
Non-static classes

1

Non-static classes
 a utility class has features (fields and methods) that

are all static

 all features belong to the class

 therefore, you do not need objects to use those features

 a well implemented utility class should have a single, empty private
constructor to prevent the creation of objects

 most Java classes are not utility classes

 they are intended to be used to create to objects

 each object has its own copy of all non-static fields

 it is also useful to imagine that each object has its own copy of all
non-static methods

2

Why objects?
 each object has its own copy of all non-static fields

 this allows objects to have their own state

 in Java the state of an object is the set of current values of all of its
non-static fields

 e.g., we can create multiple SimplePoint2 objects that all
represent different two-dimensional points

3

4

SimplePoint2 x = new SimplePoint2(1, 2);

SimplePoint2 y = new SimplePoint2(-3, 8);

SimplePoint2 z = new SimplePoint2(5, 13);

64 client

x 600a

y 700a

z 800a

100 SimplePoint2

class

x

y

600 SimplePoint2

object

x 1

y 2

700 SimplePoint2

object

x -3

y 8

800 SimplePoint2

object

x 5

y 13

point (1, 2)

point (-3, 8)

point (5, 13)

Implementing classes

5

 many classes represent kinds of values

 examples of values: name, date, colour, mathematical point
or vector

 Java examples: String, Date, Integer

 when implementing a class you need to choose
appropriate fields to represent the state of each object

 consider implementing a class that represents 2-
dimensional points

 a possible implementation would have:

 a field to represent the x-coordinate of the point

 a field to represent the y-coordinate of the point

6

/**

* A simple class for representing points in 2D Cartesian

* coordinates. Every <code>SimplePoint2D</code> instance has a

* public x and y coordinate that can be directly accessed

* and modified.

*

* @author EECS2030 Winter 2016-17

*

*/

public class SimplePoint2 {

public float x;

public float y;

}

public class: any client can use
this class

public fields: any client can use
these fields by name

Using SimplePoint2
 even in its current form, we can use SimplePoint2 to

create and manipulate point objects

7

8

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

}

Using SimplePoint2
 notice that printing a point is somewhat inconvenient

 we have to manually compute a string representation of the
point

 initializing the coordinates of the point is somewhat
inconvenient

 we have to manually set the x and y coordinates

 we get unusual results when using equals

9

10

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2();

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Encapsulation
 we can add features to SimplePoint2 to make it easier

to use

 we can add methods that use the fields of SimplePoint2 to
perform some sort of computation (like compute a string
representation of the point)

 we can add constructors that set the values of the fields of a
SimplePoint2 object when it is created

 in object oriented programming the term
encapsulation means bundling data and methods that
use the data into a single unit

11

Constructors
 the purpose of a constructor is to initialize the state of

an object

 it should set the values of all of the non-static fields to
appropriate values

 a constructor:

 must have the same name as the class

 never returns a value (not even void)

 constructors are not methods

 can have zero or more parameters

12

Default constructor
 the default constructor has zero parameters

 the default constructor initializes the state of an object
to some well defined state chosen by the implementer

13

14

public class SimplePoint2 {

public float x;

public float y;

/**

* The default constructor. Sets both the x and y coordinate

* of the point to 0.0f.

*/

public SimplePoint2() {

this.x = 0.0f;

this.y = 0.0f;

}

Inside a constructor, the keyword
this is a reference to the object
that is currently being initialized.

Custom constructors
 a class can have multiple constructors but the

signatures of the constructors must be unique

 i.e., each constructor must have a unique list of parameter
types

 it would be convenient for clients if SimplePoint2
had a constructor that let the client set the x and y
coordinate of the point

15

16

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of the point to the argument

* values.

*

* @param x the x coordinate of the point

* @param y the y coordinate of the point

*/

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}
this.x : the field named x of this point
this.y : the field named y of this point
x : the parameter named x of the constructor
y : the parameter named y of the constructor

17

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

64 client

p

600 SimplePoint2 object

x

y

700 SimplePoint2
constructor

this 600a

x -1.0f

y 1.5f

1. new allocates memory for a
SimplePoint2 object

2. the SimplePoint2 constructor is
invoked by passing the memory
address of the object and the
arguments -1.0f and 1.5f to the
constructor

3. the constructor runs, setting the
values of the fields this.x and
this.y

4. the value of p is set to the
memory address of the
constructed object

-1.0f

1.5f

600a

fields

parameters

this
 in our constructor

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

there are parameters with the same names as fields

 when this occurs, the parameter has precedence over the
field

 we say that the parameter shadows the field

 when shadowing occurs you must use this to refer to the field

18

Custom constructors
 adding the constructor SimplePoint2(float x,

float y) allows the client to simplify their code

19

20

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2();

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2();

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

21

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p.x, p.y);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Copy constructor
 a copy constructor initializes the state of an object by

copying the state of another object (having the same
type)

 it has a single parameter that is the same type as the class

22

23

public class SimplePoint2 {

public float x;

public float y;

/**

* Sets the x and y coordinate of this point by copying

* the x and y coordinate of another point.

*

* @param other a point to copy

*/

public SimplePoint2(SimplePoint2 other) {

this.x = other.x;

this.y = other.y;

}

Copy constructor
 adding a copy constructor allows the client to simplify

their code

24

25

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p.x, p.y);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

26

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

Avoiding Code Duplication
 notice that the constructor bodies are almost identical

to each other

 all three constructors have 2 lines of code

 all three constructors set the x and y coordinate of the point

 whenever you see duplicated code you should consider
moving the duplicated code into a method

 in this case, one of the constructors already does
everything we need to implement the other
constructors…

27

Constructor chaining
 a constructor is allowed to invoke another constructor

 when a constructor invokes another constructor it is
called constructor chaining

 to invoke a constructor in the same class you use the
this keyword

 if you do this then it must occur on the first line of the
constructor body

 but you cannot use this in a method to invoke a constructor

 we can re-write two of our constructors to use
constructor chaining...

28

invokes

invokes

29

public class SimplePoint2 {

public float x;

public float y;

public SimplePoint2() {

this(0.0f, 0.0f);

}

public SimplePoint2(float x, float y) {

this.x = x;

this.y = y;

}

public SimplePoint2(SimplePoint2 other) {

this(other.x, other.y);

}

Methods
 a method performs some kind of computation

 a non-static method can use any field belonging to an
object in the computation

 for example, we can provide a non-static method that
allows the client to set both the x and y coordinates of
the point

30

31

/**

* Sets the x and y coordinate of this point to the argument

* values.

*

* @param x the new x coordinate of the point

* @param y the new y coordinate of the point

*/

public void set(float x, float y) {

this.x = x;

this.y = y;

}

Obligatory methods
 in Java every class is actually a child class of the class
java.lang.Object

 this means that every class has methods that it inherits
from java.lang.Object

 there are 11 such methods, but 3 are especially important to us:

 toString

 equals

 hashCode

32

toString
 the toString method should return a textual

representation of the object

 a textual representation of the point p

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

might be something like (-1.0, 1.5)

33

34

/**

* Returns a string representation of this point. The string

* representation of this point is the x and y-coordinates

* of this point, separated by a comma and space, inside a pair

* of parentheses.

*

* @return a string representation of this point

*/

@Override

public String toString() {

return "(" + this.x + ", " + this.y + ")";

}

@Override is an optional annotation
that we can use to tell the compiler
that we are redefining the behavior
of the toString method that was
inherited from java.lang.Object

toString
 by providing toString clients can now easily get a

string representation of a SimplePoint2 object

35

36

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = (" + p.x + ", " + p.y + ")");

SimplePoint2 q = new SimplePoint2(p);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

37

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = " + p.toString());

SimplePoint2 q = new SimplePoint2(p);

q.x = p.x;

q.y = p.y;

// equals?

System.out.println("p.equals(q) is: " + p.equals(q));

}

equals

38

 suppose you write a value class that extends Object
but you do not override equals()

 what happens when a client tries to use equals()?

 Object.equals() is called

// SimplePoint2 client

SimplePoint2 p = new SimplePoint2(1f, 2f);
System.out.println(p.equals(p)); // true

SimplePoint2 p2 = p;
System.out.println(p2.equals(p)); // true

SimplePoint2 p3 = new SimplePoint2(1f, 2f);
System.out.println(p3.equals(p)); // false!

[notes 3.2.4]

39

64 client

p

p2

p3

600 SimplePoint2
object

x 1

y 2

700 SimplePoint2
object

x 1

y 2

600a

600a

700a

p and p2 refer to the object at
address 600

p3 refers to the object at
address 700

equal
states
but

different
objects

SimplePoint2 p = new SimplePoint2(1f, 2f);
SimplePoint2 p2 = p;
SimplePoint2 p3 = new SimplePoint2(1f, 2f);

Object.equals

40

 Object.equals checks if two references refer to the
same object

 x.equals(y) is true if and only if x and y are references to
the same object

SimplePoint2.equals

41

 most value classes should support logical equality

 an instance is equal to another instance if their states are
equal

 e.g. two points are equal if their x and y coordinates both have the
same values

42

 implementing equals() is surprisingly hard
 "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals(). Look into the best Java source code or open an
arbitrary Java textbook and take a look at what you find.
Chances are good that you will find several different
approaches and a variety of recommendations."

 Angelika Langer, Secrets of equals() – Part 1
 http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

43

 what we are about to do does not always produce the
result you might be looking for

 but it is always satisfies the equals() contract

 and it's what the notes and textbook do

EECS2030 Requirements for equals
1. an instance is equal to itself

2. an instance is never equal to null

3. only instances of the exact same type can be equal

4. instances with the same state are equal

44

1. An Instance is Equal to Itself

45

 x.equals(x) should always be true

 also, x.equals(y) should always be true if x and y are
references to the same object

 you can check if two references are equal using ==

46

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

}

2. An Instance is Never Equal to null

47

 Java requires that x.equals(null) returns false

 and you must not throw an exception if the argument
is null

 so it looks like we have to check for a null argument...

48

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

}

3. Instances of the same type can be equal

49

 the implementation of equals() used in the notes and
the textbook is based on the rule that an instance can
only be equal to another instance of the same type

 you can find the class of an object using
Object.getClass()

public final Class<? extends Object> getClass()

Returns the runtime class of an object.

50

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

}

Instances with Same State are Equal

51

 recall that the value of the fields of an object define the
state of the object

 two instances are equal if all of their fields are equal

 unfortunately, we cannot yet retrieve the attributes of
the parameter obj because it is declared to be an
Object in the method signature

 we need a cast

52

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

SimplePoint2 other = (SimplePoint2) obj;

}

Instances with Same State are Equal

53

 there is a recipe for checking equality of fields

1. if the field is a primitive type other than float or double
use ==

2. if the field type is float use
Float.floatToLongBits

3. if the attribute type is double use
Double.doubleToLongBits

4. if the field is an array consider Arrays.equals

5. if the field is a reference type use equals, but beware of
fields that might be null

54

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

SimplePoint2 other = (SimplePoint2) obj;

if (Float.floatToIntBits(this.x) != Float.floatToIntBits(other.x)) {

return false;

}

if (Float.floatToIntBits(this.y) != Float.floatToIntBits(other.y)) {

return false;

}

return true;

}

equals
 our version of equals compares the state of two points

to determine equality

 now two points with the same coordinates are considered
equal

55

56

public static void main(String[] args) {

// create a point

SimplePoint2 p = new SimplePoint2(-1.0f, 1.5f);

// set its coordinates

p.x = -1.0f;

p.y = 1.5f;

// get its coordinates

System.out.println("p = " + p.toString());

SimplePoint2 q = new SimplePoint2(p);

q.x = p.x;

q.y = p.y;

// equals? yes!

System.out.println("p.equals(q) is: " + p.equals(q));

} true

The equals Contract

57

 for reference values equals is

1. reflexive

2. symmetric

3. transitive

4. consistent

5. must not throw an exception when passed null

The equals contract: Reflexivity

58

1. reflexive :

 an object is equal to itself

 x.equals(x) is true

The equals contract: Symmetry

59

2. symmetric :

 two objects must agree on whether they are equal

 x.equals(y) is true if and only if y.equals(x) is true

The equals contract: Transitivity

60

3. transitive :

 if a first object is equal to a second, and the second object
is equal to a third, then the first object must be equal to
the third

 if
x.equals(y) is true
and
y.equals(z) is true
then
x.equals(z) must be true

The equals contract: Consistency

61

4. consistent :

 repeatedly comparing two objects yields the same result
(assuming the state of the objects does not change)

The equals contract: Non-nullity

62

5. x.equals(null) is always false and never throws
an exception

hashCode

63

 if you override equals you must override hashCode

 otherwise, the hashed containers won't work properly

 recall that we did not override hashCode for SimplePoint2

// client code somewhere
SimplePoint2 p = new SimplePoint2(1f, -2f);

HashSet<SimplePoint2> h = new HashSet<>();
h.add(p);
System.out.println(h.contains(p)); // true

SimplePoint2 q = new SimplePoint2(1f, -2f);
System.out.println(h.contains(q)); // false!

[notes 3.3.5]

Arrays as Containers

64

 suppose you have a list of unique SimplePoint2 points

 how do you compute whether or not the list contains a
particular point?

 write a loop to examine every element of the list

public static boolean
hasPoint(SimplePoint2 p, List<SimplePoint2> points) {

for(SimplePoint2 point : points) {
if (point.equals(p)) {
return true;

}
}
return false;

}

65

 called linear search or sequential search

 doubling the length of the array doubles the amount of
searching we need to do

 if there are n elements in the list:

 best case

 the first element is the one we are searching for

 1 call to equals

 worst case

 the element is not in the list

 n calls to equals

 average case

 the element is somewhere in the middle of the list

 approximately (n/2) calls to equals

Hash Tables

66

 you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

67

 to insert an object a, the hash table calls a.hashCode()
method to compute which bucket to put the object
into

0 1 2 3 ... N

a.hashCode() 2a

b.hashCode() 0b

c.hashCode() Nc
d.hashCode() Nd

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

68

 to insert an object a, the hash table calls a.hashCode()
method to compute which bucket to put the object
into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

69

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

70

 to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

71

 searching a hash table is usually much faster than
linear search
 doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

 if there are n elements in the hash table:
 best case

 the bucket is empty, or the first element in the bucket is the one
we are searching for
 0 or 1 call to equals

 worst case
 all n of the elements are in the same bucket

 n calls to equals

 average case
 the element is in a bucket with a small number of other elements

 a small number of calls to equals

Object.hashCode

72

 if you don't override hashCode, you get the
implementation from Object.hashCode

 Object.hashCode uses the memory address of the object to
compute the hash code

73

 note that p and q refer to distinct objects

 therefore, their memory locations must be different

 therefore, their hash codes are different (probably)

 therefore, the hash table looks in the wrong bucket (probably)
and does not find the complex number even though p.equals(q)

is true

// client code somewhere
SimplePoint2 p = new SimplePoint2(1f, -2f);

HashSet<SimplePoint2> h = new HashSet<>();
h.add(p);
System.out.println(h.contains(p)); // true

SimplePoint2 q = new SimplePoint2(1f, -2f);
System.out.println(h.contains(q)); // false!

Implementing hashCode

74

 the basic idea is generate a hash code using the fields
of the object

 it would be nice if two distinct objects had two distinct
hash codes

 but this is not required; two different objects can have the
same hash code

 it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

A bad (but legal) hashCode

75

public class SimplePoint2 {

public float x;

public float y;

@Override

public int hashCode() {

return 1;

}

 this will cause a hashed container to put all points into
the same bucket

A slightly better hashCode

76

public class SimplePoint2 {

public float x;

public float y;

@Override

public int hashCode() {

return (int) (this.x + this.y);

}

A good hashCode

77

public class SimplePoint2x {

public float x;

public float y;

@Override

public int hashCode() {

return Objects.hash(this.x, this.y);

}

eclipse hashCode
 eclipse will also generate a hashCode method for you

 Source  Generate hashCode() and equals()...

 it uses an algorithm that

 “... yields reasonably good hash functions, [but] does not
yield state-of-the-art hash functions, nor do the Java
platform libraries provide such hash functions as of release
1.6. Writing such hash functions is a research topic, best left
to mathematicians and theoretical computer scientists.”

 Joshua Bloch, Effective Java 2nd Edition

78

