Example 1

Consider the knowledge base on slide 33 of the B\&L lecture notes

$$
S=\{\operatorname{On}(a, b), \operatorname{On}(b, c), \operatorname{Green}(a), \neg \operatorname{Green}(c)\}
$$

Does $S \models \operatorname{Green}(b)$?

Yves Lespérance

Dept. of Electrical Engineering and Computer Science York University

Example 1

Does $S \models \operatorname{Green}(b)$?
No. Prove it.
How?

Example 1

Prove that $S \not \vDash G r e e n(b)$ by giving an interpretation $\mathcal{I}=\langle D, I\rangle$ and showing that $\mathcal{I} \models S \cup\{\neg \operatorname{Green}(b)\}$

Example 1

Example 1

Prove that $S \not \vDash \operatorname{Green}(b)$ by giving an interpretation $\mathcal{I}=\langle D, I\rangle$ and showing that
$\mathcal{I} \models S \cup\{\neg \operatorname{Green}(b)\}$
Let $D=\left\{a_{i}, b_{i}, c_{i}\right\}$,
$I(a)=a_{i}, I(b)=b_{i}, I(c)=c_{i}$
$I($ Green $)=\left\{a_{i}\right\}$, and
$I(O n)=\left\{\left\langle a_{i}, b_{i}\right\rangle,\left\langle b_{i}, c_{i}\right\rangle\right\}$.
It is easy to show that $\mathcal{I} \models S \cup\{\neg \operatorname{Green}(b)\}$.
There are many other such interpretations.

Example 1

To prove it, we can use the same interpretation as above except with $I($ Green $)=\left\{a_{i}, b_{i}\right\}$.

Then $\mathcal{I} \models S \cup\{\operatorname{Green}(b)\}$.

Does $S \models \neg \operatorname{Green}(b)$?

Example 2

Does $S \models \neg \exists x O n(c, x)$?
$\exists x \operatorname{On}(c, x)$?

Does $S \models \neg \operatorname{Green}(b)$?
No.

Example 2

Does $S \models \neg \exists x O n(c, x)$?
No!
The same interpretation as above but with $\left\langle c_{i}, c_{i}\right\rangle \in I(O n)$ satisfies S and this query.
Can also add d_{i} to D and add $\left\langle c_{i}, d_{i}\right\rangle$ to $I(O n)$.

Example 2

Let $S^{\prime}=S \cup\{\forall x \forall y . O n(x, y) \supset(x=a \wedge y=b) \vee(x=b \wedge y=c)\}$.
Does $S^{\prime} \models \neg \exists x O n(c, x)$?
No, because nothing ensures that c is not equal to a or b (e.g., we can have $\left.I(c)=a_{i}\right)$.

No!

Example 2

```
Let \(S^{\prime}=S \cup\{\forall x \forall y . O n(x, y) \supset(x=a \wedge y=b) \vee(x=b \wedge y=c)\}\).
Does \(S^{\prime} \models \neg \exists x \operatorname{On}(c, x)\) ?
```


Example 2

Let $S^{\prime \prime}=S^{\prime} \cup\{a \neq b \wedge b \neq c \wedge a \neq c\}$.
Does $S^{\prime \prime} \models \neg \exists x O n(c, x)$?

Example 2

Let $S^{\prime \prime}=S^{\prime} \cup\{a \neq b \wedge b \neq c \wedge a \neq c\}$.
Does $S^{\prime \prime} \models \neg \exists x O n(c, x)$? Yes.
Proof:
Take an arbitrary interpretation \mathcal{I} and assume that $\mathcal{I} \models S^{\prime \prime}$.
$\mathcal{I} \models \forall x \forall y \cdot O n(x, y) \supset(x=a \wedge y=b) \vee(x=b \wedge y=c)$
$\mathcal{I} \models c \neq a$
$\mathcal{I} \models c \neq b$
Thus $\mathcal{I} \models \neg \exists x \operatorname{On}(c, x)$?
Therefore $S^{\prime \prime} \models \neg \exists x O n(c, x)$? .

Exercise 1

Write a sentence in FOL that represents the following knowledge:
Every proferssor who is not member of any committee is happy.

$$
\forall x . \operatorname{Prof}(x) \wedge \neg \exists y . \operatorname{Member}(x, y) \supset \operatorname{Happy}(x)
$$

or

$$
\forall x . \operatorname{Prof}(x) \wedge \neg \exists y . \operatorname{Committee}(y) \wedge \operatorname{Member}(x, y) \supset \operatorname{Happy}(x)
$$

or

$$
\forall x . \operatorname{Prof}(x) \wedge(\forall y . \operatorname{Committee}(y) \supset \neg \operatorname{Member}(x, y)) \supset \operatorname{Happy}(x)
$$

Exercise 1

Write a sentence in FOL that represents the following knowledge: Every proferssor who is not member of any committee is happy.

Exercise 2

Write a sentence in FOL that represents the following knowledge: There is a team member who likes every team member except Mary.

Exercise 2

Write a sentence in FOL that represents the following knowledge:
There is a team member who likes every team member except Mary.
$\exists x \cdot \operatorname{Member}(x) \wedge \forall y \cdot \operatorname{Member}(y) \wedge \neg y=\operatorname{mary} \supset \operatorname{Likes}(x, y)$

