Information hiding

The problem with public fields

» recall that our point class has two public fields

public class SimplePoint2 {
public float x;
public float y;

// implementation not shown

}

The problem with public fields

» clients are expected to manipulate the fields directly

public class Rectangle {

private SimplePoint2 bottomLeft;
private SimplePoint2 topRight;

public float area() {
float width = topRight.x - bottomLeft.x;
float height = topRight.y - bottomLeft.y;
return width * height;

The problem with public fields

» the problem with public fields is that they become a
permanent part of the API of your class

» after you have released a class with public fields you:
» cannot change the access modifier
» cannot change the type of the field
» cannot change the name of the field

without breaking client code

Information hiding

» information hiding is the principle of hiding
implementation details behind a stable interface

» if the interface never changes then clients will not be
affected if the implementation details change

» for a Java class, information hiding suggests that you

should hide the implementation details of your class
behind a stable API

» fields and their types are part of the implementation details
of a class

» fields should be private; if clients need access to a field then
they should use a method provided by the class

/**
* A simple class for representing points in 2D Cartesian
* coordinates. Every <code>Point2D</code> instance has an

* x and y coordinate.
*/
public class Point2 {

private double x;
private double y;

// default constructor
public Point2() {
this(0.0, 0.0);

// custom constructor
public Point2(double newX, double newY) {
this.set(newX, newY);

// copy constructor
public Point2(Point2 other) {
this(other.x, other.y);

Accessors

» an accessor method enables the client to gain access to
an otherwise private field of the class

» the name of an accessor method often, but not always,
begins with get

// Accessor methods (methods that get the value of a field)

// get the x coordinate
public double getX() {
return this.x;

// get the y coordinate
public double getY() {
return this.y;

Mutators

» a mutator method enables the client to modify (or
mutate) an otherwise private field of the class

» the name of an accessor method often, but not always,
begins with set

10

11

// Mutator methods: methods that change the value of a field

// set the x coordinate
public void setX(double newX) {
this.x = newX;

// set the y coordinate
public void setY(double newY) {
this.y = newY;

// set both x and y coordinates

public void set(double newX, double newY) {
this.x = newX;
this.y = newY;

Information hiding

» hiding the implementation details of our class gives us
the ability to change the underlying implementation
without affecting clients

» for example, we can use an array to store the coordinates

12

/**

* A simple class for representing points in 2D Cartesian
* coordinates. Every <code>Point2D</code> instance has an
* x and y coordinate.
*/

public class Point2 {

private double coord[];

13

14

// default constructor
public Point2() {
this(0.0, 0.0);

// custom constructor

public Point2(double newX, double newY) {
this.coord = new double[2];
this.coord[0@] = newX;
this.coord[1] = newY;

// copy constructor
public Point2(Point2 other) {
this(other.x, other.y);

15

// Accessor methods (methods that get the value of a field)

// get the x coordinate
public double getX() {
return this.coord[0];

// get the y coordinate
public double getY() {
return this.coord[1];

16

// Mutator methods: methods that change the value of a field

// set the x coordinate
public void setX(double newX) {
this.coord[@] = newX;

// set the y coordinate
public void setY(double newY) {
this.coord[1] = newY;

// set both x and y coordinates

public void set(double newX, double newY) {
this.coord[@] = newX;
this.coord[1] = newY;

Information hiding

» notice that:

» we changed how the point is represented by using an array
instead of two separate fields for the coordinates

» we did not change the API of the class

» by hiding the implementation details of the class we
have insulated all clients of our class from the change

17

Immutability

Immutability

» an immutable object is an object whose state cannot
be changed once it has been created

» examples: String, Integer, Double, and all of the other
wrapper classes

» advantages of immutability versus mutability
» easier to design, implement, and use
» can never be put into an inconsistent state after creation
» object references can be safely shared

» information hiding makes immutability possible

19

Recipe for Immutability

» the recipe for immutability in Java is described by
Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

revisit when we talk
about inheritance

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields revisit when we talk

about composition

20 *highly recommended reading if you plan on becoming a Java programmer

An immutable point class

» we can easily make an immutable version of our
Point2 class

» remove the mutator methods
» make the fields final (they are already private)

» make the class final (which satisfies Rule 2 from the
recipe)

21

/**
* A simple class for immutable points in 2D Cartesian
* coordinates. Every <code>IPoint2D</code> instance has an
* x and y coordinate.
*/
public final class IPoint2 {

final private double x;
final private double y;

22

23

// default constructor
public IPoint2() {
this(0.0, 0.0);

// custom constructor

public IPoint2(double newX, double newY) {
this.x = newX;
this.y = newY;

// copy constructor
public IPoint2(Point2 other) {
this(other.x, other.y);

24

// Accessor methods (methods that get the value of a field)
// get the x coordinate

public double getX() {
return this.x;

// get the y coordinate
public double getY() {
return this.y;

// No mutator methods

// toString, hashCode, equals are all OK to have

25

Class invariants

Class invariants

» a class invariant is a condition regarding the state of a
an object that is always true

» the invariant established when the object is created and
every public method of the class must ensure that the
invariant is true when the method finishes running

» immutability is a special case of a class invariant

» once created, the state of an immutable object is always the
same

» information hiding makes maintaining class invariants
possible

26

Class invariants

» suppose we want to create a point class where the
coordinates of a point are always greater than or equal
to zero

» the constructors must not allow a point to be created with
negative coordinates

» if there are mutator methods then those methods must not
set the coordinates of the point to a negative value

27

/**
* A simple class for representing points in 2D Cartesian
* coordinates. Every <code>PPoint2D</code> instance has an
* x and y coordinate that is greater than or equal to zero.

* @author EECS2030 Winter 2016-17
*

*/
public class PPoint2 {

private double x; // invariant: this.x >= ©
private double y; // invariant: this.y >= 0

28

/**
* Create a point with coordinates <code>(@, @)</code>.
*/
public PPoint2() {
this(0.0, 0.0); // invariants are true

/**
* Create a point with the same coordinates as
* <code>other</code>.
*

* @param other another point
*/
public PPoint2(PPoint2 other) {
this(other.x, other.y); // invariants are true
// because other is a PPoint2

29

* Create a point with coordinates <code>(newX, newY)</code>.

* @param newX the x-coordinate of the point
* @param newY the y-coordinate of the point
*/
public PPoint2(double newX, double newY) {
// must check newX and newY first before setting this.x and this.y
if (newX < 0.0) {
throw new IllegalArgumentException(
"X coordinate is negative");
}
if (newY < 0.0) {
throw new IllegalArgumentException(
"y coordinate is negative");

}
this.x = newX; // invariants are true
this.y = newY; // invariants are true

30

/**
* Returns the x-coordinate of this point.
k

* @return the x-coordinate of this point
*/
public double getX() {
return this.x; // invariants are true

/**
* Returns the y-coordinate of this point.
*

* @return the y-coordinate of this point
*/
public double getY() {

return this.y; // invariants are true

31

/**
* Sets the x-coordinate of this point to <code>newX</code
*

* @param newX the new x-coordinate of this point
*/
public void setX(double newX) {
// must check newX before setting this.x
if (newX < 0.0) {
throw new IllegalArgumentException("x coordinate is negative");

this.x = newX; // invariants are true

/**
* Sets the y-coordinate of this point to <code>newY</code>.
*

* @param newY the new y-coordinate of this point
*/
public void setY(double newY) {
// must check newY before setting this.y
if (newY < 0.0) {
throw new IllegalArgumentException("y coordinate is negative");

this.y = newY; // invariants are true

32

/**
Sets the x-coordinate and y-coordinate of this point to
<code>newX</code> and <code>newY</code>, respectively.

*
*
*
* @param newX the new x-coordinate of this point
* @param newY the new y-coordinate of this point
*/
public void set(double newX, double newY) {
// must check newX and newY before setting this.x and this.y
if (newX < 0.0) {
throw new IllegalArgumentException(
"X coordinate is negative");
}
if (newY < 0.0) {
throw new IllegalArgumentException(

"y coordinate is negative");

}
this.x = newX; // invariants are true
this.y = newY; // invariants are true

33

Removing duplicate code

» notice that there is a lot of duplicate code related to
validating the coordinates of the point

» one constructor is almost identical to set(double,
double)

» set(double, double) repeats the same validation code as
setX(double) and setY(double)

» we should try to remove the duplicate code by
delegating to the appropriate methods

34

/**
* Create a point with coordinates <code>(newX, newY)</code
k
* @param newX the x-coordinate of the point
* @param newY the y-coordinate of the point
*/
public PPoint2(double newX, double newY) {
this.set(newX, newY); // use set to ensure
// invariants are true

35

/**

* Sets the x-coordinate of this point to <code>newX</code>.
%k

* @param newX the new x-coordinate of this point
*/
public void setX(double newX) {
this.set(newX, this.y); // use set to ensure
// invariants are true

/**
* Sets the y-coordinate of this point to <code>newY</code>.
*

* @param newY the new y-coordinate of this point
*/
public void setY(double newY) {
this.set(this.x, newY); // use set to ensure
// invariants are true

37

comparelo

Comparable Objects

» many value types have a natural ordering

» that is, for two objects x and y, x is less than y is meaningful
» Short, Integer, Float, Double, etc
» Stringscan be compared in dictionary order
» Dates can be compared in chronological order
» you might compare points by their distance from the origin

» if your class has a natural ordering, consider
implementing the Comparable interface

» doing so allows clients to sort arrays or Collections of your
object

Interfaces

» an interface is (usually) a group of related methods
with empty bodies
» the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

» a class that implements an interfaces promises to
provide an implementation for every method in the
interface

39

compareTo()

» Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

» Throws a ClassCastException if the specified object
type cannot be compared to this object

» suppose that we want to compare points by their
distance from the origin

40

Point2 compareTo

public class Point2 implements Comparable<Point2> |{
// fields, constructors, methods...

@Override
public int compareTo(Point2 other) {
double thisDist = Math.hypot(this.x, this.y);
double otherDist = Math.hypot(other.x, other.y);
if (thisDist > otherDist) {
return 1;
}
else if (thisDist < otherDist) {
return -1;

}

return 0;

41

Point2 compareTo

» don't forget what you learned in previous courses

» you should delegate work to well-tested components where
possible

» for distances, we need to compare two double values
» java.lang.Double has methods that do exactly this

42

Point2 compareTo

public class Point2 implements Comparable<Point2> {
// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {
double thisDist = Math.hypot(this.x, this.y);
double otherDist = Math.hypot(other.x, other.y);
return Double.compare(thisDist, otherDist);

13

Comparable Contract

1. the sign of the returned int must flip if the order of
the two compared objects flip
» if x.compareTo(y) > O then y.compareTo(x) < ©

» if x.compareTo(y) < 0 then y.compareTo(x) > ©

» if x.compareTo(y) == O theny.compareTo(x) ==

44

Comparable Contract

.. compareTo() must be transitive

» if x.compareTo(y) > © && y.compareTo(z) > @ then
X.compareTo(z) > ©

» if x.compareTo(y) < 0 && y.compareTo(z) < 0O then
X.compareTo(z) < ©

» if x.compareTo(y) == O && y.compareTo(z) == O then

X.compareTo(z) == ©

45

Comparable Contract

3. if x.compareTo(y) == 0 then the signs of
X.compareTo(z) and y.compareTo(z) must be the
same

Consistency with equals

» an implementation of compareTo() is said to be
consistent with equals () when

if x.compareTo(y) == @ then
X.equals(y) == true

» and
if x.equals(y) == true then

X.compareTo(y) == ©

47

Not in the Comparable Contract

» it is not required that compareTo() be consistent with
equals()
» thatis
if x.compareTo(y) == @ then
x.equals(y) == false is acceptable
» similarly
if x.equals(y) == true then
x.compareTo(y) != @isacceptable

» try to come up with examples for both cases above
» is Point2 compareTo consistent with equals?

48

Implementing compareTo

» if you are comparing fields of type float or double
you should use Float.compare or Double.compare
instead of €, >, or ==

» if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically

» TreeSet, TreeMap

» many methods in the utility classes Collections and
Arrays

49

Mixing Static and Non-Static

static Fields

» afield thatis static is a per-class member

» only one copy of the field, and the field is associated with
the class

» every object created from a class declaring a static field shares the
same copy of the field

» static fields are used when you really want only one
common instance of the field for the class

» less common than non-static fields

51

Example

» a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial
public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {
// set some non-static fields here...
Bicycle.numberOfBicycles++; note: not

} this.numberOfBicycles++

public static int getNumberOfBicyclesCreated() {
return Bicycle.numberOfBicycles;
}
}

52 [notes 4.3]

» why does numberOfBicycles have to be static?

» because we really want one common value for all Bicycle
instances

» what would happen if we made number0ofBicycles
non-static?

» every Bicycle would think that there was a different
number of Bicycle instances

53

» another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled
private static int numTimesYCalled

n nu
(<> Y]
e ‘o

public void xMethod() {
// do something... and then update counter
++X.numTimesXCalled;

}

public void yMethod() {
// do something... and then update counter
++X.numTimesYCalled;

}
}

54

» is it useful to add the following to Point2?

public static final Point2 ORIGIN = new Point2(©0.0, 0.0);

55

Mixing Static and Non-static Fields

» a class can declare static (per class) and non-static (per
instance) fields

» a common textbook example is giving each instance a
unique serial number
» the serial number belongs to the instance

» therefore it must be a non-static field

public class Bicycle {
// some attributes here...
private static int numberOfBicycles

0;

private int serialNumber;

/] ...

56 [notes 4.3.2]

» how do you assign each instance a unique serial
number?

» the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

» could require that the client provide a serial number
using the constructor

» instance has no guarantee that the client has provided a
valid (unique) serial number

57

» the class can provide unique serial numbers using
static fields

» e.g. using the number of instances created as a serial
number

public class Bicycle {
// some attributes here...

private static int numberOfBicycles = 0;
private int serialNumber;

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.numberOfBicycles;
Bicycle.numberOfBicycles++;
}
}

58

» a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...
private static int numberOfBicycles = 0;

private static final
SerialGenerator serialSource = new‘SerialGenerator();’

I
private int serialNumber; but you would need

an implementation of
this class

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.serialSource.getNext();
Bicycle.numberOfBicycles++;

}
}

59

Static Methods

» recall that a static method is a per-class method
» client does not need an object to invoke the method
» client uses the class name to access the method

60

Static Methods

» a static method can use only static fields of the

class

» static methods have no this parameter because a static
method can be invoked without an object

» without a this parameter, there is no way to access non-
static fields

» non-static methods can use all of the fields of a class
(including static ones)

61

public class Bicycle {
// some attributes, constructors, methods here...

public static int getNumberCreated() static method

{ can only use
return Bicycle.numberOfBicycles; static fields

}

public int getSerialNumber() e meihed

{ . . can use
return this.serialNumber; Hon static hields

}

public void setNewSerialNumber() 1ol ertie Feld

{
this.serialNumber = Bicycle.serialSource.getNext();

}

}

62

Static factory methods

» a common use of static methods in non-utility classes
is to create a static factory method

» a static factory method is a static method that returns an
instance of the class

» called a factory method because it makes an object and
returns a reference to the object

» you can use a static factory method to create methods
that behave like constructors

» they create and return a reference to a new instance
» unlike a constructor, the method has a name

Static factory methods

» recall our point class

» suppose that you want to provide a constructor that
constructs a point given the polar form of the point

® [r cos 6
rsin 6

public class Point2 {

[llegal overload; both
constructors have the
private double y; same signature.

private double x;

public Point2(double x, double y) {
this.x = Xx;
this.y = y;

public Point2(double r, double theta) {
this(r * Math.cos(theta), r * Math.sin(theta));

Static factory methods

» we can eliminate the problem by replacing the second
constructor with a static factory method

66

public class Point2 {

private double x;
private double y;

public Point2(double x, double y) {
this.x = Xx;
this.y = y;

public static Point2 polar(double r, double theta) {
double x = r * Math.cos(theta);
double y = r * Math.sin(theta);
return new Point2(x, y);

Static Factory Methods

» many examples in Java API

» java.lang.Integer
public static Integer valueOf(int i)
» Returns a Integer instance representing the specified int value.

» java.util.Arrays
public static int[] copyOf(int[] original, int newLength)

» Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

» java.lang.String

public static String format(String format, Object... args)

» Returns a formatted string using the specified format string and
arguments.

68

