
Aggregation and Composition

[notes Chapter 4]

1

Aggregation and Composition

 the terms aggregation and composition are used to
describe a relationship between objects

 both terms describe the has-a relationship
 the university has-a collection of departments

 each department has-a collection of professors

2

Aggregation and Composition

 composition implies ownership
 if the university disappears then all of its departments disappear

 a university is a composition of departments

 aggregation does not imply ownership
 if a department disappears then the professors do not disappear

 a department is an aggregation of professors

3

Aggregation
 suppose a Person has a name and a date of birth

public class Person {

private String name;

private Date birthDate;

public Person(String name, Date birthDate) {

this.name = name;

this.birthDate = birthDate;

}

public Date getBirthDate() {

return this.birthDate;

}

}

4

 the Person example uses aggregation

 notice that the constructor does not make a new copy of the
name and birth date objects passed to it

 the name and birth date objects are shared with the client

 both the client and the Person instance are holding
references to the same name and birth date

5

// client code somewhere
String s = "Billy Bob";
Date d = new Date(91, 2, 26); // March 26, 1991
Person p = new Person(s, d);

6

64 client

s 250a

d 350a

p 450a

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250a

birthDate 350a

Person object
and client have
a reference to
the same String
object

7

64 client

s 250a

d 350a

p 450a

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250a

birthDate 350a

Person object
and client have
a reference to
the same Date
object

 what happens when the client modifies the Date
instance?

 prints Fri Nov 03 00:00:00 EST 1995

8

// client code somewhere
String s = "Billy Bob";
Date d = new Date(90, 2, 26); // March 26, 1990
Person p = new Person(s, d);

d.setYear(95); // November 3, 1995
d.setMonth(10);
d.setDate(3);
System.out.println(p.getBirthDate());

 because the Date instance is shared by the client and
the Person instance:

 the client can modify the date using d and the Person
instance p sees a modified birthDate

 the Person instance p can modify the date using birthDate
and the client sees a modified date d

9

 note that even though the String instance is shared by
the client and the Person instance p, neither the client
nor p can modify the String

 immutable objects make great building blocks for other
objects

 they can be shared freely without worrying about their state

10

UML Class Diagram for Aggregation

11

Person StringDate

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example
 consider implementing a bouncing ball whose

position is governed by the following equations of
motion (see this lab from last year)

12

𝐩𝑖+1 = 𝐩𝑖 + 𝐯𝑖𝛿𝑡 +
1

2
𝐠𝛿𝑡2

𝐯𝑖+1 = 𝐯𝑖 + 𝐠𝛿𝑡

𝐩𝑖 position at time 𝑡𝑖

𝐯𝑖 velocity at time 𝑡𝑖

𝐠 acceleration due to gravity

𝛿𝑡 = 𝑡𝑖+1 − 𝑡𝑖

http://www.eecs.yorku.ca/course_archive/2016-17/W/2030/labs/lab3/lab3.html

Another Aggregation Example
 the Ball has-a Point2 that represents the position of

the ball and a Vector2 that represents the velocity of
the ball

13

Ball Vector2Point2

1 1

14

public class Ball {

/**

* The current position of the ball.

*/

private Point2 position;

/**

* The current velocity of the ball.

*/

private Vector2 velocity;

/**

* Gravitational acceleration vector.

*/

private static final Vector2 G = new Vector2(0.0, -9.81);

15

/**

* Initialize the ball so that its position and velocity are

* equal to the given position and velocity.

*

* @param position

* the position of the ball

* @param velocity

* the velocity of the ball

*/

public Ball(Point2 position, Vector2 velocity) {

this.position = position;

this.velocity = velocity;

}

16

/**

* Return the position of the ball.

*

* @return the position of the ball

*/

public Point2 getPosition() {

return this.position;

}

/**

* Return the velocity of the ball.

*

* @return the velocity of the ball

*/

public Vector2 getVelocity() {

return this.velocity;

}

17

/**

* Set the position of the ball to the given position.

*

* @param position

* the new position of the ball

*/

public void setPosition(Point2 position) {

this.position = position;

}

/**

* Set the velocity of the ball to the given velocity.

*

* @param velocity

* the new velocity of the ball

*/

public void setVelocity(Vector2 velocity) {

this.velocity = velocity;

}

Ball as an aggregation
 implementing Ball is very easy

 fields

 are references to existing objects provided by the client

 accessors

 give clients a reference to the aggregated Point2 and
Vector2 objects

 mutators

 set fields to existing object references provided by the client

 we say that the Ball fields are aliases

18

19

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);));

}

20

64 client

pos 250a

vel 350a

ball 450a

250 Point2 object

x 10.0

y 20.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

21

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);

// does ball and client share the same objects?

Point2 ballPos = ball.getPosition();

System.out.println("same Point2 object?: " + (ballPos == pos));

}

22

64 client

pos 250a

vel 350a

ball 450a

ballPos 250a

250 Point2 object

x 10.0

y 20.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

ballPos == pos is true

23

public static void main(String[] args) {

Point2 pos = new Point2(10.0, 20.0);

Vector2 vel = new Vector2(1.0, 2.0);

Ball ball = new Ball(pos, vel);

// does ball and client share the same objects?

Point2 ballPos = ball.getPosition();

System.out.println("same Point2 object?: " + (ballPos == pos));

// client changes pos

pos.set(-99.0, -22.0);

System.out.println("ball position: " + ballPos);

}

24

64 client

pos 250a

vel 350a

ball 450a

ballPos 250a

250 Point2 object

x -99.0

y -22.0

350 Vector2 object

x 1.0

y 2.0

450 Ball object

position 250a

velocity 350a

pos.set(-99.0, -22.0);

Ball as aggregation
 if a client gets a reference to the position or velocity of

the ball, then the client can change these quantities
without asking the ball

 this is not a flaw of aggregation

 it’s just the consequence of choosing to use aggregation

25

Composition

26

Composition
 recall that an object of type X that is composed of an

object of type Y means

 X has-a Y object and

 X owns the Y object

 in other words

27

the X object has exclusive access to its Y object

Composition

 this means that the X object will generally not share
references to its Y object with clients

 constructors will create new Y objects

 accessors will return references to new Y objects

 mutators will store references to new Y objects

 the “new Y objects” are called defensive copies

28

the X object has exclusive access to its Y object

Composition & the Default Constructor

 if a default constructor is defined it must create a
suitable Y object

public X()

{

// create a suitable Y; for example

this.y = new Y(/* suitable arguments */);

}

29

defensive copy

the X object has exclusive access to its Y object

Composition & Other Constructors

 a constructor that has a Y parameter must first deep
copy and then validate the Y object

public X(Y y)

{

// create a copy of y

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

30

defensive copy

the X object has exclusive access to its Y object

Composition and Other Constructors
 why is the deep copy required?

 if the constructor does this

// don’t do this for composition

public X(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

31

the X object has exclusive access to its Y object

32

Modify the Ball constructor so that it uses composition:

/**

* Initialize the ball so that its position and velocity are

* equal to the given position and velocity.

*

* @param position

* the position of the ball

* @param velocity

* the velocity of the ball

*/

public Ball(Point2 position, Vector2 velocity) {

this.position =

this.velocity =

}

Composition & Copy Constructor

 if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

public X(X other)

{

// create a new Y that is a copy of other.y

this.y = new Y(other.getY());

}

33

defensive copy

the X object has exclusive access to its Y object

Composition & Copy Constructor
 what happens if the X copy constructor does not make

a deep copy of the other X object’s Y object?

// don’t do this

public X(X other)

{

this.y = other.y;

}

 every X object created with the copy constructor ends up
sharing its Y object

 if one X modifies its Y object, all X objects will end up with a
modified Y object

 this is called a privacy leak

34

35

Suppose Ball had the following copy constructor:

/**

* Initialize the ball so that its position and velocity are

* equal to the position and velocity of the specified ball.

*

* @param other

* a ball to copy

*/

public Ball(Ball other) {

this.position = other.position;

this.velocity = other.velocity;

}

36

What does the following program print?:

Point2 p = new Point2();

Vector2 v = new Vector2();

Ball b1 = new Ball(p, v);

Ball b2 = new Ball(b1);

p.setX(-100.0);

b1.setPosition(p);

System.out.println(b2.getPosition());

37

Modify the Ball copy constructor so that is uses
composition:

/**

* Initialize the ball so that its position and velocity are

* equal to the position and velocity of the specified ball.

*

* @param other

* a ball to copy

*/

public Ball(Ball other) {

this.position =

this.velocity =

}

Composition and Accessors

 never return a reference to a field; always return a deep
copy

public Y getY()

{

return new Y(this.y);

}

38

defensive copy

the X object has exclusive access to its Y object

Composition and Accessors
 why is the deep copy required?

 if the accessor does this

// don’t do this for composition

public Y getY() {

return this.y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

39

the X object has exclusive access to its Y object

40

Suppose Ball had the following accessor methods:

/**

* Return the position of the ball.

*

* @return the position of the ball

*/

public Point2 getPosition() {

return this.position;

}

/**

* Return the velocity of the ball.

*

* @return the velocity of the ball

*/

public Vector2 getVelocity() {

return this.velocity;

}

41

What does the following program print?:

Ball b = new Ball(new Point2(), new Vector2());

Vector2 v = b.getVelocity();

v.set(-1000.0, 500.0);

System.out.println(b.getVelocity());

42

Modify the Ball accessor methods so that they use composition:

/**

* Return the position of the ball.

*

* @return the position of the ball

*/

public Point2 getPosition() {

return

}

/**

* Return the velocity of the ball.

*

* @return the velocity of the ball

*/

public Vector2 getVelocity() {

return

}

Composition and Mutators

 if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

public void setY(Y y)

{

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

43

defensive copy

the X object has exclusive access to its Y object

Composition and Mutators
 why is the deep copy required?

 if the mutator does this

// don’t do this for composition

public void setY(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

 this is called a privacy leak

44

the X object has exclusive access to its Y object

45

Suppose Ball had the following mutator methods:

/**

* Set the position of the ball to the given position.

*

* @param position

* the new position of the ball

*/

public void setPosition(Point2 position) {

this.position = position;

}

/**

* Set the velocity of the ball to the given velocity.

*

* @param velocity

* the new velocity of the ball

*/

public void setVelocity(Vector2 velocity) {

this.velocity = velocity;

}

46

What does the following program print?:

Ball b = new Ball(new Point2(), new Vector2());

Vector2 v = new Vector2(100.0, 200.0);

b.setVelocity(v);

v.set(-1.0, -5.0);

System.out.println(b.getVelocity());

47

Modify the Ball mutator methods so that they use composition:

/**

* Set the position of the ball to the given position.

*

* @param position

* the new position of the ball

*/

public void setPosition(Point2 position) {

this.position =

}

/**

* Set the velocity of the ball to the given velocity.

*

* @param velocity

* the new velocity of the ball

*/

public void setVelocity(Vector2 velocity) {

this.velocity =

}

Price of Defensive Copying
 defensive copies are required when using composition,

but the price of defensive copying is time and memory
needed to create and garbage collect defensive copies
of objects

 recall the Ball program

 again, see this lab from last year

 if you used aggregation then moving the ball could be done
without making any defensive copies

48

http://www.eecs.yorku.ca/course_archive/2016-17/W/2030/labs/lab3/lab3.html

49

/**

* Moves the ball from its current position using its current

* velocity accounting for the force of gravity. See the Lab 3

* document for a description of how to compute the new position

* and velocity of the ball.

*

* @param dt

* the time period over which the ball has moved

* @return the new position of the ball

*/

public Point2 move(double dt) {

Vector2 dp1 = Lab3Util.multiply(dt, this.velocity);

Vector2 dp2 = Lab3Util.multiply(0.5 * dt * dt, Ball.G);

Vector2 dp = Lab3Util.add(dp1, dp2);

this.position = Lab3Util.add(this.position, dp);

Vector2 dv = Lab3Util.multiply(dt, Ball.G);

this.velocity.add(dv);

return this.position;

}

Price of Defensive Copying
 if we use composition to implement Ball then move

must return a defensive copy of this.position

 this doesn’t seem like such a big deal until you realize
that the BouncingBall program causes the ball to
move many times each second

50

Composition (Part 2)

51

Class Invariants
 class invariant

 some property of the state of the object that is established
by a constructor and maintained between calls to public
methods

 in other words:

 the constructor ensures that the class invariant holds when the
constructor is finished running

 the invariant does not necessarily hold while the constructor is
running

 every public method ensures that the class invariant holds when
the method is finished running

 the invariant does not necessarily hold while the method is running

52

Period Class
 adapted from Effective Java by Joshua Bloch

 available online at
http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

 we want to implement a class that represents a period
of time

 a period has a start time and an end time

 end time is always after the start time (this is the class invariant)

53

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

Period Class
 we want to implement a class that represents a period

of time

 has-a Date representing the start of the time period

 has-a Date representing the end of the time period

 class invariant: start of time period is always prior to the
end of the time period

54

Period Class

55

Period Date

2

Period is a composition

of two Date objects

java.util.Date
 https://docs.oracle.com/javase/8/docs/api/java/util/D

ate.html

56

https://docs.oracle.com/javase/8/docs/api/java/util/Date.html

57

import java.util.Date;

public class Period {

private Date start;

private Date end;

58

Suppose that we implement the Period constructor like so:

/**

* Initialize the period to the given start and end dates.

*

* @param start beginning of the period

* @param end end of the period; must not precede start

* @throws IllegalArgumentException if start is after end

*/

public Period(Date start, Date end) {

if (start.compareTo(end) > 0) {

throw new IllegalArgumentException("start after end");

}

this.start = start;

this.end = end;

}

59

Add one more line of code to show how the client can break
the class invariant of Period:

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

60

Modify the Period constructor so that it uses composition:

/**

* Initialize the period to the given start and end dates.

*

* @param start beginning of the period

* @param end end of the period; must not precede start

* @throws IllegalArgumentException if start is after end

*/

public Period(Date start, Date end) {

if (start.compareTo(end) > 0) {

throw new IllegalArgumentException("start after end");

}

this.start =

this.end =

}

61

Suppose that we implement the Period copy constructor like so:

/**

* Initialize the period so that it has the same start and end times

* as the specified period.

*

* @param other the period to copy

*/

public Period(Period other) {

this.start = other.start;

this.end = other.end;

}

62

What does the following code fragment print?:

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p1 = new Period(start, end);

Period p2 = new Period(p1);

System.out.println(p1.getStart() == p2.getStart());

System.out.println(p1.getEnd() == p2.getEnd());

63

Modify the Period copy constructor so that it uses composition:

/**

* Initialize the period so that it has the same start and end times

* as the specified period.

*

* @param other the period to copy

*/

public Period(Period other) {

this.start =

this.end =

}

64

Suppose that we implement the Period accessors like so:

/**

* Returns the starting date of the period.

*

* @return the starting date of the period

*/

public Date getStart() {

return this.start;

}

/**

* Returns the ending date of the period.

*

* @return the ending date of the period

*/

public Date getEnd() {

return this.end;

}

65

Add one more line of code that uses an accessor method to
show how the client can break the class invariant of
Period:

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

66

Modify the Period accessors so that they use composition:

/**

* Returns the starting date of the period.

*

* @return the starting date of the period

*/

public Date getStart() {

return

}

/**

* Returns the ending date of the period.

*

* @return the ending date of the period

*/

public Date getEnd() {

return

}

67

Suppose that we implement the Period mutator like so:

/**

* Sets the starting date of the period.

*

* @param newStart the new starting date of the period

* @return true if the new starting date is earlier than the

* current end date; false otherwise

*/

public boolean setStart(Date newStart) {

boolean ok = false;

if (newStart.compareTo(this.end) < 0) {

this.start = newStart;

ok = true;

}

return ok;

}

68

Add one more line of code to show how the client can break
the class invariant of Period:

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

p.setStart(start);

69

Modify the Period mutator so that it uses composition:

/**

* Sets the starting date of the period.

*

* @param newStart the new starting date of the period

* @return true if the new starting date is earlier than the

* current end date; false otherwise

*/

public boolean setStart(Date newStart) {

boolean ok = false;

if (.compareTo(this.end) < 0) {

this.start =

ok = true;

}

return ok;

}

Privacy Leaks
 a privacy leak occurs when a class exposes a reference to a

non-public field (that is not a primitive or immutable)

 given a class X that is a composition of a Y

these are all examples of privacy leaks

70

public class X {
private Y y;
// …

}

public X(Y y) {
this.y = y;

}

public X(X other) {
this.y = other.y;

}

public Y getY() {
return this.y;

}

public void setY(Y y) {
this.y = y;

}

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 the object state can become inconsistent

 example: if a CreditCard exposes a reference to its expiry Date
then a client could set the expiry date to before the issue date

71

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 it becomes impossible to guarantee class invariants

 example: if a Period exposes a reference to one of its Date objects
then the end of the period could be set to before the start of the
period

72

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field

 composition becomes broken because the object no longer
owns its attribute

 when an object “dies” its parts may not die with it

73

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

74 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

Immutability and Composition

 why is Item 5 of the Recipe for Immutability needed?

75

