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EECS 4422/5323 Computer Vision 

Unit 8: ConvNets & Learning 
 
 
 
 

This presentation includes slides and figures from  
R. Duda et al., R. Fergus, S. Lazebnik and Y. LeCun. 
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Introduction: Convolutional networks 
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Key ideas 
•  Build a hierarchy of representations: From primitive features to 

mid-level abstractions to object identity. 
•  Invariance to irrelevant aspects of data increases as we go up the 

layers. 
•  Efficiency results as far fewer parameters than a fully connected 

network with same number of elemental units. 
•  Deep learning: Learn the hierarchy of internal representations. 
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Also called ConvNets, Convolutional Neural Networks & CNNs 



Introduction: Inspiration 
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Mammalian visual cortex 
•  The ventral (what) pathway in the visual cortex has multiple 

stages. 
•  Retina à LGN à V1 à V2 à V4 à PIT à AIT … 



Introduction: Hubel/Wiesel visual cortex model 
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D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981) 
•  Visual cortex consists of … 

•  a hierarchy of simply complex and hypercomplex cells .. 
•  with retinotopic organization. 

•  Based physiological recordings in cat cortex. 
•  D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s 

striate cortex. Journal of Physiology 148 (3), 574-591. 
•  D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and 

functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1), 
106-154. 

 



Introduction: An old idea for shift invariance 
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Hubel & Wiesel features + pooling 
•  Simple cells detect local features. 
•  Complex cells “pool” the outputs of simple cells within a retinotopic 

neighborhood. 



Introduction: Repeat 
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Convolutional network 
•  Hierarchical/multilayer: Features get progressively global, 

invariant and numerous. 
•  Dense features: Feature detectors applied everywhere (no 

interest points). 
•  Broadly tuned: Toward invariance. 
•  Complete recognition system: Integrates segmentation, feature 

extraction and classification.   
•  Global discriminant training: Train whole system end-to-end with a 

gradient based optimization algorithm to minimize a global loss 
function. 



Introduction: Where do the features come from? 
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What about learning the features? 
•  Learn a feature hierarchy all the way from bottom to top. 

•  In Vision: Pixels à Edges à Textons àParts à Objects à 
Scenes 

•  In language: Audio à phonemes à Words à Parts of Speech 
à Sentences à Narratives 

•  Each layer extracts features from the output of the previous layer. 
•  Train all layers jointly, end-to-end to minimize a global loss 

function. 
•  Use a gradient based optimization algorithm. 



Introduction: Repeat 
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Convolutional network 
•  Hierarchical/multilayer: Features get progressively global, 

invariant and numerous. 
•  Dense features: Feature detectors applied everywhere (no 

interest points). 
•  Broadly tuned: Toward invariance. 
•  Complete recognition system: Integrates segmentation, feature 

extraction and classification.   
•  Global discriminant training: Train whole system end-to-end with a 

gradient based optimization algorithm to minimize a global loss 
function. 



Introduction: Repeat with learning 
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Convolutional network 
•  Hierarchical/multilayer: Features get progressively global, 

invariant and numerous. 
•  Dense features: Feature detectors applied everywhere (no 

interest points). 
•  Broadly tuned: Toward invariance. 
•  Complete recognition system: Integrates segmentation, feature 

extraction and classification.   
•  Global discriminant training: Train whole system end-to-end, e.g.,  

with a gradient based optimization algorithm to minimize a global 
loss function. 



Introduction: The “traditional” approach 
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Key contrasting ideas 
•  Raw input is processed with a hand-crafted feature extractor. 
•  Features not learned. 
•  Classifier is “generic” (e.g., Nearest Neighbor, SVM, …). 
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Key contrasting ideas 
•  Raw input is processed with a hand-crafted feature extractor. 
•  Features not learned. 
•  Classifier is “generic” (e.g., Nearest Neighbor, SVM, …). 
•  Remark: As with ConvNets, there likely are multiple stages of 

internal representation, but they are hand-crafted. 
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Introduction: The “traditional” features 
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Key ideas 
•  Features are key to recent progress in recognition. 
•  Multiple of hand-designed features currently in use. 

•  Edges 
•  Corners 
•  SOE 

•  What should be the next step? 
•  Build ever better features? 
•  Leverage better classifiers? 

 



Introduction: Shallow vs. deep architectures 
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Traditional “shallow” architecture 
 
 
 
 
 
New (not really) “deep” architecture  
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Background: Perceptron (Rosenblatt 1957) 

Rosenblatt, F. (1957) The Perceptron--a 
perceiving and recognizing automaton. Report 
85-460-1, Cornell Aeronautical Laboratory. 
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Rosenblatt, F. (1957) The Perceptron--a 
perceiving and recognizing automaton. Report 
85-460-1, Cornell Aeronautical Laboratory. 



Background: Inspiration from neurons 
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Background: Multilayer neural networks 
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Rosenblatt (1962): 3 layer perceptron 
•  Multilayer perceptron for classification. 
•  Input and output layers 
•  Hidden-layer, not seen by input nor output, connected between the two. 
•  Rosenblatt, F. (1962) Principles of Neurodynamics. Washington, DC:Spartan 

Books. 



Background: Multilayer neural networks 
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Where do the connection weights come from? 



Background: Multilayer neural networks 
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Historical remark 
•  Back-propagation originally proposed in Bryson, Deham, Dreyfus (1963) Optimal 

programming problems with inequality constraints, AIAA J. 1 (11), 2544-2550. 
•  Subsequently applied to NN by Werbos (1970) in his Harvard PhD thesis, New Tools 

for Prediction and Analysis in the Behavioural Sciences. 
•  Popularized by Rumelhart, Hinton & Williams (1986) Learning representations by 

back-propagating errors, Nature 323, 533-536.   



Background: Hubel/Wiesel visual cortex model 
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D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981) 
•  Visual cortex consists of … 

•  a hierarchy of simply complex and hypercomplex cells .. 
•  with retinotopic organization. 

•  Based physiological recordings in cat cortex. 
•  D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s 

striate cortex. Journal of Physiology 148 (3), 574-591. 
•  D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and 

functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1), 
106-154. 

 



Background: Blakemore/Cooper  
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Blakemore & Cooper (1970)  
•  Cats raised in environment consisting of lines of only one orientation… 
•  … hand no cortical neurons responding to the orthogonal orientation. 
•  Suggests role of stimulus driven learning in neural development. 
•  C. Blakemore & G. Cooper (1970), Development of the brain depends 

on visual environment. Nature 228, 447-448. 
 



Background: From Hubel/Wiesel to ConvNets 
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LeCun et al. 1998 
• Neural network with special connectivity 

structure. 
•  Stack multiple layers of feature extractors. 
• Higher layers extract more global and 

invariant descriptors. 
• Classification at the end. 
•  Supervised learning via back-propagation. 



Background: Prehistory of ConvNets 
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Neocognitron (Fukushima 1980) 
•  Similar architectures were proposed earlier. 
•  Indeed, they had arguably more sophisticated learning capabilities 

(non-supervised)… 
• … as well as recurrent connections that enabled selective attention. 
•  They were even applied to the same problems. 



Background: Backpropagation 
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Feedforward operation 
•  A d-dimensional input x is presented 

to the input layer. 
•  Each input unit emits a 

corresponding component xi 

•  Each of the n hidden units computes 
its net activation netj as the inner 
product of the input layer signals with 
weights wji at the hidden unit. 

•  The hidden unit emits yj = f(netj), 
with f a nonlinear activation function. 

•  Each of the c output units function in 
the same way as the hidden units. 

•  The final emitted signals, zk = 
f(netk), are used as discriminant 
functions for classification.	

input x    x1          x2       …       xi      …        xd 

target x    t1          t2       …       ti      …        td 

output z z1 zk z2 

wkj 

wji 

y1 y3 yj yn 

              x1          x2                 xi                  xd 
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input x    x1          x2       …       xi      …        xd 

target t    t1          t2       …       tk      …        tc 
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Training error 
•  Let the training error on a 

pattern be the sum over output 
units of the squared difference 
between desired output tk given 
by a teacher and the actual 
output zk 

•  With c the length of the target 
and network output vectors and 
w all the weights in the network. 

J(w) = 1
2

tk − zk( )2
k=1

c

∑
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Learning  
•  Initialize weights to random variables. 
•  Change weights in a direction that reduces the error 

•  In component form 

     with η the learning rate that indicates the relative size of change in the 
weights. 

•  An iterative algorithm results 

with m the particular pattern presented. 

Δw = −η ∂J
∂w

Δwpq = −η
∂J
∂wpq

w(m+1) =w(m)+Δw(m)
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Hidden-to-output weight update  
•  We wish to evaluate 

•  Since the error does not depend explicitly on wkj, we use the chain rule 

     with 
 
 
 

the sensitivity of unit k and describes the overall error change as a  
function of the unit’s net activation. 

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk
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Hidden-to-output weight update  
•  We wish to evaluate 

•  Since the error does not depend explicitly on wkj, we have a problem 

     with 
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∂J
∂wkj

=
∂J
∂netk

∂netk
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= δk
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∂J
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Recall: The “chain rule”, 
let 

       h(x)=g[f(x)] 
then 

      h’(x)=g’[f(x)] f’(x) 

J = 1
2

tk − zk( )2
k=1

c

∑

zk = f (netk )

netk = wkjyj
j
∑
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Hidden-to-output weight update  
•  Assuming the activation function f is differentiable 

•  Next we evaluate the second component of the error 

     as 
 
 
 
•  So that the weight update is 

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk ) #f (netk )yj



Background: Backpropagation 

50 

Hidden-to-output weight update  
•  Assuming the activation function f is differentiable 

•  Next we evaluate the second component of the error 

     as 
 
 
 
•  So that the weight update is 

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk ) #f (netk )yj

J = 1
2

tk − zk( )2
k=1

c

∑

zk = f (netk )



Background: Backpropagation 

51 

Hidden-to-output weight update  
•  Assuming the activation function f is differentiable 

•  Next we evaluate the second component of the error 

     as 
 
 
 
•  So that the weight update is 

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk ) #f (netk )

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk ) #f (netk )yj

J = 1
2

tk − zk( )2
k=1

c

∑

zk = f (netk )



Background: Backpropagation 

52 

Hidden-to-output weight update  
•  Assuming the activation function f is differentiable 

•  Next we evaluate the second component of the error 

     as 
 
 
 
•  So that the weight update is 

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk ) #f (netk )

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk ) #f (netk )yj



Background: Backpropagation 

53 
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Hidden-to-output weight update  
•  Assuming the activation function f is differentiable 

•  Next we evaluate the second component of the error 
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Input-to-hidden weight update  
•  We wish to evaluate 

•  Since the error does not depend explicitly on wji, we use the chain rule 

•  The first term on the RHS involves all the weights 
 
 
 

the sensitivity of unit k and describes the overall error change as a  
function of the unit’s net activation. 
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Input-to-hidden weight update  
•  We wish to evaluate 
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Input-to-hidden weight update  
•  We wish to evaluate 
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Input-to-hidden weight update  
•  Now we evaluate 

 
 
 
 
 

•  The sum over output units expresses how the hidden unit yj affects error at 
each output unit. 
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Input-to-hidden weight update  
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Input-to-hidden weight update  
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Input-to-hidden weight update  
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Input-to-hidden weight update  
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Input-to-hidden weight update  
•  Now we evaluate 
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Input-to-hidden weight update  
•  We still need to evaluate the remaining two terms on the RHS of the 

error 

 
 
•  They yield as first term on the RHS involves all the weights 

•  Pulling all together, we have 
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Input-to-hidden weight update  
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Input-to-hidden weight update  
•  We still need to evaluate the remaining two terms on the RHS of the 

error 
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Input-to-hidden weight update  
•  We can further interpret the update 

•  Here, δj is the sensitivity for given (hidden) unit 
–  The sum of the individual sensitivities of the output units 
–  Weighted by the hidden-to-output weights 

–  All modulated by the derivative of the activation function, f 
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Recapitulation 
•  We seek to minimize the training error 

as a function of the all the weights, w, in the network. 
•  To do so, we employ gradient descent. 
•  The chain rule serves to push the error derivatives through the network. 
•  While we have only explicitly derived the weight updates for a 3 layer 

network, the same methodology works for ever more layers. 

J(w) = 1
2

tk − zk( )2
k=1

c
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Caveat 
•  Gradient descent, e.g., 

    only finds local minima! 

Δw = −η ∂J
∂w

w(m+1) =w(m)+Δw(m),
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Architecture: Under the hood 

Remarks 
•  Linear	Shi6	Invariant	(LSI).	
•  Local	opera9ons.	
•  Few	parameters	(PSF	weights).	
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Architecture: Under the hood 

Recall (from our recent past) 
•  If	we	mul9ply	by	and	sum	over	a	set	

of	weights,	wkj	at	year	point,	yj,	then	
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Architecture: Under the hood 

Remarks 
•  Applied	independently	per	element	
•  Popular	choices:	tanh,	sigmoid,	rec9fied	linear	unit	(ReLU).	
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Architecture: Under the hood 

Remarks 
•  Applied	independently	per	element.	
•  Enhances	strong	responses	at	expense	of	weak	responses.	
•  Popular	choices:	tanh,	sigmoid,	rec9fied	linear	unit	(ReLU).	

Convolu9on	
(learned)	
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Architecture: Under the hood 

Remarks 
• Role of pooling. 

•  Invariance to small transformations. 
•  Larger support regions “see” more of input. 

• Can be overlapped or not. 
•  Popular choices: sum and max. 
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Architecture: Under the hood 

Remarks 
• Role of normalization: 

•  Additional photometric invariance. 
•  Increased contrast. 

• Within and/or across feature maps. 
•  Before or after pooling. 
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Architecture: Under the hood 
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pooling	 Normaliza9on	

Remarks 
• Role of normalization: 

• Additional photometric invariance. 
•  Increased contrast. 

• Within and/or across feature maps. 
• Subtractive: Subtract from every value in feature map a 

weighted average of its neighbors. 
• Divisive: Divide every value in feature map by the sum (or 

standard deviation) of all feature maps. 
• Before or after pooling. 
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Looking under the hood 
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Questions 
•  What can be said about the nature of the learned 

representations? 
•  What types of information do they capture? 

 

Learned internal representation 
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Trainable	
Feature	
extractor	

Trainable
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Layer 1 
•  Learned PSFs appear as oriented bandpass kernels. 
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Layer 1 
•  Top nine patches from images giving maximal response for a filter 

following training. 
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Layer 2 
•  Top nine patches from images giving maximal response for a filter 

following training. 
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Layer 5 
•  Top nine patches from images giving maximal response for a filter 

following training. 
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Learned feature maps depend on training data 
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Learned feature maps depend on training data 
•  Maps trained on handwritten digits. 
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Traditional architecture 
 
 
 
 
 
ConvNet architecture  
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Outline 

•  Introduction 
•  Background 
•  Architecture 
•  Examples 
•  Summary 
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Examples 

Sampling of ConvNet success stories 
•  Handwritten digits 
•  Simple recognition 
•  Generic object recognition 
•  Face detection 
•  Driving 
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Examples: ConvNet success stories 

Handwritten digit recognition  
•  MNIST Handwritten Digit Dataset 
•  60,000 training samples 
•  10,000 test samples 
•  Ciresan et al. 2011: 0.17% error 
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Examples: ConvNet success stories 

Traffic sign recognition  
•  Human error rate: 1.16% 
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Examples: ConvNet success stories 

Traffic sign recognition  
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Strong performance in simple 
recognition tasks 
•  But less good with more complicated 

datasets (e.g., Caltech-101) 
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Examples: ConvNet success stories 

Traffic sign recognition  
•  Human error rate: 1.16% 
•  Ciresan et al. 2011: 0.56% error 

Strong performance in simple 
recognition tasks 
•  But less good with more complicated 

datasets (e.g., Caltech-101) 
•  Until recently… 
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Examples: ConvNet success stories 

ImageNet Challenge 2012  
•  ~14 million labeled image; 20K 

classes 
•  Gathered from Internet 
•  Human labels via Amazon Turk 
•  Challenge: 1.2 million test images; 

1000 classes 



113 

Examples: ConvNet success stories 

Krizhevsky, Sutskever & Hinton 2012  
•  Similar to LeCun et al. 1998, but … 
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Examples: ConvNet success stories 

Krizhevsky, Sutskever & Hinton 2012  
•  Similar to LeCun et al. 1998, but … 
•  Bigger model: 7 hidden layers, 650,000 units, 60,000,000 params 
•  More training data: 10^6 vs. 10^3 images 
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Examples: ConvNet success stories 

ImageNet Challenge 2012: Results 
•  Top performer: Krizhevsky et al: 16.4% error. 
•  Next best (non-ConvNet): 26.2% error. 



117 

Examples: ConvNet success stories 

ImageNet Challenge 2012: Results 
•  Top performer: Krizhevsky et al: 16.4% error. 
•  Next best (non-ConvNet): 26.2% error. 
Why? 
•  More training data; more computational resources. 
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Examples: ConvNet success stories 

Face detection & pose recognition: Osadchy et al., 2007 
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Examples: ConvNet success stories 

Driving: LeCun et al. 2005 
•  Mobile platform with two cameras 
•  Network trained from recorded stereo video + human steering angles. 
•  Result maps stereo images to steering angles to avoid obstacles. 
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Examples: Industry 

Industry labs actively pursuing ConvNets include 
•  Facebook: Face and object recognition 
•  France Telcom: Face detection, HCI, handheld apps  
•  Google: OCR, face & license plate removal from StreetView 
•  Microsoft: OCR, handwriting and speech recognition 
•  NEC: Cancer cell detection, automotive apps 
•  Vidient: Video surveillance 
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Outline 

•  Introduction 
•  Background 
•  Architecture 
•  Examples 
•  Summary 
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Summary 
ConvNets provide 
•  Hierarchical representation for invariant pattern recognition that is 

–  learning based  
–  biologically inspired 
–  recently enabled through increased computation power and large 

amounts of training data 
•  Success on a variety of tasks 

–  Here we concentrate of vision, … 
–  … but many others as well (e.g., speech recognition, medical, ...) 

Current limitations include 
•  Need for large amounts of training data and computational resources 
•  Limited ability to learn without supervision 
•  Lack of (short term) memory. 
•  Lack of reasoning mechanisms.  
•  Lack of theoretical understanding on what they represent. 

 



123 

Summary 
ConvNets provide 
•  Hierarchical representation for invariant pattern recognition that is 

–  learning based  
–  biologically inspired 
–  recently enabled through increased computation power and large 

amounts of training data 
•  Success on a variety of tasks 

–  Here we concentrate on vision, … 
–  … but many others as well (e.g., speech recognition, medical, ...) 

Current limitations include 
•  Need for large amounts of training data and computational resources 
•  Limited ability to learn without supervision 
•  Lack of (short term) memory. 
•  Lack of reasoning mechanisms.  
•  Lack of theoretical understanding on what they represent. 

 



124 

Summary 
ConvNets provide 
•  Hierarchical representation for invariant pattern recognition that is 

–  learning based  
–  biologically inspired 
–  recently enabled through increased computation power and large 

amounts of training data 
•  Success on a variety of tasks 

–  Here we concentrate on vision, … 
–  … but many others as well (e.g., speech recognition, medical, ...) 

 

Current limitations include 
•  Need for large amounts of training data and computational resources 
•  Little ability to learn without supervision 
•  Lack of (short term) memory 
•  Lack of reasoning mechanisms  
•  Lack of theoretical understanding on what they represent 

 



125 

Outline 

•  Introduction 
•  Background 
•  Architecture 
•  Examples 
•  Summary 


