Ground Transformation

The ground transformation DB_g of DB is defined as follows:

- for each clause \mathcal{C} in DB
 - for each grounding substitution θ from the variables of \mathcal{C} to constants in L_{DB}
 - add clause $\mathcal{C}\theta$ to DB_g

Call $\mathcal{C}\theta$ a ground rule.

Note that DB_g may be infinite, because an infinite number of constants exist in the domain of discourse as we have defined it. This does not pose a problem, as we only use DB_g in definitions and never in actuality transform a DB into DB_g.
Unfounded Sets
for the Well-founded Semantics

Let a program \mathcal{P}, its associated Herbrand base $\mathbf{HB}_\mathcal{P}$, and a partial interpretation I be given. We say $\mathcal{A} \subseteq I$ is an unfounded set of \mathcal{P} with respect to I if each atom $p \in \mathcal{A}$ satisfies the following condition: For each ground rule r of \mathcal{P} whose head is p, (at least) one of the following holds:

1. Some positive subgoal q or negative subgoal $\text{not}(q)$ of the body occurs in $\neg I$ (i.e., is consistent with I);
2. Some positive subgoal of the body occurs in \mathcal{A}.

A literal that makes 1 or 2 true is called a witness of unusability for rule r (with respect to I).

There is a greatest unfounded set with respect to I.

Horn Transformation
for the Stable Model Semantics

The **Horn transformation** \(\text{horn}(\text{DB}, I) \) of ground \(\text{DB} \) with respect to interpretation \(I \) is defined as follows:

- for each clause \(\mathcal{C} \) in \(\text{DB} \) (which is ground since \(\text{DB} \) is)
 - let \(\mathcal{C} \) be represented by

 \[
 a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m, \text{not } d \langle \vec{z} \rangle_1, \ldots, \text{not } d \langle \vec{z} \rangle_n.
 \]

 if \(\{ d \langle \vec{z} \rangle_1, \ldots, d \langle \vec{z} \rangle_n \} \cap I \neq \emptyset \) then
 * do nothing (discard the clause)
 else
 * add the clause

 \[
 a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m.
 \]

 to \(\text{horn}(\text{DB}, I) \)
Stable Model Semantics

The interpretation I is a stable model of DB iff

$$I = M_{DB}$$

Here, M stands for the minimum model.

Let us denote the set of stable models of DB by S_{DB}. We call a database DB stable iff DB has at least one stable model; that is, S_{DB} is non-empty.

Well-Supported Models
Equivalent to Stable Model Semantics

A model \(I \subseteq \mathbf{HB}_{\mathbf{DB}} \) is well supported with respect to \(\mathbf{DB} \) iff there exists a well founded partial order ‘\(\succ /2 \)’ on \(I \times I \) such that, for each atom \(p \langle \vec{c} \rangle \in I \), there exists a rule \(C \) for \(p \) in \(\mathbf{DB} \),

\[
C: \quad p \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m, \textbf{not} \ d \langle \vec{z} \rangle_1, \ldots, \textbf{not} \ d \langle \vec{z} \rangle_n.
\]

and a grounding substitution \(\theta \) from the variables of \(C \) to constants in \(\mathbf{L}_{\mathbf{DB}} \) such that \(p \langle \vec{c} \rangle = p \langle \vec{x} \rangle \theta \) and

1. \(b \langle \vec{y} \rangle_1 \theta, \ldots, b \langle \vec{y} \rangle_m \theta \in I \),
2. \(d \langle \vec{z} \rangle_1 \theta, \ldots, d \langle \vec{z} \rangle_n \theta \not\in I \), and
3. \(p \langle \vec{c} \rangle \succ b \langle \vec{y} \rangle_i \theta \), for every \(i \in \{1, \ldots, m\} \).

\(I \in \mathcal{S}_{\mathbf{DB}} \) (\(I \) is a stable model of \(\mathbf{DB} \)) iff \(I \) is a well supported model of \(\mathbf{DB} \).

Well-Founded Semantics
Advantages and Disadvantages

Advantages

• There is always exactly one well-founded partial model.
• For datalog¬, polynomial (in the size of the database!) algorithms are known.

Disadvantages

• Intuitively seems weak to some.
 – E.g., Cannot reason by case in the negative.
Stable Model Semantics
Advantages and Disadvantages

Advantages

• Intuitively more satisfying to some.
 – Does reason over case in the negative.
 – Each stable model is a minimal model of the database (treating \textbf{not} as if it were ‘\neg’); vice-versa is not true, though.

Disadvantages

• There are datalog-\neg databases with \textit{no} stable models.
• There are datalog-\neg databases with \textit{more than one} stable model.
 (Bothers some people.)
• For datalog-\neg, it is exponential (in the size of the database!) in worst-case to compute.
• It is not “stable”. Huh?!
 – Add a rule or delete a rule, and the database may cease to have any stable models.
For any locally stratified Datalog\(\neg\) database, there is *exactly one* stable model, and its well-founded model is *complete*. Also

- the perfect model,
- the stable model, and
- the well-founded model

are all equivalent.