
1

EECS 4422/5323 Computer Vision

Unit 8: ConvNets & Learning

This presentation includes slides and figures from
R. Duda et al., R. Fergus, S. Lazebnik and Y. LeCun.

2

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

3

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

Introduction: Convolutional networks

4

Key ideas
•  Build a hierarchy of representations: From primitive features to

mid-level abstractions to object identity.
•  Invariance to irrelevant aspects of data increases as we go up the

layers.
•  Efficiency results as far fewer parameters than a fully connected

network with same number of elemental units.
•  Deep learning: Learn the hierarchy of internal representations.

Learned internal representation

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Introduction: Convolutional networks

5

Key ideas
•  Build a hierarchy of representations: From primitive features to

mid-level abstractions to object identity.
•  Invariance to irrelevant aspects of data increases as we go up the

layers.
•  Efficiency results as far fewer parameters than a fully connected

network with same number of elemental units.
•  Deep learning: Learn the hierarchy of internal representations.

Learned internal representation

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Also called ConvNets, Convolutional Neural Networks & CNNs

Introduction: Inspiration

6

Mammalian visual cortex
•  The ventral (what) pathway in the visual cortex has multiple

stages.
•  Retina à LGN à V1 à V2 à V4 à PIT à AIT …

Introduction: Hubel/Wiesel visual cortex model

7

D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)
•  Visual cortex consists of …

•  a hierarchy of simply complex and hypercomplex cells ..
•  with retinotopic organization.

•  Based physiological recordings in cat cortex.
•  D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s

striate cortex. Journal of Physiology 148 (3), 574-591.
•  D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1),
106-154.

Introduction: An old idea for shift invariance

8

Hubel & Wiesel features + pooling
•  Simple cells detect local features.
•  Complex cells “pool” the outputs of simple cells within a retinotopic

neighborhood.

Introduction: Repeat

9

Convolutional network
•  Hierarchical/multilayer: Features get progressively global,

invariant and numerous.
•  Dense features: Feature detectors applied everywhere (no

interest points).
•  Broadly tuned: Toward invariance.
•  Complete recognition system: Integrates segmentation, feature

extraction and classification.
•  Global discriminant training: Train whole system end-to-end with a

gradient based optimization algorithm to minimize a global loss
function.

Introduction: Where do the features come from?

10

What about learning the features?
•  Learn a feature hierarchy all the way from bottom to top.

•  In Vision: Pixels à Edges à Textons àParts à Objects à
Scenes

•  In language: Audio à phonemes à Words à Parts of Speech
à Sentences à Narratives

•  Each layer extracts features from the output of the previous layer.
•  Train all layers jointly, end-to-end to minimize a global loss

function.
•  Use a gradient based optimization algorithm.

Introduction: Repeat

11

Convolutional network
•  Hierarchical/multilayer: Features get progressively global,

invariant and numerous.
•  Dense features: Feature detectors applied everywhere (no

interest points).
•  Broadly tuned: Toward invariance.
•  Complete recognition system: Integrates segmentation, feature

extraction and classification.
•  Global discriminant training: Train whole system end-to-end with a

gradient based optimization algorithm to minimize a global loss
function.

Introduction: Repeat with learning

12

Convolutional network
•  Hierarchical/multilayer: Features get progressively global,

invariant and numerous.
•  Dense features: Feature detectors applied everywhere (no

interest points).
•  Broadly tuned: Toward invariance.
•  Complete recognition system: Integrates segmentation, feature

extraction and classification.
•  Global discriminant training: Train whole system end-to-end, e.g.,

with a gradient based optimization algorithm to minimize a global
loss function.

Introduction: The “traditional” approach

13

Key contrasting ideas
•  Raw input is processed with a hand-crafted feature extractor.
•  Features not learned.
•  Classifier is “generic” (e.g., Nearest Neighbor, SVM, …).

Hand-
Cra6ed	
Feature	
extractor	

Generic	
Classifier	

Internal representation

Introduction: The “traditional” approach

14

Key contrasting ideas
•  Raw input is processed with a hand-crafted feature extractor.
•  Features not learned.
•  Classifier is “generic” (e.g., Nearest Neighbor, SVM, …).
•  Remark: As with ConvNets, there likely are multiple stages of

internal representation, but they are hand-crafted.

Hand-
Cra6ed	
Feature	
extractor	

Generic	
Classifier	

Internal representation

Introduction: The “traditional” features

15

Key ideas
•  Features are key to recent progress in recognition.
•  Multiple of hand-designed features currently in use.

•  Edges
•  Corners
•  SOE

•  What should be the next step?
•  Build ever better features?
•  Leverage better classifiers?

Introduction: Shallow vs. deep architectures

16

Traditional “shallow” architecture

New (not really) “deep” architecture

Hand-
Cra6ed	
Feature	
extractor	

Generic	
Classifier	

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

17

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

Background: Perceptron (Rosenblatt 1957)

Rosenblatt, F. (1957) The Perceptron--a
perceiving and recognizing automaton. Report
85-460-1, Cornell Aeronautical Laboratory.

Background: Perceptron (Rosenblatt 1957)

19

Rosenblatt, F. (1957) The Perceptron--a
perceiving and recognizing automaton. Report
85-460-1, Cornell Aeronautical Laboratory.

Background: Inspiration from neurons

20

Background: Multilayer neural networks

21

Rosenblatt (1962): 3 layer perceptron
•  Multilayer perceptron for classification.
•  Input and output layers
•  Hidden-layer, not seen by input nor output, connected between the two.
•  Rosenblatt, F. (1962) Principles of Neurodynamics. Washington, DC:Spartan

Books.

Background: Multilayer neural networks

22

Where do the connection weights come from?

Background: Multilayer neural networks

23

Historical remark
•  Back-propagation originally proposed in Bryson, Deham, Dreyfus (1963) Optimal

programming problems with inequality constraints, AIAA J. 1 (11), 2544-2550.
•  Subsequently applied to NN by Werbos (1970) in his Harvard PhD thesis, New Tools

for Prediction and Analysis in the Behavioural Sciences.
•  Popularized by Rumelhart, Hinton & Williams (1986) Learning representations by

back-propagating errors, Nature 323, 533-536.

Background: Hubel/Wiesel visual cortex model

24

D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)
•  Visual cortex consists of …

•  a hierarchy of simply complex and hypercomplex cells ..
•  with retinotopic organization.

•  Based physiological recordings in cat cortex.
•  D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s

striate cortex. Journal of Physiology 148 (3), 574-591.
•  D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and

functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1),
106-154.

Background: Blakemore/Cooper

25

Blakemore & Cooper (1970)
•  Cats raised in environment consisting of lines of only one orientation…
•  … hand no cortical neurons responding to the orthogonal orientation.
•  Suggests role of stimulus driven learning in neural development.
•  C. Blakemore & G. Cooper (1970), Development of the brain depends

on visual environment. Nature 228, 447-448.

Background: From Hubel/Wiesel to ConvNets

26

LeCun et al. 1998
• Neural network with special connectivity

structure.
•  Stack multiple layers of feature extractors.
• Higher layers extract more global and

invariant descriptors.
• Classification at the end.
•  Supervised learning via back-propagation.

Background: Prehistory of ConvNets

27

Neocognitron (Fukushima 1980)
•  Similar architectures were proposed earlier.
•  Indeed, they had arguably more sophisticated learning capabilities

(non-supervised)…
• … as well as recurrent connections that enabled selective attention.
•  They were even applied to the same problems.

Background: Backpropagation

28

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y3 yj yn

 x1 x2 xi xd

Background: Backpropagation

29

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y3 yj yn

 x1 x2 xi xd

input unit

Background: Backpropagation

30

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y3 yj yn

 x1 x2 xi xd

input unit

hidden unit

Background: Backpropagation

31

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

Background: Backpropagation

32

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

Background: Backpropagation

33

Feedforward operation
•  A d-dimensional input x is presented

to the input layer.
•  Each input unit emits a

corresponding component xi

•  Each of the n hidden units computes
its net activation netj as the inner
product of the input layer signals with
weights wji at the hidden unit.

•  The hidden unit emits yj = f(netj),
with f a nonlinear activation function.

•  Each of the c output units function in
the same way as the hidden units.

•  The final emitted signals, zk =
f(netk), are used as discriminant
functions for classification.	

input x x1 x2 … xi … xd

target x t1 t2 … ti … td

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

Background: Backpropagation

34

input x x1 x2 … xi … xd

target t t1 t2 … tk … tc

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

Training error

Background: Backpropagation

35

input x x1 x2 … xi … xd

target t t1 t2 … tk … tc

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

Training error
•  Let the training error on a

pattern be the sum over output
units of the squared difference
between desired output tk given
by a teacher and the actual
output zk

•  With c the length of the target
and network output vectors and
w all the weights in the network.

J(w) = 1
2

tk − zk()2
k=1

c

∑

Background: Backpropagation

36

Learning
•  Initialize weights to random variables.
•  Change weights in a direction that reduces the error

•  In component form

 with η the learning rate that indicates the relative size of change in the
weights.

•  An iterative algorithm results

with m the particular pattern presented.

Δw = −η ∂J
∂w

Δwpq = −η
∂J
∂wpq

w(m+1) =w(m)+Δw(m)

Background: Backpropagation

37

Learning
•  Initialize weights to random variables.
•  Change weights in a direction that reduces the error

•  In component form

 with η the learning rate that indicates the relative size of change in the
weights.

•  An iterative algorithm results

with m the particular pattern presented.

Δw = −η ∂J
∂w

Δwpq = −η
∂J
∂wpq

w(m+1) =w(m)+Δw(m)

Background: Backpropagation

38

Learning
•  Initialize weights to random variables.
•  Change weights in a direction that reduces the error

•  In component form

 with η the learning rate that indicates the relative size of change in the
weights.

•  An iterative algorithm results

with m the particular pattern presented.

Δw = −η ∂J
∂w

Δwpq = −η
∂J
∂wpq

w(m+1) =w(m)+Δw(m)

Background: Backpropagation

39

Learning
•  Initialize weights to random variables.
•  Change weights in a direction that reduces the error

•  In component form

 with η the learning rate that indicates the relative size of change in the
weights.

•  An iterative algorithm results

with m the particular pattern presented.

Δw = −η ∂J
∂w

Δwpq = −η
∂J
∂wpq

w(m+1) =w(m)+Δw(m)

Background: Backpropagation

40

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we use the chain rule

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

input x x1 x2 … xi … xd

target t t1 t2 … tk … tc

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

Background: Backpropagation

41

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we have a problem

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

42

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we have a problem

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

43

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we have a problem

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

J = 1
2

tk − zk()2
k=1

c

∑

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

Background: Backpropagation

44

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we have a problem

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

45

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we have a problem

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

46

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we use the chain rule

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

47

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we use the chain rule

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Recall: The “chain rule”,
let

 h(x)=g[f(x)]
then

 h’(x)=g’[f(x)] f’(x)

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

netk = wkjyj
j
∑

Background: Backpropagation

48

Hidden-to-output weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wkj, we use the chain rule

 with

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wkj

∂J
∂wkj

=
∂J
∂netk

∂netk
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

Background: Backpropagation

49

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

Background: Backpropagation

50

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

Background: Backpropagation

51

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

J = 1
2

tk − zk()2
k=1

c

∑

zk = f (netk)

Background: Backpropagation

52

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

Background: Backpropagation

53

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

−
∂
∂zk

1
2

tk − zk()2
k=1

c

∑

Background: Backpropagation

54

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

∂
∂netk

f (netk)

Background: Backpropagation

55

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

Background: Backpropagation

56

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

netk = wkjyj
j
∑

Background: Backpropagation

57

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

netk = wkjyj
j
∑

Background: Backpropagation

58

Hidden-to-output weight update
•  Assuming the activation function f is differentiable

•  Next we evaluate the second component of the error

 as

•  So that the weight update is

∂J
∂wkj

= δk
∂netk
∂wkj

δk = −
∂J
∂netk

= −
∂J
∂zk

∂zk
∂netk

= (tk − zk) #f (netk)

∂netk
∂wkj

= yj

Δwkj =ηδk yj =η(tk − zk) #f (netk)yj

Background: Backpropagation

59

Input-to-hidden weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wji, we use the chain rule

•  The first term on the RHS involves all the weights

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

input x x1 x2 … xi … xd

target t t1 t2 … tk … tc

output z z1 zk z2

wkj

wji

y1 y2 yj yn

 x1 x2 xi xd

input unit

hidden unit

output unit

∂J
∂wji

Background: Backpropagation

60

Input-to-hidden weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wji, we use the chain rule

•  The first term on the RHS involves all the weights

the sensitivity of unit k and describes the overall error change as a
function of the unit’s net activation.

∂J
∂wji

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

Background: Backpropagation

61

Input-to-hidden weight update
•  We wish to evaluate

•  Since the error does not depend explicitly on wji, we use the chain rule

•  The first term on the RHS involves all the weights

 because each zk depends on all yj

∂J
∂wji

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

Background: Backpropagation

62

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

Background: Backpropagation

63

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

Background: Backpropagation

64

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

netk = wkjyj
j
∑

zk = f (netk)

Background: Backpropagation

65

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

netk = wkjyj
j
∑

zk = f (netk)

Background: Backpropagation

66

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

Background: Backpropagation

67

Input-to-hidden weight update
•  Now we evaluate

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

Background: Backpropagation

68

Input-to-hidden weight update
•  Now we evaluate

•  The sum over output units expresses how the hidden unit yj affects error at
each output unit.

∂J
∂yj

=
∂
∂yj

1
2

tk − zk()2
k=1

c

∑
$

%
&

'

(
)

= − tk − zk()∂zk
∂yjk=1

c

∑

= − tk − zk() ∂zk
∂netkk=1

c

∑ ∂netk
∂yj

= − tk − zk() *f (netk)
k=1

c

∑ wkj

= k
k=1

c

∑ wkjδ

Background: Backpropagation

69

Input-to-hidden weight update
•  We still need to evaluate the remaining two terms on the RHS of the

error

•  They yield as first term on the RHS involves all the weights

•  Pulling all together, we have

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

∂yj
∂net j

= "f (net j)

∂net j
∂wji

= xi

Δwji =η wkjδk
k=1

c

∑
#

$
%

&

'
()f (net j)xi

Background: Backpropagation

70

Input-to-hidden weight update
•  We still need to evaluate the remaining two terms on the RHS of the

error

•  They yield as

•  Pulling all together, we have

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

∂yj
∂net j

= "f (net j)

∂net j
∂wji

= xi

Δwji =η wkjδk
k=1

c

∑
#

$
%

&

'
()f (net j)xi

yj = f (net j)

net j = wjixi
i
∑

Background: Backpropagation

71

Input-to-hidden weight update
•  We still need to evaluate the remaining two terms on the RHS of the

error

•  They yield as

•  Pulling all together, we have

∂J
∂wji

=
∂J
∂yj

∂yj
∂net j

∂net j
∂wji

∂yj
∂net j

= "f (net j)

∂net j
∂wji

= xi

Δwji =η wkjδk
k=1

c

∑
#

$
%

&

'
()f (net j)xi

Background: Backpropagation

72

Input-to-hidden weight update
•  We can further interpret the update

•  Here, δj is the sensitivity for given (hidden) unit
–  The sum of the individual sensitivities of the output units
–  Weighted by the hidden-to-output weights

–  All modulated by the derivative of the activation function, f

Δwji =η wkjδk
k=1

c

∑
#

$
%

&

'
()f (net j)xi

=ηxiδ j

Background: Backpropagation

73

Recapitulation
•  We seek to minimize the training error

as a function of the all the weights, w, in the network.
•  To do so, we employ gradient descent.
•  The chain rule serves to push the error derivatives through the network.
•  While we have only explicitly derived the weight updates for a 3 layer

network, the same methodology works for ever more layers.

J(w) = 1
2

tk − zk()2
k=1

c

∑

Background: Backpropagation

74

Caveat
•  Gradient descent, e.g.,

 only finds local minima!

Δw = −η ∂J
∂w

w(m+1) =w(m)+Δw(m),

75

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

Architecture: Feedforward extraction

76

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Architecture: Feedforward extraction

77

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Architecture: Feedforward extraction

78

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Architecture: Feedforward extraction

79

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Remarks
•  Inspiration is, once again, taken

from biology.
•  Convolution filters learned via

supervised training with
backprop of classification error.

Architecture: Feedforward extraction

80

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Remarks
•  Inspiration is, once again, taken

from biology.
•  Convolution filters learned via

supervised training with
backprop of classification error.

Architecture: Feedforward extraction

81

Looking under the hood
•  Our overall architecture is

•  But, what is inside each Feature Extractor?

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Remarks
•  Inspiration is, once again, taken

from biology.
•  Convolution filters learned via

supervised training with
backprop of classification error.

82

Architecture: Under the hood

Remarks
•  Linear	Shi6	Invariant	(LSI).	
•  Local	opera9ons.	
•  Few	parameters	(PSF	weights).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

83

Architecture: Under the hood

Remarks
•  Linear	Shi6	Invariant	(LSI).	
•  Local	opera9ons.	
•  Few	parameters	(PSF	weights).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

84

Architecture: Under the hood

Remarks
•  Linear	Shi6	Invariant	(LSI).	
•  Local	opera9ons.	
•  Few	parameters	(PSF	weights).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

85

Architecture: Under the hood

Recall (from our recent past)
•  If	we	mul9ply	by	and	sum	over	a	set	

of	weights,	wkj	at	year	point,	yj,	then	

					is	exactly	a	convolu9on	at	k.	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

netk = wkjyj
j
∑

86

Architecture: Under the hood

Remarks
•  Applied	independently	per	element	
•  Popular	choices:	tanh,	sigmoid,	rec9fied	linear	unit	(ReLU).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

87

Architecture: Under the hood

Remarks
•  Applied	independently	per	element	
•  Popular	choices:	tanh,	sigmoid,	rec9fied	linear	unit	(ReLU).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

88

Architecture: Under the hood

Remarks
•  Applied	independently	per	element.	
•  Enhances	strong	responses	at	expense	of	weak	responses.	
•  Popular	choices:	tanh,	sigmoid,	rec9fied	linear	unit	(ReLU).	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

89

Architecture: Under the hood

Remarks
• Role of pooling.

•  Invariance to small transformations.
•  Larger support regions “see” more of input.

• Can be overlapped or not.
•  Popular choices: sum and max.

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

max

sum

90

Architecture: Under the hood

Remarks
• Role of pooling.

•  Invariance to small transformations.
•  Larger support regions “see” more of input.

• Can be overlapped or not.
•  Popular choices: sum and max.

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

max

sum

91

Architecture: Under the hood

Remarks
• Role of pooling.

•  Invariance to small transformations.
•  Larger support regions “see” more of input.

• Can be overlapped or not.
•  Popular choices: sum and max.

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

max

sum

92

Architecture: Under the hood

Remarks
• Role of normalization:

•  Additional photometric invariance.
•  Increased contrast.

• Within and/or across feature maps.
•  Before or after pooling.

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

93

Architecture: Under the hood

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Remarks
• Role of normalization:

• Additional photometric invariance.
•  Increased contrast.

• Within and/or across feature maps.
• Subtractive: Subtract from every value in feature map a

weighted average of its neighbors.
• Divisive: Divide every value in feature map by the sum (or

standard deviation) of all feature maps.
• Before or after pooling.

94

Architecture: Under the hood

Remarks
• Role of normalization:

•  Additional photometric invariance.
•  Increased contrast.

• Within and/or across feature maps.
•  Before or after pooling.

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Architecture: Feedforward extraction

95

Looking under the hood
•  Our overall architecture is

•  What is inside each Feature Extractor.

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Trainable	
Feature	
extractor	

Convolu9on	
(learned)	

Nonlinearity	
Spa9al	
pooling	 Normaliza9on	

Architecture: Visualizing ConvNets

96

Questions
•  What can be said about the nature of the learned

representations?
•  What types of information do they capture?

Learned internal representation

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Architecture: Visualizing ConvNets

97

Layer 1
•  Learned PSFs appear as oriented bandpass kernels.

Architecture: Visualizing ConvNets

98

Layer 1
•  Top nine patches from images giving maximal response for a filter

following training.

Architecture: Visualizing ConvNets

99

Layer 2
•  Top nine patches from images giving maximal response for a filter

following training.

Architecture: Visualizing ConvNets

100

Layer 5
•  Top nine patches from images giving maximal response for a filter

following training.

Architecture: Visualizing ConvNets

101

Learned feature maps depend on training data

Architecture: Visualizing ConvNets

102

Learned feature maps depend on training data
•  Maps trained on handwritten digits.

Architecture: ConvNets vs. traditional

103

Traditional architecture

ConvNet architecture

Hand-
Cra6ed	
Feature	
extractor	

Generic	
Classifier	

Trainable	
Feature	
extractor	

Trainable	
Feature	
extractor	

Trainable
Classifier	

Hand-
Cra6ed	
Feature	
extractor	

104

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

105

Examples

Sampling of ConvNet success stories
•  Handwritten digits
•  Simple recognition
•  Generic object recognition
•  Face detection
•  Driving

106

Examples: ConvNet success stories

Handwritten digit recognition
•  MNIST Handwritten Digit Dataset
•  60,000 training samples
•  10,000 test samples

107

Examples: ConvNet success stories

Handwritten digit recognition
•  MNIST Handwritten Digit Dataset
•  60,000 training samples
•  10,000 test samples
•  Ciresan et al. 2011: 0.17% error

108

Examples: ConvNet success stories

Traffic sign recognition
•  Human error rate: 1.16%

109

Examples: ConvNet success stories

Traffic sign recognition
•  Human error rate: 1.16%
•  Ciresan et al. 2011: 0.56% error

110

Examples: ConvNet success stories

Traffic sign recognition
•  Human error rate: 1.16%
•  Ciresan et al. 2011: 0.56% error

Strong performance in simple
recognition tasks
•  But less good with more complicated

datasets (e.g., Caltech-101)

111

Examples: ConvNet success stories

Traffic sign recognition
•  Human error rate: 1.16%
•  Ciresan et al. 2011: 0.56% error

Strong performance in simple
recognition tasks
•  But less good with more complicated

datasets (e.g., Caltech-101)
•  Until recently…

112

Examples: ConvNet success stories

ImageNet Challenge 2012
•  ~14 million labeled image; 20K

classes
•  Gathered from Internet
•  Human labels via Amazon Turk
•  Challenge: 1.2 million test images;

1000 classes

113

Examples: ConvNet success stories

Krizhevsky, Sutskever & Hinton 2012
•  Similar to LeCun et al. 1998, but …

114

Examples: ConvNet success stories

Krizhevsky, Sutskever & Hinton 2012
•  Similar to LeCun et al. 1998, but …

115

Examples: ConvNet success stories

Krizhevsky, Sutskever & Hinton 2012
•  Similar to LeCun et al. 1998, but …
•  Bigger model: 7 hidden layers, 650,000 units, 60,000,000 params
•  More training data: 10^6 vs. 10^3 images

116

Examples: ConvNet success stories

ImageNet Challenge 2012: Results
•  Top performer: Krizhevsky et al: 16.4% error.
•  Next best (non-ConvNet): 26.2% error.

117

Examples: ConvNet success stories

ImageNet Challenge 2012: Results
•  Top performer: Krizhevsky et al: 16.4% error.
•  Next best (non-ConvNet): 26.2% error.
Why?
•  More training data; more computational resources.

118

Examples: ConvNet success stories

Face detection & pose recognition: Osadchy et al., 2007

119

Examples: ConvNet success stories

Driving: LeCun et al. 2005
•  Mobile platform with two cameras
•  Network trained from recorded stereo video + human steering angles.
•  Result maps stereo images to steering angles to avoid obstacles.

120

Examples: Industry

Industry labs actively pursuing ConvNets include
•  Facebook: Face and object recognition
•  France Telcom: Face detection, HCI, handheld apps
•  Google: OCR, face & license plate removal from StreetView
•  Microsoft: OCR, handwriting and speech recognition
•  NEC: Cancer cell detection, automotive apps
•  Vidient: Video surveillance

121

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

122

Summary
ConvNets provide
•  Hierarchical representation for invariant pattern recognition that is

–  learning based
–  biologically inspired
–  recently enabled through increased computation power and large

amounts of training data
•  Success on a variety of tasks

–  Here we concentrate of vision, …
–  … but many others as well (e.g., speech recognition, medical, ...)

Current limitations include
•  Need for large amounts of training data and computational resources
•  Limited ability to learn without supervision
•  Lack of (short term) memory.
•  Lack of reasoning mechanisms.
•  Lack of theoretical understanding on what they represent.

123

Summary
ConvNets provide
•  Hierarchical representation for invariant pattern recognition that is

–  learning based
–  biologically inspired
–  recently enabled through increased computation power and large

amounts of training data
•  Success on a variety of tasks

–  Here we concentrate on vision, …
–  … but many others as well (e.g., speech recognition, medical, ...)

Current limitations include
•  Need for large amounts of training data and computational resources
•  Limited ability to learn without supervision
•  Lack of (short term) memory.
•  Lack of reasoning mechanisms.
•  Lack of theoretical understanding on what they represent.

124

Summary
ConvNets provide
•  Hierarchical representation for invariant pattern recognition that is

–  learning based
–  biologically inspired
–  recently enabled through increased computation power and large

amounts of training data
•  Success on a variety of tasks

–  Here we concentrate on vision, …
–  … but many others as well (e.g., speech recognition, medical, ...)

Current limitations include
•  Need for large amounts of training data and computational resources
•  Little ability to learn without supervision
•  Lack of (short term) memory
•  Lack of reasoning mechanisms
•  Lack of theoretical understanding on what they represent

125

Outline

•  Introduction
•  Background
•  Architecture
•  Examples
•  Summary

