
Information hiding

1

The problem with public fields
 recall that our point class has two public fields

public class SimplePoint2 {

public float x;

public float y;

// implementation not shown

}

2

The problem with public fields
 clients are expected to manipulate the fields directly

public class Rectangle {

private SimplePoint2 bottomLeft;

private SimplePoint2 topRight;

public float area() {

float width = topRight.x - bottomLeft.x;

float height = topRight.y - bottomLeft.y;

return width * height;

}

}

3

The problem with public fields
 the problem with public fields is that they become a

permanent part of the API of your class

 after you have released a class with public fields you:

 cannot change the access modifier

 cannot change the type of the field

 cannot change the name of the field

without breaking client code

4

Information hiding
 information hiding is the principle of hiding

implementation details behind a stable interface

 if the interface never changes then clients will not be
affected if the implementation details change

 for a Java class, information hiding suggests that you
should hide the implementation details of your class
behind a stable API

 fields and their types are part of the implementation details
of a class

 fields should be private; if clients need access to a field then
they should use a method provided by the class

5

6

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>Point2D</code> instance has an

* x and y coordinate.

*/

public class Point2 {

private double x;

private double y;

7

// default constructor

public Point2() {

this(0.0, 0.0);

}

// custom constructor

public Point2(double newX, double newY) {

this.set(newX, newY);

}

// copy constructor

public Point2(Point2 other) {

this(other.x, other.y);

}

Accessors
 an accessor method enables the client to gain access to

an otherwise private field of the class

 the name of an accessor method often, but not always,
begins with get

8

9

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.x;

}

// get the y coordinate

public double getY() {

return this.y;

}

Mutators
 a mutator method enables the client to modify (or

mutate) an otherwise private field of the class

 the name of an accessor method often, but not always,
begins with set

10

11

// Mutator methods: methods that change the value of a field

// set the x coordinate

public void setX(double newX) {

this.x = newX;

}

// set the y coordinate

public void setY(double newY) {

this.y = newY;

}

// set both x and y coordinates

public void set(double newX, double newY) {

this.x = newX;

this.y = newY;

}

Information hiding
 hiding the implementation details of our class gives us

the ability to change the underlying implementation
without affecting clients

 for example, we can use an array to store the coordinates

12

13

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>Point2D</code> instance has an

* x and y coordinate.

*/

public class Point2 {

private double coord[];

14

// default constructor

public Point2() {

this(0.0, 0.0);

}

// custom constructor

public Point2(double newX, double newY) {

this.coord = new double[2];

this.coord[0] = newX;

this.coord[1] = newY;

}

// copy constructor

public Point2(Point2 other) {

this(other.x, other.y);

}

15

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.coord[0];

}

// get the y coordinate

public double getY() {

return this.coord[1];

}

16

// Mutator methods: methods that change the value of a field

// set the x coordinate

public void setX(double newX) {

this.coord[0] = newX;

}

// set the y coordinate

public void setY(double newY) {

this.coord[1] = newY;

}

// set both x and y coordinates

public void set(double newX, double newY) {

this.coord[0] = newX;

this.coord[1] = newY;

}

Information hiding
 notice that:

 we changed how the point is represented by using an array
instead of two separate fields for the coordinates

 we did not change the API of the class

 by hiding the implementation details of the class we
have insulated all clients of our class from the change

17

Immutability

18

Immutability
 an immutable object is an object whose state cannot

be changed once it has been created

 examples: String, Integer, Double, and all of the other
wrapper classes

 advantages of immutability versus mutability

 easier to design, implement, and use

 can never be put into an inconsistent state after creation

 object references can be safely shared

 information hiding makes immutability possible

19

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

20 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

An immutable point class
 we can easily make an immutable version of our
Point2 class

 remove the mutator methods

 make the fields final (they are already private)

 make the class final (which satisfies Rule 2 from the
recipe)

21

22

/**

* A simple class for immutable points in 2D Cartesian

* coordinates. Every <code>IPoint2D</code> instance has an

* x and y coordinate.

*/

public final class IPoint2 {

final private double x;

final private double y;

23

// default constructor

public IPoint2() {

this(0.0, 0.0);

}

// custom constructor

public IPoint2(double newX, double newY) {

this.x = newX;

this.y = newY;

}

// copy constructor

public IPoint2(Point2 other) {

this(other.x, other.y);

}

24

// Accessor methods (methods that get the value of a field)

// get the x coordinate

public double getX() {

return this.x;

}

// get the y coordinate

public double getY() {

return this.y;

}

// No mutator methods

// toString, hashCode, equals are all OK to have

}

Class invariants

25

Class invariants
 a class invariant is a condition regarding the state of a

an object that is always true

 the invariant established when the object is created and
every public method of the class must ensure that the
invariant is true when the method finishes running

 immutability is a special case of a class invariant

 once created, the state of an immutable object is always the
same

 information hiding makes maintaining class invariants
possible

26

Class invariants
 suppose we want to create a point class where the

coordinates of a point are always greater than or equal
to zero

 the constructors must not allow a point to be created with
negative coordinates

 if there are mutator methods then those methods must not
set the coordinates of the point to a negative value

27

28

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>PPoint2D</code> instance has an

* x and y coordinate that is greater than or equal to zero.

*

* @author EECS2030 Winter 2016-17

*

*/

public class PPoint2 {

private double x; // invariant: this.x >= 0

private double y; // invariant: this.y >= 0

29

/**

* Create a point with coordinates <code>(0, 0)</code>.

*/

public PPoint2() {

this(0.0, 0.0); // invariants are true

}

/**

* Create a point with the same coordinates as

* <code>other</code>.

*

* @param other another point

*/

public PPoint2(PPoint2 other) {

this(other.x, other.y); // invariants are true

// because other is a PPoint2

}

30

/**

* Create a point with coordinates <code>(newX, newY)</code>.

*

* @param newX the x-coordinate of the point

* @param newY the y-coordinate of the point

*/

public PPoint2(double newX, double newY) {

// must check newX and newY first before setting this.x and this.y

if (newX < 0.0) {

throw new IllegalArgumentException(

"x coordinate is negative");

}

if (newY < 0.0) {

throw new IllegalArgumentException(

"y coordinate is negative");

}

this.x = newX; // invariants are true

this.y = newY; // invariants are true

}

31

/**

* Returns the x-coordinate of this point.

*

* @return the x-coordinate of this point

*/

public double getX() {

return this.x; // invariants are true

}

/**

* Returns the y-coordinate of this point.

*

* @return the y-coordinate of this point

*/

public double getY() {

return this.y; // invariants are true

}

32

/**

* Sets the x-coordinate of this point to <code>newX</code

*

* @param newX the new x-coordinate of this point

*/

public void setX(double newX) {

// must check newX before setting this.x

if (newX < 0.0) {

throw new IllegalArgumentException("x coordinate is negative");

}

this.x = newX; // invariants are true

}

/**

* Sets the y-coordinate of this point to <code>newY</code>.

*

* @param newY the new y-coordinate of this point

*/

public void setY(double newY) {

// must check newY before setting this.y

if (newY < 0.0) {

throw new IllegalArgumentException("y coordinate is negative");

}

this.y = newY; // invariants are true

}

33

/**

* Sets the x-coordinate and y-coordinate of this point to

* <code>newX</code> and <code>newY</code>, respectively.

*

* @param newX the new x-coordinate of this point

* @param newY the new y-coordinate of this point

*/

public void set(double newX, double newY) {

// must check newX and newY before setting this.x and this.y

if (newX < 0.0) {

throw new IllegalArgumentException(

"x coordinate is negative");

}

if (newY < 0.0) {

throw new IllegalArgumentException(

"y coordinate is negative");

}

this.x = newX; // invariants are true

this.y = newY; // invariants are true

}

Removing duplicate code
 notice that there is a lot of duplicate code related to

validating the coordinates of the point

 one constructor is almost identical to set(double,
double)

 set(double, double) repeats the same validation code as
setX(double) and setY(double)

 we should try to remove the duplicate code by
delegating to the appropriate methods

34

35

/**

* Create a point with coordinates <code>(newX, newY)</code

*

* @param newX the x-coordinate of the point

* @param newY the y-coordinate of the point

*/

public PPoint2(double newX, double newY) {

this.set(newX, newY); // use set to ensure

// invariants are true

}

36

/**

* Sets the x-coordinate of this point to <code>newX</code>.

*

* @param newX the new x-coordinate of this point

*/

public void setX(double newX) {

this.set(newX, this.y); // use set to ensure

// invariants are true

}

/**

* Sets the y-coordinate of this point to <code>newY</code>.

*

* @param newY the new y-coordinate of this point

*/

public void setY(double newY) {

this.set(this.x, newY); // use set to ensure

// invariants are true

}

compareTo

37

Comparable Objects

38

 many value types have a natural ordering

 that is, for two objects x and y, x is less than y is meaningful

 Short, Integer, Float, Double, etc

 Strings can be compared in dictionary order

 Dates can be compared in chronological order

 you might compare points by their distance from the origin

 if your class has a natural ordering, consider
implementing the Comparable interface

 doing so allows clients to sort arrays or Collections of your
object

Interfaces

39

 an interface is (usually) a group of related methods
with empty bodies

 the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

 a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

40

 Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

 Throws a ClassCastException if the specified object
type cannot be compared to this object

 suppose that we want to compare points by their
distance from the origin

Point2 compareTo

41

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

if (thisDist > otherDist) {

return 1;

}

else if (thisDist < otherDist) {

return -1;

}

return 0;

}

Point2 compareTo
 don't forget what you learned in previous courses

 you should delegate work to well-tested components where
possible

 for distances, we need to compare two double values

 java.lang.Double has methods that do exactly this

42

Point2 compareTo

43

public class Point2 implements Comparable<Point2> {

// fields, constructors, methods...

@Override

public int compareTo(Point2 other) {

double thisDist = Math.hypot(this.x, this.y);

double otherDist = Math.hypot(other.x, other.y);

return Double.compare(thisDist, otherDist);

}

Comparable Contract

44

1. the sign of the returned int must flip if the order of
the two compared objects flip

 if x.compareTo(y) > 0 then y.compareTo(x) < 0

 if x.compareTo(y) < 0 then y.compareTo(x) > 0

 if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

45

2. compareTo() must be transitive

 if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

 if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

 if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

46

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be the
same

Consistency with equals

47

 an implementation of compareTo() is said to be
consistent with equals() when

if x.compareTo(y) == 0 then

x.equals(y) == true

 and

if x.equals(y) == true then

x.compareTo(y) == 0

Not in the Comparable Contract

48

 it is not required that compareTo() be consistent with
equals()

 that is

if x.compareTo(y) == 0 then

x.equals(y) == false is acceptable

 similarly

if x.equals(y) == true then

x.compareTo(y) != 0 is acceptable

 try to come up with examples for both cases above

 is Point2 compareTo consistent with equals?

Implementing compareTo
 if you are comparing fields of type float or double

you should use Float.compare or Double.compare
instead of <, >, or ==

 if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically

 TreeSet, TreeMap

 many methods in the utility classes Collections and
Arrays

49

Mixing Static and Non-Static

50

static Fields

51

 a field that is static is a per-class member

 only one copy of the field, and the field is associated with
the class

 every object created from a class declaring a static field shares the
same copy of the field

 static fields are used when you really want only one
common instance of the field for the class

 less common than non-static fields

Example

52

 a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Oracle's Java Tutorial
public class Bicycle {
// some other fields here...
private static int numberOfBicycles = 0;

public Bicycle() {
// set some non-static fields here...
Bicycle.numberOfBicycles++;

}

public static int getNumberOfBicyclesCreated() {
return Bicycle.numberOfBicycles;

}
}

note: not
this.numberOfBicycles++

[notes 4.3]

 why does numberOfBicycles have to be static?

 because we really want one common value for all Bicycle
instances

 what would happen if we made numberOfBicycles
non-static?

 every Bicycle would think that there was a different
number of Bicycle instances

53

54

 another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled = 0;
private static int numTimesYCalled = 0;

public void xMethod() {
// do something... and then update counter
++X.numTimesXCalled;

}

public void yMethod() {
// do something... and then update counter
++X.numTimesYCalled;

}
}

 is it useful to add the following to Point2?

public static final Point2 ORIGIN = new Point2(0.0, 0.0);

55

Mixing Static and Non-static Fields

56

 a class can declare static (per class) and non-static (per
instance) fields

 a common textbook example is giving each instance a
unique serial number

 the serial number belongs to the instance

 therefore it must be a non-static field

public class Bicycle {
// some attributes here...
private static int numberOfBicycles = 0;

private int serialNumber;

// ...

[notes 4.3.2]

57

 how do you assign each instance a unique serial
number?

 the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

 could require that the client provide a serial number
using the constructor

 instance has no guarantee that the client has provided a
valid (unique) serial number

58

 the class can provide unique serial numbers using
static fields

 e.g. using the number of instances created as a serial
number

public class Bicycle {
// some attributes here...

private static int numberOfBicycles = 0;
private int serialNumber;

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.numberOfBicycles;
Bicycle.numberOfBicycles++;

}
}

59

 a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...
private static int numberOfBicycles = 0;

private static final
SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.serialSource.getNext();
Bicycle.numberOfBicycles++;

}

}

but you would need
an implementation of
this class

Static Methods

60

 recall that a static method is a per-class method

 client does not need an object to invoke the method

 client uses the class name to access the method

Static Methods

61

 a static method can use only static fields of the
class

 static methods have no this parameter because a static
method can be invoked without an object

 without a this parameter, there is no way to access non-
static fields

 non-static methods can use all of the fields of a class
(including static ones)

62

public class Bicycle {
// some attributes, constructors, methods here...

public static int getNumberCreated()
{
return Bicycle.numberOfBicycles;

}

public int getSerialNumber()
{
return this.serialNumber;

}

public void setNewSerialNumber()
{
this.serialNumber = Bicycle.serialSource.getNext();

}
}

static method
can only use
static fields

non-static method
can use

non-static fields

and static fields

Static factory methods
 a common use of static methods in non-utility classes

is to create a static factory method

 a static factory method is a static method that returns an
instance of the class

 called a factory method because it makes an object and
returns a reference to the object

 you can use a static factory method to create methods
that behave like constructors

 they create and return a reference to a new instance

 unlike a constructor, the method has a name

63

Static factory methods
 recall our point class

 suppose that you want to provide a constructor that
constructs a point given the polar form of the point

64

𝑥

𝑦

𝜃

𝑟

𝑟 cos 𝜃
𝑟 sin 𝜃

65

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public Point2(double r, double theta) {

this(r * Math.cos(theta), r * Math.sin(theta));

}

Illegal overload; both
constructors have the
same signature.

Static factory methods
 we can eliminate the problem by replacing the second

constructor with a static factory method

66

67

public class Point2 {

private double x;

private double y;

public Point2(double x, double y) {

this.x = x;

this.y = y;

}

public static Point2 polar(double r, double theta) {

double x = r * Math.cos(theta);

double y = r * Math.sin(theta);

return new Point2(x, y);

}

Static Factory Methods

68

 many examples in Java API
 java.lang.Integer

public static Integer valueOf(int i)

 Returns a Integer instance representing the specified int value.

 java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

 Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

 java.lang.String

public static String format(String format, Object... args)

 Returns a formatted string using the specified format string and
arguments.

