Ground Transformation

The ground transformation DB_g of DB is defined as follows:

- for each clause C in DB
 - for each grounding substitution θ from the variables of C to constants in L_{con}
 - add clause $C\theta$ to DB_g

Call $C\theta$ a ground rule.

Note that DB_g may be infinite, because an infinite number of constants exist in the domain of discourse as we have defined it. This does not pose a problem, as we only use DB_g in definitions and never in actuality transform a DB into DB_g.

Unfounded Sets
for the Well-founded Semantics

Let a program \mathcal{P}, its associated Herbrand base HB_p, and a partial interpretation I be given. We say $A \subseteq I$ is an unfounded set of \mathcal{P} with respect to I if each atom $p \in A$ satisfies the following condition: For each ground rule r of \mathcal{P} whose head is p, (at least) one of the following holds:

1. Some positive subgoal q or negative subgoal $\text{not}(q)$ of the body occurs in $\neg I$ (i.e., is consistent with I);
2. Some positive subgoal of the body occurs in A.

A literal that makes 1 or 2 true is called a witness of unusability for rule r (with respect to I).

There is a greatest unfounded set with respect to I.

Horn Transformation
for the Stable Model Semantics

The Horn transformation \(\text{horn}(\text{DB}, I) \) of ground \(\text{DB} \) with respect to interpretation \(I \) is defined as follows:

- for each clause \(C \) in \(\text{DB} \) (which is ground since \(\text{DB} \) is)
 - let \(C \) be represented by
 \[
 a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m, \text{not} \quad d \langle \vec{z} \rangle_1, \ldots, \text{not} \quad d \langle \vec{z} \rangle_n.
 \]
 if \(\{ d \langle \vec{z} \rangle_1, \ldots, d \langle \vec{z} \rangle_n \} \cap I \neq \emptyset \) then
 - do nothing (discard the clause)
 else
 - add the clause
 \[
 a \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m.
 \]
 to \(\text{horn}(\text{DB}, I) \)

Stable Model Semantics

The interpretation \(I \) is a stable model of \(\text{DB} \) iff

\[
I = M_{\text{im}}
\]

Here, \(M \) stands for the minimum model.

Let us denote the set of stable models of \(\text{DB} \) by \(S_{\text{im}} \). We call a database \(\text{DB} \) stable iff \(\text{DB} \) has at least one stable model; that is, \(S_{\text{im}} \) is non-empty.

Well-Supported Models
Equivalent to Stable Model Semantics

A model $I \subseteq H_B$ is well supported with respect to DB iff there exists a well founded partial order $'>' / 2'$ on $I \times I$ such that, for each atom $p \langle \vec{c} \rangle \in I$, there exists a rule C for p in DB,

$$C: \quad p \langle \vec{x} \rangle \leftarrow b \langle \vec{y} \rangle_1, \ldots, b \langle \vec{y} \rangle_m, \text{not } d \langle \vec{z} \rangle_1, \ldots, \text{not } d \langle \vec{z} \rangle_n,$$

and a grounding substitution θ from the variables of C to constants in L_{mn} such that $p \langle \vec{c} \rangle = p \langle \vec{x} \rangle \theta$ and

1. $b \langle \vec{y} \rangle_1 \theta, \ldots, b \langle \vec{y} \rangle_m \theta \in I$,
2. $d \langle \vec{z} \rangle_1 \theta, \ldots, d \langle \vec{z} \rangle_n \theta \notin I$, and
3. $p \langle \vec{c} \rangle > b \langle \vec{y} \rangle_i \theta$, for every $i \in \{1, \ldots, m\}$.

$I \in S_{\text{mn}}$ (I is a stable model of DB) iff I is a well supported model of DB.

Well-Founded Semantics
Advantages and Disadvantages

Advantages

- There is always exactly one well-founded partial model.
- For datalog\neg, polynomial (in the size of the database!) algorithms are known.

Disadvantages

- Intuitively seems weak to some.
 - E.g., Cannot reason by case in the negative.
Stable Model Semantics
Advantages and Disadvantages

Advantages

• Intuitively more satisfying to some.
 – Does reason over case in the negative.
 – Each stable model is a minimal model of the database (treating not as if it were ‘¬’); vice-versa is not true, though.

Disadvantages

• There are datalog¬ databases with no stable models.
• There are datalog¬ databases with more than one stable model.
 (Bothers some people.)
• For datalog¬, it is exponential (in the size of the database!) in worst-case to compute.
• It is not “stable”. Huh?!
 – Add a rule or delete a rule, and the database may cease to have any stable models.

For Locally Stratified Datalog¬ Semantics?

For any locally stratified Datalog¬ database, there is exactly one stable model, and its well-founded model is complete. Also

• the perfect model,
• the stable model, and
• the well-founded model

are all equivalent.