Mini Research Project on a Current Topic in Network Security: Tips, Resources, Timeline

The 'mini research project' requirement for EECS 4482 should be seen as a 4-fold opportunity:

- 1) To deepen your knowledge about one of the fundamental, well-known and current topics in network security, which is not covered in the regular lectures, and which you are interested and curious about.
- 2) To perform independent research on a technical topic using a range of on-line resources.
- 3) To practice you teamwork, leadership and critical-thinking skills.
- 4) To improve you presentation and public-speaking skills.

GENERAL TIPS

- 1) When picking the topic:
 - Pick a topic that you are interested about and/or think is important.
- 2) When researching the topic:
 - Take enough time to research the topic (*ideally 3+ weeks*).
 - Consult a number of different sources/references to obtain a range of different views and perspectives. (The optimal number of references is 10 or more.)
 - Make sure to research (i.e., learn about) not only the fundamental theory but also the latest trends pertaining to the given topic.

3) When preparing the presentation:

- Take enough time to prepare and rehearse the presentation.
- Keep your slides simple. (Text should be in bullet form, with not more than 2 lines per bullet, and no more than 5 bullets per slide. Slides with images should have less if any text.)
- Apply 'a picture is worth a thousand words' rule when putting your presentation together. (If used properly, images can considerably simplify the job of explaining a complex concept, while magnifying the overall impact and effectiveness of your presentation.)
- Presentation should be concluded with 3 points (in questions + answers form) that the audience should remember. (Some of these questions will be included in the midterm and final examination.)

2) When delivering the presentation:

- The presentation should be approx. 8-10 minutes long. (3 min per each presenter!)
- <u>http://www.wikihow.com/Do-a-Presentation-in-Class</u>

Before Wednesday September 18.	Teams of 3 students formed. Topic and presentation dates determined. Students are encouraged to form 3-member teams on their own, as well as to choose their preferred topic and presentation date. The dates will be allocated on 'first-come first-served' basis. A representative of each team should email the instructor (vlajic@cse.yorku.ca) the following information by Wednesday, Sep 18: the exact names, student numbers, and email addresses of all team members; the preferred topic; the preferred topic; the preferred presentation date. Students that fail to form their own teams and/or pick their topic will be allocated one of the left-over topic as well as a left-over presentation date. For a list of possible presentation dates see the course Web-site!
At least a week before presentation date allocated to Team X.	 Team X emails 2 documents to the instructor: a preliminary copy of their presentation; a breakdown of each team-member's contribution to the project/presentation. At least a week before Team X's presentation date, the team will send a soft-copy of their presentation to the instructor. The instructor will examine the presentation for quality, clarity and organization, and provide a feedback within 1-2 days. Besides their presentation, team X will also send another separate document clearly describing the contributions of each team member to the project's background research as well as the preparation of presentation slides.

EVALUATION

The base score for each presentation will be obtained as a weighted sum:

BaseScore = 0.5*InstructorScore + 0.5*AverageStudentScore

Both the instructor and the audience-students will fill out a performance evaluation sheet and provide their individual scores for: a) the depth, and b) quality/clarity of the presentation.

To encourage early presentations, the 'bonus' weighting scheme will additionally be applied:

ActualScore (Team presenting in slot(i)) = BaseScore * (1.25 – $\frac{0.25}{8}(i - 1)$)

where, i = 1, 2, ..., 9 are the days/slots of student presentations, starting September 30 (see course Web-site).

REFERENCE SITES

Below is a list of recommended reference sites that you may find useful when researching a particular network security topic:

- IEEE online library: <u>http://ieeexplore.ieee.org.ezproxy.library.yorku.ca/Xplore/home.jsp</u>
- ACM online library: <u>http://dl.acm.org.ezproxy.library.yorku.ca/dl.cfm</u>
- Elsevier online library: <u>http://sciencedirect.com.ezproxy.library.yorku.ca</u>

AVAILABLE TOPICS

1. Bluetooth Security/Attacks (Team 8: S. Doyle, A. Marjia, S. Attalla) NIST Guide to Bluetooth Security https://www.niatec.iri.isu.edu/(S(5pvzas455hrdzsrxbwh1ndqb))/GetFile.aspx?pid=505 Bluetooth Security: Treats and Solutions A Survey https://pdfs.semanticscholar.org/8872/521819c79505ac20e5da8dd14f8c41eb3f07.pdf Security Vulnerabilities in Bluetooth Technology as Used in IoT https://www.mdpi.com/2224-2708/7/3/28/pdf Security threats in Bluetooth technology https://www.sciencedirect.com/science/article/pii/S0167404817300615 Bluetooth Security (Presentation) https://ece.umd.edu/class/ents650/BluetoothSecurity.pdf

2. DNS Security/Attacks (DNSSEC) (Team 12: P. Sison, J. Laya, S. Usman)

Issues in DNS Security https://cdn.ttgtmedia.com/rms/pdf/DNS%20Security_Ch%202.pdf Security vulnerabilities in DNS and DNSSEC http://web.mit.edu/6.033/www/papers/dnssec.pdf Understanding and Deploying DNSSEC https://conference.apnic.net/data/39/dnssec-final_1425360815.pdf Domain Name System Security https://acsc.gov.au/publications/protect/dns_security.pdf DNS Security https://www.f5.com/pdf/agility2018/dns_security.pdf

3. BGP Security/Attacks

BGP Security Best Practices https://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRIC_III_WG4_Report_March_%202013.pdf Securing BGP — A Literature Survey https://ieeexplore-ieee-org.ezproxy.library.yorku.ca/stamp/stamp.jsp?tp=&arnumber=5473881 Securing the Border Gateway Protocol https://www.cs.purdue.edu/truselab/readings/ripe45-eof-stephen.pdf The State of BGP Security https://www.blackhat.com/docs/us-15/materials/us-15-Remes-Internet-Plumbing-For-Security-Professionals-The-State-Of-BGP-Security.pdf Security in Border Gateway Protocol (BGP)

https://www.researchgate.net/publication/272485008_Security_in_Border_Gateway_Protocol_BGP

4. IPv6 Security/Attacks (Team 10: N. Anjum, A. Maywapersaud, ??)

The security implications of IPv6

https://www.sciencedirect.com/science/article/pii/S1353485813700680

IPv6 Security Vulnerabilities

http://dergipark.gov.tr/download/article-file/147978

IPv6 Security: Attacks and Countermeasures in a Nutshell

https://www.sba-research.org/wp-content/uploads/publications/Johanna%20IPv6.pdf IPv6 Security

https://www.first.org/resources/papers/conf2018/Herberg-Frank_FIRST_20180624.pdf It's begun: 'First' IPv6 denial-of-service attack puts IT bods on notice https://www.theregister.co.uk/2018/03/03/ipv6_ddos/

5. VolP Security/Attacks (Team 3: Z. Gu, J. Sun, Z. Cao)

Introduction to VoIP Security https://www.owasp.org/images/b/b6/VOIP_Security_basics.pdf VoIP Security and Best Practices https://www.sangoma.com/wp-content/uploads/2018/06/voip-security-best-practices.pdf Intrusion prevention: The future of VoIP security http://691d3755c7515ca23f7bdbfc12bd0c567183709648093997d459.r57.cf1.rackcdn.com/assets/networking-wp-intrusionprevention-the-future-of-voIp-security-wp-4aa3-0863enw.pdf A Survey on VoIP Security Attacks and Their Proposed Solutions http://ijaiem.org/Volume2Issue3/IJAIEM-2013-03-15-032.pdf VoIP Hacking Techniques https://hakin9.org/voip-hacking-techniques/ VoIP's Big Security Problem? It's SIP https://www.pcmag.com/article/365251/voips-big-security-problem-its-sip

6. DHCP Security/Attacks (Team 7: Z. Israr, L. Sterner, A. Tang)

DHCP Security Features Technology White Paper http://download.h3c.com/download.do?id=320314 DHCP exploitation guide https://www.whitewinterwolf.com/posts/2017/10/30/dhcp-exploitation-guide/ A closer look into DHCP starvation attack in wireless networks https://www.sciencedirect.com/science/article/pii/S0167404816301262 Solutions for LAN Protection https://www.alliedtelesis.com/sites/default/files/documents/solutionsguides/lan_protection_solution_reva.pdf Complete Guide to DHCP Snooping http://www.firewall.cx/cisco-technical-knowledgebase/cisco-switches/1215-understanding-dhcpsnooping-concepts-and-how-it-works.html

7. 6LoWPAN Security/Attacks

Communication security and privacy support in 6LoWPAN <u>https://www.sciencedirect.com/science/article/abs/pii/S221421261630117X</u> Analytical study of security aspects in 6LoWPAN networks <u>https://www.researchgate.net/publication/261160546</u> <u>Analytical study of security aspects in 6LoW</u> <u>PAN_networks</u> Security Protocols and Privacy Issues into 6LowPAN Stack: A Synthesis <u>https://ieeexplore.ieee.org/document/6905706</u> 6LoWPAN Fragmentation Attacks and Mitigation Mechanisms https://www.comsys.rwth-aachen.de/fileadmin/papers/2013/2013-hummen-6lowpan.pdf 6LoWPAN http://home.deib.polimi.it/cesana/teaching/IoT/como/classes/5-6LowPAN.pdf

8. IoT Security (Team 2: J. Park, L. Cho, R. Malatombee)

Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8228.pdf Smart IoT Devices in the Home: Security and Privacy Implications https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8371556 An Overview of Wireless IoT Protocol Security in the Smart Home Domain https://arxiv.org/pdf/1801.07090.pdf A Survey of Protocols and Standards for Internet of Things https://arxiv.org/ftp/arxiv/papers/1903/1903.11549.pdf

9. Content Delivery Networks: Attacks and Defences (Team 1: S. Bhardway, J. Galati, S. Amininiaki) What Is a CDN?

https://www.cloudflare.com/learning/cdn/what-is-a-cdn/ CDN SSL/TLS / CDN Security https://www.cloudflare.com/learning/cdn/cdn-ssl-tls-security/ End-User Get Maneuvered: Empirical Analysis of Redirection Hijacking in Content Delivery Networks https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-hao.pdf Forwarding-Loop Attacks in Content Delivery Networks https://www.jianjunchen.com/papers/cdn-loops.NDSS16.pdf

10. Botnet Communications and Protocols (Team 6: V. Vavan, E. G. Dos Santos, J. Hoang)

A Taxonomy of Botnet Behavior, Detection, and Defences

https://ieeexplore-ieee-org.ezproxy.library.yorku.ca/stamp/stamp.jsp?tp=&arnumber=6616686 Botnet Communication Patterns

https://ieeexplore-ieee-org.ezproxy.library.yorku.ca/stamp/stamp.jsp?tp=&arnumber=8026031 A Survey on Botnet Architectures, Detection and Defences

https://pdfs.semanticscholar.org/bfae/82b6ff8044ac7d20c8c2556b62088af4a415.pdf Botnets: Lifecycle and Taxonomy

https://www.researchgate.net/publication/252012673_Botnets_Lifecycle_and_Taxonomy Botnets in DDoS Attacks: Trends and Challenges

http://www.cs.uccs.edu/~jkalita/papers/2015/HoqueNazrulEEETutorials&Surveys2015.pdf

11. Latest Trends in DDoS Attacks (Team 5: T. Alvear, A. El Shafie, A. Sharma)

Delving into Internet DDoS Attacks by Botnets: Characterization and Analysis <u>https://ieeexplore-ieee-org.ezproxy.library.yorku.ca/stamp/stamp.jsp?tp=&arnumber=8528549</u> DDoS attacks and rise of IoT botnets <u>https://ripe75.ripe.net/presentations/53-RIPE75-DDoS-and-Rise-of-IOT-botnets.pdf</u> Half Year 2018 DDoS Trends Report

http://info.corero.com/rs/258-JCF-941/images/H1-2018-Corero-Trends-Report-Final.pdf

Threat Report: Distributed Denial of Service (DDoS)

https://www.nexusguard.com/hubfs/Threat%20Report%20Q2%202018/Nexusguard_DDoS_Threat_Rep ort_Q2_2018_EN.pdf

12. Anonymous Networks (Team 9: L. Farhan, S. Johal, Z. Liu)

How to Find Hidden Users: A Survey of Attacks on Anonymity Networks https://ieeexplore-ieee-org.ezproxy.library.yorku.ca/stamp/stamp.jsp?tp=&arnumber=7152825 Anonymous Communication on the Internet http://proceedings.informingscience.org/InSITE2014/InSITE14p103-120Grahn0483.pdf A Survey on Routing in Anonymous Communication Protocols https://arxiv.org/pdf/1608.05538.pdf Recent Attacks on TOR http://www.cse.hut.fi/en/publications/B/11/papers/salo.pdf Shining Light in Dark Places: Understanding the Tor Network

https://homes.cs.washington.edu/~yoshi/papers/Tor/PETS2008_37.pdf

13. Wi-Fi Tracking and MAC Address Randomization (Team 4: R. Dhamija, W. Safdar, A. Abu-Mahfouz)

Wi-Fi Internet connectivity and privacy: hiding your tracks on the wireless Internet https://ora.ox.ac.uk/objects/uuid:dfa1a8fc-c97a-4ede-88dd-

8d97d5693e92/download file?file format=pdf&safe filename=Wi-

<u>Fi%2BInternet%2Bconnectivity%2Band%2Bprivacy%253B%2Bhiding%2Byour%2Btracks%2Bon%2Bthe%2</u> <u>Bwireless%2BInternet.pdf&type_of_work=Conference</u>

On Wi-Fi Tracking and the Pitfalls of MAC Address Randomization

https://ido2016.sciencesconf.org/122873/document

A Study of MAC Address Randomization in Mobile Devices and When it Fails

https://www.researchgate.net/publication/314361145 A Study of MAC Address Randomization in Mobile Devices and When it Fails