatives are obvious.
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Figure 5.1.3 The result of the dots sequence with the shift filter affine algorithm.
Again the derivatives create difficulties.
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Figure 5.1.4 The result of the dots sequence with the Gabor filter affine algorithm.
The behaviour is much better, there are no artifacts due to the deriva-
tives.
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Figure 5.1.5 The result of the tree sequence with the Lucas and Kanade algorithm.
The solution exhibits instabilities due to the large displacement. The non
uniformity of motion makes the algorithm give useless results in large
part of the image. What is worse is that the confidence measure is quite
high in the parts of the image that the temporal aliasing creates bad arti-
facts.
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Figure 5.1.6The result of the tree sequence with the shift filter affine algorithm. Few-
er artifacts, but still unstable due to the difficulty with the derivatives.
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Figure 5.1.7 The result of the tree sequence with the Gabor filter affine algorithm.
The only artifacts are near the borders (we used periodic boundary con-
ditions). The rest is very close to the ideal.
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Figure 5.1.8The result of the NASA sequence with the Lucas and Kanade algorithm.
The results are acceptable, but the flow has large variations in places
that it should be smooth.
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Figure 5.1.9 The result of the NASA sequence with the shift filter affine algorithm.
The results are very good. The derivatives were no problem in this im-
age so the behaviour is good.
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Figure 5.1.10 The result of the NASA sequence with the Gabor filter affine algo-
rithm. Again the results are very good. The flow is much smoother in
the areas where it should be smooth like the background and the
sweater.
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Figure 5.1.11 The result of the squares sequence with the Lucas and Kanade algo-
rithm. The results are not acceptable even in near the center of rotation.
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Figure 5.1.12The result of the squares sequence with the shift filter affine algorithm.
Some problems with the derivatives and temporal aliasing become ob-
vious away from the center of rotation.
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Figure 5.1.13 The result of the squares sequence with the Gabor filter affine algo-
rithm. Again the results are very good even far away from the center of
rotation.
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Figure 5.1.14The ground truth for the squares.

5.2. Experimentalanalysis

While the performance of an algorithm depends mainly on the ideas that underlie the

design, the implementation details and the refinement of the various “constants” that are

unavoidable in every approach (theλ of Horn and Schunck, the size of the window of the

region matching algorithms etc) can be the determining factors in an experimental compari-

son. The choice for instance between central time derivatives and derivatives att = 0 can

make the difference between a random collection of vectors and a reasonable flow field. In

this subsection we offer a set of random observations on the performance of the algorithm

under various conditions.

The first is the inclusion of stabilizing terms. These terms have only a minor impact in

the performance but they can make the algorithm more resilient in case that the choice of set

of Gabor filters is bad. Figure 5.2.1 shows this for the NASA image with filters that were a bit

too widely spaced appart in the frequency domain.
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Figure 5.2.1 The stabilizers in the second needdlemap remove some instability in
flow in the center of the image. The first image has no stabilizer and
fewer filters that the optimum and the second has the same filters and
rather strong stabilizers. All the instabilities occur at the borders of re-
gions that have intensity 255.

Another issue is the use of various scales. There are two ways that a hierarchical strategy

can be used in this algorithm. The one is to use filters of various scales in a single least

squares optimization. This approach is simple and elegant and it is easy to predict the behav-

ior theoreticaly. It is quite stable but also a bit oversmoothing, exactly as one would expect.

The other approach is to shrink the images and apply the algorithm recursively on the finer

ones. This has the advantage of efficiency and sharpness, but information obtained in the

coarse scales can be completely ignored in the finer ones. In general it seems best to use two
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or three scales in each least squares combined with guesses obtained by the recursive

approach. This seems to have beneficial effects in both the stability and efficiency. Further

more the number of iterations goes down considerably.

Figure 5.2.2The image shows the inverse of the magnitude of the flow of the NASA
sequence using the pure single least squares version of thealgorithm.
There is a decrease in sharpness compared with the corresponding pic-
ture from the previous section.

One unexpected benefit from the use of a guess to deform the second image and then

compute the residual flow is that the sharpness on the discontinuities is increased. The reason

is that the guess being mostly correct but localy oversmoothed on discontinuities, deforms the

second image in such a way that the gap of the discontinuity is reduced. For images with large

discontinuities, we found that calling the algorithm once more for the finest resolution only,

results in dramatic increase of the sharpness.
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Figure 5.2.3The top picture is the result of the recursive version of the algorithm on
the castle seuqence (see below).The result was fed as a guess to the al-
gorihtm (the finest level was used only). The pictures show the inverse
of the magnitude of the flow, which is proportional to the depth map be-
cause the camera translates sideways. The flow varies between 20 and
30 pixels.
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Figure 5.2.4The two images of the castle sequence (numbers 3 and 4) cropped.

While the sequence in Figure 5.2.3 and Figure 5.2.3 has a huge flow that only a hierar-

chical algorithm can handle, in some of the images used, most notably the NASA coke

sequence, the flow is for the most part subpixel. It turns out that the algorithm can handle sub-

pixel flow equally well with large flow. We show this by magnifying the flow on a small win-

dow on the coke can of the NASA sequence.
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Figure 5.2.5 The flow in a small region on the coke can magnified 70 times. Since

every cell is 2× 2 pixels, a needle that is as big as the side of a cell is
1

35

of a pixel. The largest flow vector in this image is about
1

20
of a pixel.

6. Conclusionsand future research

We presented an algorithm that is based on a locally affine model for flow. The algorithm

can incorporate a wide variety of prefiltering as well as ideas from other algorithms. We

proved that this algorithm is not affected by first order spectral instabilities.

There are several ideas along the lines of this formulation that are worth exploring. The

first is to investigate discontinuities. One approach would be to use filters of varying support

(area that the filter is non zero) and modify the weights according to the closeness to sus-

pected discontinuities: After running the algorithm once, use the current estimate of the flow

to adjust the weights of different filters, by increasing the weight of the wide filters when the

second derivative of the flow is small and increasing the weight of the narrow filters when the

second derivative is large.
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Another approach to further improve the sharpness on the discontinuity is to classify

every region of the image according to its probability to belong to a foreground or background

object [JEPS-93] and use constraints from only one region.

7. Credits

The mathematical derivations for this paper were done with Maple. The implementation

of this algorithm was done using MediaMath [SPET-94c]. Although the algorithm has fairly

complicated structure, the implementation took only three days and the whole program was

about three pages long.

The synthetic images were generated by MediaMath. The diverging tree sequence was

offered by David Fleet and Leif Haglund. The coke can images are from the “NASA

sequence” by Banavar Sridar and it was part of the standard image sequences of the Work-

shop on Motion 1991. The castle sequence is from the CIL at CMU.

Financial support was provided by NSERC.
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