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Answer Set Programming

This material is based on a 2012 lecture by Gerhard Lakemeyer,

in turn derived from a 2009 paper by Ilkka Niemela.
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Negation as failure

From a procedural point of view, negation as failure is an important

component used extensively in logic programming (e.g. Prolog).

But from a declarative point of view, what does it all mean?

• What are the entailments of a KB that includes negation as failure?

• What does I |= KB mean when the KB includes negation as failure?

In this section, we examine one very popular way to understand negation

as failure, in terms of what is called stable models.

This has lead to a new form of logic programming called answer set
programming that uses negation as failure more flexibly than in Prolog.

(References)
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Minimal models

Suppose KB is a set of (propositional) positive Horn clauses.

Example KB1:

p ⇐
q ⇐ p
r ⇐ p ∧ q
t ⇐ r ∧ s
s ⇐ s

Let us denote an interpretation I by the set of atoms satisfied by I.
E.g., let I = {p, q, r, t, u}. Then I |= KB1.

An interpretation I is called a minimal model of a KB iff I |= KB and for all

I� such that I� � I, I� �|= KB.

(Intuitively: A minimal model is one that is as false as possible.)

Theorem: For any set of positive clauses KB, KB has a unique minimal

model I. Furthermore, p ∈ I iff KB |= p.
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Adding negation as failure

Imagine an extended KB consisting of “rules” of the following form:

p⇐ p1 ∧ . . . ∧ pn ∧ not(q1) ∧ . . . ∧ not(qm). (n ≥ 0,m ≥ 0)

Intuitively: infer p if every pi can be inferred and none of the q j can.

Example KB2:

p ⇐ p
q ⇐ not(p)

Can start by trying to define interpretations for KBs like this by treating the

not as ordinary logical negation.

However, this would not allow us to conclude q, since this KB2 �|= q.

Two minimal models: I = {q} and I� = {p}.
– The first minimal model is fine and leads to the conclusion we want.

– The second one is strange: it has p true, but for no good reason!
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Eliminating ungrounded interpretations

Consider an interpretation I and a KB consisting of rules.

Define: The reduct of KB wrt I is the set of (positive) clauses defined by:

1. remove any rule that contains a not(q) where I |= q;

2. delete all not(q) terms in the remaining rules.

Define: I is called a stable model of a KB iff I is the minimal model of the

reduct of KB wrt I.

Return to example KB2:

p ⇐ p
q ⇐ not(p)

Then I = {q} is stable, but I� = {p} is not, as desired.

The reduct wrt I is {[p,¬p], [q]} whose minimal model is {q}.
The reduct wrt I� is {[p,¬p]} whose minimal model is {}.
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More examples

Example KB3:

p ⇐ not(p) ∧ q
q ⇐

KB3 has no stable model. (Go through all four candidates.)

Example KB4:

p ⇐ r ∧ not(q)
q ⇐ not(p)
r ⇐ not(s)
s ⇐ not(p)

KB4 has two stable models {r, p} and {s, q}.

The interpretation {p, s} is not stable, for example, since its reduct

is {[p,¬r]} whose minimal model is {}.
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Constraints

Constraints are rules whose heads are empty:

⇐ p1 ∧ . . . ∧ pn ∧ not(q1) ∧ . . . ∧ not(qm).

We say that such a constraint is satisfied by an interpretation I iff it is not

the case that {p1, . . . pn} ⊆ I and {q1, . . . qm} ∩ I = {}.
(Intuitively: the body of the rule should come out false.)

Example KB5:

p ⇐ r ∧ not(q)
q ⇐ not(p)
r ⇐ not(s)
s ⇐ not(p)
⇐ s ∧ not(p)
⇐ r ∧ s ∧ not(q)

Now {r, p} is the only stable model.
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More on constraints

A constraint

⇐ p1 ∧ . . . ∧ pn ∧ not(q1) ∧ . . . ∧ not(qm).

can be represented by ordinary rules: introduce two new atoms bad and

bad� and replace the above constraint by

bad� ⇐ not(bad�) ∧ bad
bad ⇐ p1 ∧ . . . ∧ pn ∧ not(q1) ∧ . . . ∧ not(qm) .

(See KB3.)

Theorem: Let KB be a set of extended clauses and C a set of constraints.

Then the stable models of KB ∪C (as above) are exactly those stable

models of KB which satisfy all the constraints in C.
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Variables and constants

First-order rules and constraints with variables and constants can be

reduced to the propositional case by appealing to the finite Herbrand base.

Example KB6:

F(a) ⇐
F(b) ⇐
H(x, y, z) ⇐ F(x) ∧G(y) ∧G(z) ∧ not(F(x))
H(x, x, x) ⇐ F(x)

Example KB6
�

(Herbrand base):

F(a) ⇐
F(b) ⇐
H(a, a, a) ⇐ F(a) ∧G(a) ∧G(a) ∧ not(F(a))
H(a, a, b) ⇐ F(a) ∧G(a) ∧G(b) ∧ not(F(a))
. . .
H(b, b, b) ⇐ F(b)

Unique stable model {F(a), F(b),H(a, a, a),H(b, b, b)}
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Answer Set Programming

Typically in ASP, the reasoning is not concerned with finding what is true in

all stable models, but on calculating the stable models themselves.

Example: the Graph k-Colourability Problem

Vertex(v) ⇐ (a rule for each vertex)

Edge(v, v�) ⇐ (a rule for each edge)

Col(c) ⇐ (a rule for each of the k colours)

HasCol(x, y) ⇐ Vertex(x) ∧Col(y) ∧ not(OtherColour(x, y))
OtherColour(x, y) ⇐ Vertex(x) ∧Col(y) ∧Col(z) ∧ y � z ∧ HasCol(x, z)

⇐ Edge(x, y) ∧Col(z) ∧ HasCol(x, z) ∧ HasCol(y, z)

• The atomic rules define the graph and the allowed colours.

• The next two rules generate candidate solutions: one colour per vertex.

• The final constraint ensures adjacent vertices have different colours.

Each stable model specifies a legal colouring of the vertices: HasCol(v, c).
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Extensions and state of the art

Stable models are not restricted to Horn clauses with negation as failure.

Can allow disjunctions in the head:

(p ∨ q) ⇐

has two stable models {p} and {q}.
Can also have real logical negation (over and above negation as failure),

but need to modify the definition of minimal model.

Today very efficient ASP solvers exist such as smodels (Helsinki), dlv

(Vienna), or clingo (Potsdam) used in a number of application areas

involving search and constraints.

Pro: much faster than Prolog, with more flexible uses

Con: restricted to finite Herbrand base
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The input file format for clingo

The syntax is similar to Prolog:

% Three vertices, two edges, two colours

vertex(a). vertex(b). vertex(c).

edge(a,b). edge(a,c).

col(blue). col(red).

% The rules of graph colouring

hascol(X,Y) :- vertex(X), col(Y), not othercol(X,Y).

othercol(X,Y) :- vertex(X), col(Y), col(Z), Y != Z, hascol(X,Z).

:- edge(X,Y), col(Z), hascol(X,Z), hascol(Y,Z).

% Only display the hascol predicate in the stable models

#hide.

#show hascol/2.
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Running clingo

To run the file color.cl from the previous slide:

> clingo 0 color.cl % enumerate all stable models

Answer: 1

hascol(a,red) hascol(c,blue) hascol(b,blue)

Answer: 2

hascol(c,red) hascol(b,red) hascol(a,blue)

SATISFIABLE

Models : 2

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

Clingo can be obtained from http://potassco.sourceforge.net/
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