Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of the non-logical symbols involved.

e.g. If α is true under \Im , then so is $\neg(\beta \land \neg \alpha)$, no matter what \Im is, why α is true, what β is, ...

 $S \models \alpha$ iff for every \Im , if $\Im \models S$ then $\Im \models \alpha$.

Say that *S* <u>entails</u> α or α is a <u>logical consequence</u> of *S*:

In other words: for no \Im , $\Im \models S \cup \{\neg \alpha\}$. $S \cup \{\neg \alpha\}$ is <u>unsatisfiable</u>

Special case when *S* is empty: $|= \alpha$ iff for every \Im , $\Im |= \alpha$.

Say that α is <u>valid</u>.

Note: $\{\alpha_1, \alpha_2, ..., \alpha_n\} \models \alpha$ iff $\models (\alpha_1 \land \alpha_2 \land ... \land \alpha_n) \supset \alpha$ finite entailment reduces to validity

KR & R © Brachman & Levesque 2005

Why do we care?

We do not have access to user-intended interpretation of nonlogical symbols

But, with <u>entailment</u>, we know that if *S* is true in the intended interpretation, then so is α .

If the user's view has the world satisfying S, then it must also satisfy α .

There may be other sentences true also; but α is logically guaranteed.

So what about ordinary reasoning?

Dog(fido) ➡ Mammal(fido) ?? Not entailment! There are logical interpretations where *I*[Dog] ⊄ *I*[Mammal]

Key idea of KR: include such connections explicitly in S $\forall x[Dog(x) \supset Mammal(x)]$

Get: $S \cup \{Dog(fido)\} \models Mammal(fido)$

the rest is just details...

30

KB is set of sentences

explicit statement of sentences believed (including any assumed connections among non-logical symbols)

KB $\mid = \alpha$ α is a further consequence of what is believed

- explicit knowledge: KB
- implicit knowledge: $\{ \alpha \mid KB \models \alpha \}$

Often non trivial: explicit m implicit

Example:

Three blocks stacked. Top one is green. Bottom one is not green.

Α	green
В	
С	non-green

Is there a green block directly on top of a non-green block?

KR & R © Brachman & Levesque 2005

A formalization

 $S = {On(a,b), On(b,c), Green(a), \neg Green(c)}$ all that is required

 $\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$

Claim: $S \models \alpha$

Proof:

Let \mathfrak{T} be any interpretation such that $\mathfrak{T} \models S$.

Case 1: $\mathfrak{I} \models \text{Green}(b)$.Case 2: $\mathfrak{I} \not\models \text{Green}(b)$. $\therefore \ \mathfrak{I} \models \text{Green}(b) \land \neg \text{Green}(c) \land \text{On}(b,c)$. $\therefore \ \mathfrak{I} \models \neg \text{Green}(b)$ $\therefore \ \mathfrak{I} \models \alpha$ $\therefore \ \mathfrak{I} \models \text{Green}(a) \land \neg \text{Green}(b) \land \text{On}(a,b)$. $\therefore \ \mathfrak{I} \models \alpha$ $\therefore \ \mathfrak{I} \models \alpha$

Either way, for any \mathfrak{I} , if $\mathfrak{I} \models S$ then $\mathfrak{I} \models \alpha$. So $S \models \alpha$. QED 32

Start with (large) KB representing what is explicitly known

e.g. what the system has been told or has learned

Want to influence behaviour based on what is <u>implicit</u> in the KB (or as close as possible)

Requires reasoning

deductive inference:
process of calculating entailments of KB
i.e given KB and any $\alpha,$ determine if KB $\mid=\alpha$
Process is <u>sound</u> if whenever it produces α , then KB = α does not allow for plausible assumptions that may be true in the intended interpretation
Process is <u>complete</u> if whenever KB $\mid = \alpha$, it produces α does not allow for process to miss some α or be unable to determine the status of α

KR & R © Brachman & Levesque 2005

34