
Collec&ons	

EECS1022/Lespérance	 1	

EECS1012	
MOBILE	COMPUTING	

PROF.	Y.	LESPÉRANCE	
Dept.	of	Electrical	Engineering	&	Computer	Science	

1	

§  Problem:	naming	a	bunch	of	things	
Cannot	use	variables	…	will	run	out	of	names!	

§  Solu&ons	
Tradi6onal	approach:	name	+	index	=	array	
Modern	approach:	object	with	API	=	list,	set,	map	

§  Comparison	
Arrays	have	no	API	and	suffer	from	fixed	alloca6on	
The	modern	collec6on	framework	has	a	rich	API		

§  But	we	occasionally	use	arrays	
For	compa6bility	with	low-level	API	(e.g.	split	and	args)	

2	

§  Represent	a	collec&on	of	en&&es	of	the	same	
type	

§  Declara&on:	type[]	name;	e.g.	int[]	bag;	

§  Instan&a&on:	new	type[size],	e.g.		
bag	=	new	int[100];	

§  Refer	to	elements	by	name[index]	,	e.g.	
bag[0]	=	123;		bag[1]	=	bag[0]	+	5;	

3	

§  name.length	represents	the	array’s	length	
§  Indices	go	from	0	to	length	–	1	
§ Mul&dimensional	arrays	can	also	be	used	

	

4	



Collec&ons	

EECS1022/Lespérance	 2	

If	we	pick	an	integer	in	[1,1M]	randomly,	how	likely	is	
it	to	get	one	whose	digit	sum	is	divisible	by	7?	

5	

Compute	the	probability	by	sampling	10%	of	those	integers	
and	store	the	sample	in	a	collec6on.	

1.  Use	Arrays	
See	SumDiv7_array.java	

2.  Use	Collec&ons	
See	SumDiv7_coll.java	

§  List	vs	Set	vs	Map	
List:	may	contain	duplicates	and	elements	are	ordered.	Set:	no	
duplicates	and	no	order.	Map:	key-value	pairs,	key	unique.	

§  The	Interfaces	(aka	Abstract	Data	Types)	
List<E>,	Set<E>,	and	Map<K,V>	(use	generics)	

§  The	Classes	(aka	Implementa&ons)	
List:	ArrayList	and	LinkedyList;	Set:	HashSet	and	TreeSet	
Map:	HashMap	and	TreeMap	

§  Common	APIs	
size(),	clear(),	iterator(),	toString()	
Methods	to	insert,	delete,	and	search	à	CRUD	

6	

7	

Basic	

size()	

clear()	

iterator()	

Map	

put(K,V),	get(K),	keySet()	

containsKey(K)	

containsValue(V)	

List/Set	

add(E)	

remove(E)	

contains(E)	

List	Only	

add(int,	E)	

remove(int)	

get(int)	

Other	API	

The	enhanced	for	loop	

Collec&ons.sort(List)	

Arrays…	see	API	


