# EECS 4401／5326 Winter 2021 <br> Week 6 －Additional Examples－25／21／2021 

Yves Lespérance

Dept．of Electrical Engineering and Computer Science York University

## Example 1

Suppose that we have the default logic theory $\langle\mathcal{D}, \mathcal{F}\rangle$, where

$$
\begin{gathered}
\mathcal{D}=\{\langle\text { OperaFan }(x) \Rightarrow \text { WineDrinker }(x)\rangle\} \text { and } \\
\mathcal{F}=\{\text { OperaFan }(\text { john }), \operatorname{JazzFan~}(\text { bob })\} ?
\end{gathered}
$$

What are the extension(s) of this default logic theory?

## Example 1

Suppose that we have the default logic theory $\langle\mathcal{D}, \mathcal{F}\rangle$, where

$$
\begin{gathered}
\mathcal{D}=\{\langle\text { OperaFan }(x) \Rightarrow \text { WineDrinker }(x)\rangle\} \text { and } \\
\mathcal{F}=\{\text { OperaFan }(\text { john }), \text { JazzFan }(\text { bob })\} ?
\end{gathered}
$$

What are the extension(s) of this default logic theory?

Only one extension

$$
\{\phi \mid \mathcal{F} \cup\{\text { WineDrinker }(\text { john })\} \models \phi\}
$$

## Example 2

Suppose that we have the default logic theory $\langle\mathcal{D}, \mathcal{F}\rangle$, where

$$
\begin{gathered}
\mathcal{D}=\{\langle\text { OperaFan }(x) \Rightarrow \text { WineDrinker }(x)\rangle,\langle\operatorname{RockFan}(x) \Rightarrow \neg \text { WineDrinker }(x)\rangle\} \\
\text { and } \mathcal{F}=\{\text { OperaFan }(\text { john }), \operatorname{RockFan}(\text { john }), \operatorname{RockFan}(\text { bob })\} ?
\end{gathered}
$$

What are the extension(s) of this default logic theory?

## Example 2

Suppose that we have the default logic theory $\langle\mathcal{D}, \mathcal{F}\rangle$, where

$$
\begin{gathered}
\mathcal{D}=\{\langle\text { OperaFan }(x) \Rightarrow \text { WineDrinker }(x)\rangle,\langle\operatorname{RockFan}(x) \Rightarrow \neg \text { WineDrinker }(x)\rangle\} \\
\text { and } \mathcal{F}=\{\text { OperaFan }(\text { john }), \operatorname{RockFan}(\text { john }), \operatorname{RockFan}(\text { bob })\} ?
\end{gathered}
$$

What are the extension(s) of this default logic theory?

Two extensions:

$$
\left.\begin{array}{c}
\{\phi \mid \mathcal{F} \cup\{\text { WineDrinker }(\text { john }), \neg \text { WineDrinker }(\text { bob })\} \models \phi\} \\
\text { and } \\
\{\phi \mid \mathcal{F} \cup\{\neg \text { WineDrinker }(\text { john }), \neg \text { WineDrinker }(\text { bob })\} \models \phi\} \\
\text { KB }=\{p\}
\end{array}\right\} \begin{gathered}
\text { KB also entails all tautologies and sentences such as } \mathrm{p} \vee \mathrm{q}, \\
\{\text { phi } \mid \mathrm{KB} \mathrm{I}=\text { phi }\} \text { No } \ldots
\end{gathered}
$$

## Example 3

Let $K B=\{$ Student(john), Student(mary) $\}$
Does $K B \models \neg$ Student $($ paul)?
No it is not entailed

Does $K B \models c w A \neg$ Student $($ paul $)$ ?

Yes
KB U Negs $\mathrm{I}=\sim$ Student(paul)

## Example 4

## Let $K B=\{$ Student $($ john $),($ Student $($ mary $) \vee \operatorname{Student}($ paul $))\}$.

## Does $K B \models c w A \neg$ Student $($ paul $)$ ?

Yes, KB does not entail Student(paul), so Negs will include $\sim$ Student(paul) so KB U Negs entails ~Student(paul)

Does $K B \models c w A \neg$ Student (mary)?
Yes, for the same reason as above

## $K B \cup$ Negs consistent?

No
these two negative atoms in Negs are inconsistent with the disjunction in the KB

## Example 5

Let $K B=\{$ OperaFan $(j o h n), \forall x$.OperaFan $(x) \wedge \neg A b(x) \supset$ WineDrinker $(x)\}$
Does $K B \models$ WineDrinker(john)?
No
because there is an interpretation that satisfies the KB where
Ab(jiohn) holds

Does $K B \models$ WineDrinker(john)?

Yes
because in the most normal models of $K B, A b$ is empty and WineDrinker(john) holds

## Example 6

Let $K B=\{$ OperaFan $(j o h n) \vee$ OperaFan $($ mary $), \forall x . \operatorname{OperaFan}(x) \wedge \neg A b(x) \supset$ WineDrinker(x)\}

## Does $K B \models$ WineDrinker(john)?

No
there is a most norrmal interpretation where mary is an opera fan but john is not,
she must be a wine drinker but john is not

Does $K B \models \leq$ WineDrinker (john) $\vee$ WineDrinker (mary)?

Yes
in all the most normal models of $K B, A b$ is empty and either john or mary is a wine drinker

