
Collections as Fields

Still Aggregation and Composition

1

Motivation
 often you will want to implement a class that has-a

collection as a field

 a university has-a collection of faculties and each faculty
has-a collection of schools and departments

 a receipt has-a collection of items

 a contact list has-a collection of contacts

 from the notes, a student has-a collection of GPAs and has-
a collection of courses

 a polygonal model has-a collection of triangles*

2

*polygons, actually, but triangles are easier to work with

What Does a Collection Hold?
 a collection holds references to instances

 it does not hold the instances

3

ArrayList<Date> dates =
new ArrayList<Date>();

Date d1 = new Date();
Date d2 = new Date();
Date d3 = new Date();

dates.add(d1);
dates.add(d2);
dates.add(d3);

100 client invocation

dates 200a

d1 500a

d2 600a

d3 700a

...

200 ArrayList object

500a

600a

700a

Test Your Knowledge
1. What does the following print?

ArrayList<Point> pts = new ArrayList<Point>();

Point p = new Point(0., 0., 0.);

pts.add(p);

p.setX(10.0);

System.out.println(p);

System.out.println(pts.get(0));

2. Is an ArrayList<X> an aggregation of X or a
composition of X?

4

Student Class (from notes)
 a Student has-a string id

 a Student has-a collection of yearly GPAs

 a Student has-a collection of courses

5

Student Set<Course>List<Double>

1 1

Double CourseString

14 *

gpas courses

id

PolygonalModel Class
 a polygonal model has-a List of Triangles

 aggregation

6

PolygonalModel List<Triangle>

1

Triangle

*

tri

7

8

PolygonalModel
class PolygonalModel {

private List<Triangle> tri;

public PolygonalModel() {

this.tri = new ArrayList<Triangle>();

}

}

9

PolygonalModel
public void clear() {

// removes all Triangles

this.tri.clear();

}

public int size() {

// returns the number of Triangles

return this.tri.size();

}

10

Collections as Fields
 when using a collection as an attribute of a class X you

need to decide on ownership issues

 does X own or share its collection?

 if X owns the collection, does X own the objects held in the
collection?

11

X Shares its Collection with other Xs
 if X shares its collection with other X instances, then

the copy constructor does not need to create a new
collection

 the copy constructor can simply assign its collection

 [notes 5.3.3] refer to this as aliasing

12

PolygonalModel Copy Constructor 1

public PolygonalModel(PolygonalModel other) {

// implements aliasing (sharing) with other

// PolygonalModel instances

this.tri = other.tri;

}

public List<Triangle> getTriangles() {

return this.tri;

}

13

alias: no new List
created

alias: no new List
created

14

700 ArrayList<Triangle>
object

1000a

1100a

...

1000 Triangle object

...

1100 Triangle object

...

100 client invocation

p1 200a

p2 500a

...

200 PolygonalModel object

tri 700a

...

500 PolygonalModel object

tri 700a

...

PolygonalModel p2 = new PolygonalModel(p1);

Test Your Knowledge
1. Suppose that the PolygonalModel copy constructor

makes an alias of the list of triangles.

Suppose you have a PolygonalModel p1 that has 100
Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

p2.clear();

System.out.println(p2.size());

System.out.println(p1.size());

15

X Owns its Collection: Shallow Copy
 if X owns its collection but not the objects in the

collection then the copy constructor can perform a
shallow copy of the collection

 a shallow copy of a collection means

 X creates a new collection

 the references in the collection are aliases for references in
the other collection

16

X Owns its Collection: Shallow Copy

 the hard way to perform a shallow copy of a list named
dates

17

ArrayList<Date> sCopy = new ArrayList<Date>();

for(Date d : dates) {

sCopy.add(d);

}

shallow copy: new List
created but elements
are all aliases

add adds an alias of d
to sCopy

X Owns its Collection: Shallow Copy

 the easy way to perform a shallow copy of a list named
dates

18

ArrayList<Date> sCopy = new ArrayList<Date>(dates);

PolygonalModel Copy Constructor 2

public PolygonalModel(PolygonalModel other) {

// implements shallow copying

this.tri = new ArrayList<Triangle>(other.tri);

}

19

shallow copy: new List
created, but no new
Triangle objects created

20

700 ArrayList<Triangle>
object

1000a

1100a

...

800 ArrayList<Triangle>
object

1000a

1100a

...

1000 Triangle object

...

1100 Triangle object

...

100 client invocation

p1 200a

p2 500a

...

200 PolygonalModel object

tri 700a

...

500 PolygonalModel object

tri 800a

...

PolygonalModel p2 = new PolygonalModel(p1);

Test Your Knowledge
2. Suppose that the PolygonalModel copy constructor

makes a shallow copy of the list of triangles.

Suppose you have a PolygonalModel p1 that has 100
Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

p2.clear();

System.out.println(p2.size());

System.out.println(p1.size());

21

Test Your Knowledge
3. Suppose that the PolygonalModel copy constructor

makes a shallow copy of the list of triangles.

Suppose you have a PolygonalModel p1 that has 100
Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

Triangle t1 = p1.getTriangles().get(0);

Triangle t2 = p2.getTriangles().get(0);

System.out.println(t1 == t2);

22

X Owns its Collection: Deep Copy
 if X owns its collection and the objects in the collection

then the copy constructor must perform a deep copy of
the collection

 a deep copy of a collection means

 X creates a new collection

 the references in the collection are references to new
objects (that are copies of the objects in other collection)

23

X Owns its Collection: Deep Copy

 how to perform a deep copy of a list named dates

24

ArrayList<Date> dCopy = new ArrayList<Date>();

for(Date d : dates) {

dCopy.add(new Date(d.getTime());

}

deep copy: new List
created and new
elements created

new Date created that
is a copy of d

PolygonalModel Copy Constructor 3

public PolygonalModel(PolygonalModel other) {

// implements deep copying

this.tri = new ArrayList<Triangle>();

for (Triangle t : other.getTriangles()) {

this.tri.add(new Triangle(t));

}

}

25

deep copy: new List
created, and new
Triangle objects created

new Triangle created
that is a copy of t

26

700 ArrayList<Triangle>
object

1000a

1100a

...

800 ArrayList<Triangle>
object

2000a

2100a

...

1000 Triangle object

...

1100 Triangle object

...

100 client invocation

p1 200a

p2 500a

...

200 PolygonalModel object

tri 700a

...

500 PolygonalModel object

tri 800a

...

PolygonalModel p2 = new PolygonalModel(p1);

continued on next slide

27

2000 Triangle object

...

2100 Triangle object

...

Test Your Knowledge
4. Suppose that the PolygonalModel copy constructor

makes a deep copy of the list of triangles.

Suppose you have a PolygonalModel p1 that has 100
Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

p2.clear();

System.out.println(p2.size());

System.out.println(p1.size());

28

Test Your Knowledge
5. Suppose that the PolygonalModel copy constructor

makes a deep copy of the list of triangles.

Suppose you have a PolygonalModel p1 that has 100
Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

Triangle t1 = p1.getTriangles().get(0);

Triangle t2 = p2.getTriangles().get(0);

System.out.println(t1 == t2);

System.out.println(t1.equals(t2));

29

Arrays

30

Arrays
 in Java an array is a container object that holds a fixed

number of values of a single type

 the length of an array is established when the array is
created

31
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 to declare an array you use the element type followed

by an empty pair of square brackets

32
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

Arrays
 to create an array you use the new operator followed by

the element type followed by the length of the array in
square brackets

33
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

Arrays
 the number of elements in the array is stored in the

public field named length

34
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

double[] collection;
// collection is an array of double values

collection = new double[10];
// collection is an array of 10 double values

int n = collection.length;
// the public field length holds the number of elements

Arrays
 the values in an array are called elements

 the elements can be accessed using a zero-based index
(similar to lists and strings)

35
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

Arrays
 the elements can be accessed using a zero-based index

(similar to lists and strings)

36
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html

collection[0] = 100.0;
collection[1] = 100.0;
collection[2] = 100.0;
collection[3] = 100.0;
collection[4] = 100.0;
collection[5] = 100.0;
collection[6] = 100.0;
collection[7] = 100.0;
collection[8] = 100.0;
collection[9] = 100.0; // set all elements to equal 100.0
collection[10] = 100.0; // ArrayIndexOutOfBoundsException

Array vs ArrayList
 under most circumstances, you should use ArrayList

instead of an array

 however, arrays are a part of the Java language and it is
important that you understand how to use them

 advantages of ArrayList

 grows in size automatically when needed

 provides many useful methods

37

