EECS 4422/5323: Computer Vision Example Midterm Exam Questions

- Consider a pinhole camera, as governed by ideal perspective projection. Suppose that the image plane is 0.5 cm behind the pinhole and that a 1.5 meter tall object is imaged 10 meters in front of the camera. How tall will the object appear in the image? Provide your answer in cm .
- Derive the radiometric relationship between scene radiance, L, and image irradiance, E, i.e., the fundamental equation of radiometric imaging.
- Suppose that an image, $E(x, y)$, is convolved with a Gaussian point spread function,

$$
h(x, y)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{1}{2} \frac{x^{2}+y^{2}}{\sigma^{2}}\right)
$$

Beyond which frequencies will the amplitudes of the frequencies in the resulting image be reduced by one half what they were in the original image, E ?

- Derive the Gabor filter as an instance of a windowed Fourier transform. Calculate its modulation transfer function.
- Let $E(x, y)$ be an image. Calculate the Fourier transform of

$$
E(x, y) \cos (a x+b y) .
$$

Based on what you find, briefly state how taking the product of the image with the cosinusoid has altered its structure. You might find it useful to note that

$$
\cos (a x+b y)=\frac{1}{2}(\cos (a x+b y)+i \sin (a x+b y)+\cos (a x+b y)-i \sin (a x+b y))
$$

- Given a spatially quantized image, $E(i, j)$, of dimensions $N x M$ and a quantized template, $h(i, j)$, of dimensions $n x m$, give a pseudo-code implementation for convolution of E and h. You may assume that $n<N$ and $m<M$.
- The gradient squared of an image, $E(x, y)$, is given as

$$
\left(\frac{\partial E}{\partial x}\right)^{2}+\left(\frac{\partial E}{\partial y}\right)^{2}
$$

and can be used to enhance edges for edge detection. Calculate the response of this operation to an ideal step edge at an arbitrary orientation.

- Letting $E(x, y)$ represent an image and subscripts denote partial differentiation, discuss how the eigenvalues of the following matrix are related to the local image orientation structure in the region W over which information is accumulated

$$
C=\left(\begin{array}{cc}
\sum_{W} E_{x}^{2} & \sum_{W} E_{x} E_{y} \\
\sum_{W} E_{y} E_{x} & \sum_{W} E_{y}^{2}
\end{array}\right)
$$

