EECS 4422/5323 Computer Vision

Unit 8: ConvNets & Learning

This presentation includes slides and figures from
R. Duda et al., R. Fergus, S. Lazebnik and Y. LeCun.
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Introduction: Convolutional networks
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Learned internal representation

Key ideas

«  Build a hierarchy of representations: From primitive features to
mid-level abstractions to object identity.

 Invariance to irrelevant aspects of data increases as we go up the
layers.

« Efficiency results as far fewer parameters than a fully connected
network with same number of elemental units.

 Deep learning: Learn the hierarchy of internal representations.



Introduction: Convolutional networks
Also called ConvNets, Convolutional Neural Networks & CNNs
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Introduction: Inspiration

Motor command

Categorical judgments, 140-190 ms

decision making - Simple visual forms
' edges, corners
120-160 ms PMC /
100-130 ms p / . : @
ARE / 40-60 ms

30-50 |

20-40 ms AIT orms, feature
/ “ groups, etc.
80-100 ms 2 )
High level object
descriptions,
faces, objects
~————— To spinal cord
=< To finger muscle < - ——160-220 ms
180-260 ms

Mammalian visual cortex

«  The ventral (what) pathway in the visual cortex has multiple
stages.

« Retina> LGN > V1 >V2->V4->PIT > AIT ...
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Introduction: Hubel/Wiesel visual cortex model

Hubel & Weisel featural hierarchy
topographical mapping .
hyﬁer—complex O high level
cells
complex cells A 8midlevel
simple cells I“
& @ O 0w level

D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

. Visual cortex consists of ...
. a hierarchy of simply complex and hypercomplex cells ..
. with retinotopic organization.

. Based physiological recordings in cat cortex.

 D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s
striate cortex. Journal of Physiology 148 (3), 574-591.

 D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1),
106-154. 7



Introduction: An old idea for shift invariance

“Simple cells”
“Complex cells™

pooling subsampling

Multiple

convolutions \ /

Retinotopic Feature Maps

Hubel & Wiesel features + pooling
« Simple cells detect local features.

« Complex cells “pool” the outputs of simple cells within a retinotopic
neighborhood.



Introduction: Repeat

Convolutional network

Hierarchical/multilayer: Features get progressively global,
invariant and numerous.

Dense features: Feature detectors applied everywhere (no
interest points).

Broadly tuned: Toward invariance.

Complete recognition system: Integrates segmentation, feature
extraction and classification.



Introduction: Where do the features come from?

What about learning the features?
Learn a feature hierarchy all the way from bottom to top.

In Vision: Pixels - Edges - Textons ->Parts - Objects =

Scenes
In language: Audio = phonemes - Words - Parts of Speech

- Sentences - Narratives
Each layer extracts features from the output of the previous layer.

Train all layers jointly, end-to-end to minimize a global loss

function.
« Use a gradient based optimization algorithm.



Introduction: Repeat

Convolutional network

Hierarchical/multilayer: Features get progressively global,
invariant and numerous.

Dense features: Feature detectors applied everywhere (no
interest points).

Broadly tuned: Toward invariance.

Complete recognition system: Integrates segmentation, feature
extraction and classification.
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Introduction: Repeat with learning

Convolutional network

Hierarchical/multilayer: Features get progressively global,
invariant and numerous.

Dense features: Feature detectors applied everywhere (no
interest points).

Broadly tuned: Toward invariance.

Complete recognition system: Integrates segmentation, feature
extraction and classification.

Global discriminant training: Train whole system end-to-end, e.g.,
with a gradient based optimization algorithm to minimize a global

. 12
loss function.



Introduction: The “traditional” approach

Hand-
Crafted : Gem.eliic >
Feature Classifier
extractor /

Internal representation

Key contrasting ideas

Raw input is processed with a hand-crafted feature extractor.

Features not learned.
Classifier is “generic” (e.g., Nearest Neighbor, SVM, ...).
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Introduction: The “traditional” approach

Hand-
Crafted Generic
Feature Classifier

extractor

Internal representation

Key contrasting ideas

Raw input is processed with a hand-crafted feature extractor.

Features not learned.
Classifier is “generic” (e.g., Nearest Neighbor, SVM, ...).

Remark: As with ConvNets, there likely are multiple stages of
internal representation, but they are hand-crafted.
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Introduction: The “traditional” features
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Key ideas

Features are key to recent progress in recognition.
Multiple of hand-designed features currently in use.

« Edges
. Corners
. SOE

What should be the next step?
«  Build ever better features?
 Leverage better classifiers?



Introduction: Shallow vs. deep architectures

Traditional “shallow’ architecture

Hand-
Crafted

Feature
extractor

Generic
Classifier

New (not really) “deep” architecture

Trainable

Trainable
e g Feature  |niubmimbmbabttllelely 3gd  Feature | 2
extractor

Trainable
Classifier

extractor
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Outline
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Background: Perceptron (Rosenblatt 1957)

Input

Weights

Output: o(w-x + b)

Sigmoid function:

|
o(f)=——
©) l1+e™

Rosenblatt, F. (1957) The Perceptron--a
perceiving and recognizing automaton. Report
85-460-1, Cornell Aeronautical Laboratory.



Background: Perceptron (Rosenblatt 1957)

Input
Weights

Output: o(w-x + b)

Sigmoid function:

y

— f(x) = H—:—ﬁ
— — 1
g(z) = Tfc- 102

0.8

0.6

Rosenblatt, F. (1957) The Perceptron--a
perceiving and recognizing automaton. Report
85-460-1, Cornell Aeronautical Laboratory.
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Background: Inspiration from neurons

Axonal arborization
§ \\\\

\ Axon from another cell

Synapse
Dendrite

Nucleus g /

Synapses

Cell body or Soma

20



Background: Multilayer neural networks
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Rosenblatt (1962): 3 layer perceptron

Multilayer perceptron for classification.

Input and output layers

Hidden-layer, not seen by input nor output, connected between the two.
Rosenblatt, F. (1962) Principles of Neurodynamics. Washington, DC:Spartan
Books.



Background: Multilayer neural networks

Input Hidden Layer Cutput
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Where do the connection weights come from?

« Training: find network weights w to minimize the error between true
training labels y; and estimated labels f,(X;):

E(w)= Z(yi _fw(xi))z

» Minimization can be done by gradient descent provided fis differentiable
« This training method is called back-propagation

22



Background: Multilayer neural networks
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Historical remark

« Back-propagation originally proposed in Bryson, Deham, Dreyfus (1963) Optimal
programming problems with inequality constraints, AIAA J. 1 (11), 2544-2550.

« Subsequently applied to NN by Werbos (1970) in his Harvard PhD thesis, New Tools
for Prediction and Analysis in the Behavioural Sciences.

* Popularized by Rumelhart, Hinton & Williams (1986) Learning representations by
back-propagating errors, Nature 323, 533-536.



Background: Hubel/\Wiesel visual cortex model

Hubel & Weisel featural hierarchy
topographical mapping .
hyﬁer—complex O high level
cells
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D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)

. Visual cortex consists of ...
. a hierarchy of simply complex and hypercomplex cells ..
. with retinotopic organization.

. Based physiological recordings in cat cortex.

 D. Hubel & T. Wiesel (1959) Receptive fields of single neurons in the cat’s
striate cortex. Journal of Physiology 148 (3), 574-591.

 D. Hubel & T. Wiesel (1962) Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1),
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Background: Blakemore/Cooper

Vertical Stripe Rearing Vertical

-—— Horizontal

— AN
- s

Blakemore & Cooper (1970)

« Cats raised in environment consisting of lines of only one orientation...
* ... hand no cortical neurons responding to the orthogonal orientation.
« Suggests role of stimulus driven learning in neural development.

« C. Blakemore & G. Cooper (1970), Development of the brain depends
on visual environment. Nature 228, 447-448. 25



Background: From Hubel/Wiesel to ConvNets

C3:f. maps 16@10x10
C1: teature maps S4:1. maps 16@5x5

INPUT
22432 6@28x%28 S2: 1. maps

I
| FullcomLecuon | Gaussian connectons
Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun et al. 1998

* Neural network with special connectivity
structure.

« Stack multiple layers of feature extractors.

 Higher layers extract more global and
invariant descriptors.

« Classification at the end.
« Supervised learning via back-propagation.

26



Background: Prehistory of ConvNets
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Neocognitron (Fukushima 1980)
« Similar architectures were proposed earlier.

* Indeed, they had arguably more sophisticated learning capabilities
(non-supervised)...

e ... as well as recurrent connections that enabled selective attention.
* They were even applied to the same problems. 27



Background: Backpropagation

Feedforward operation

« A d-dimensional input X is presented
to the input layer.

input x x; X2

Xi

Xd



Background: Backpropagation

Feedforward operation

« A d-dimensional input X is presented
to the input layer.

« Each input unit emits a
corresponding component Xx;

FX1 £X2 iXi 1Xd

inputunit@ @) (/) @

input x x: X2 Xi Xd



Background: Backpropagation

Feedforward operation

« A d-dimensional input X is presented
to the input layer.

« Each input unit emits a
corresponding component Xx;
» Each of the n hidden units computes

its net activation nef; as the inner
product of the input layer signals with

weights wj: at the hidden unit. hidden unit @ @ ()
o ';fﬁ‘,_'\ : V =2 v/
Wi/ o ‘_"ffii'fw iy

57 i

iput unit @ \' .o < \

P,

input x  x; X2 Xi
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Background: Backpropagation

Feedforward operation
« A d-dimensional input X is presented

to the input layer.

Each input unit emits a
corresponding component Xx;

Each of the n hidden units computes
its net activation nef; as the inner

product of the input layer signals with Ly .
. . . . . . /\\ /—A\
weights wji at the hidden unit. hidden unit @ () sss (o)
. . . ' 'f v — A
The hidden unit emits y; = f(net)), W Pl
with f a nonlinear activation function. ! =
‘XI Xi
\ /‘\‘
t 1t \ ) { '\
input uni C// \é
input x x: X2 Xi



Background: Backpropagation

Feedforward operation

A d-dimensional input X is presented
to the input layer.

Each input unit emits a

corresponding component x;i output unit (A @ . @ coe @

Each of the n hidden units computes \J SSSer =

its net activation net; as the inner Wi\ /ST

product of the input layer signals with o oy Ty

weights wj: at the hidden unit. hidden unit @ @ () N @
CAar o e

The hidden unit emits y; = f(net)),
with f a nonlinear activation function.

Y \/

Wi

fxz

Each of the ¢ output units function in 2\
the same way as the hidden units, Put unit @
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input x x: X2 Xi Xd



Background: Backpropagation

Feedforward operation

A d-dimensional input X is presented
to the input layer.

Each input unit emits a outputz ' z; !z T zk }

corresponding component xi output unit //\ 6 " /;\ e @

Each of the n hidden units computes A s s \“/

its net activation net; as the inner Wi\ /ST T

product of the input layer signals with Ty Ty RERTY

weights wji at the hidden unit. hidden unit @ - . %

The hidden unit emits y; = f(net)), wi | D

with f a nonlinear activation function. ! g A =
X1 iXi A Xd

Each of the ¢ output units function in P
the same way as the hidden units, Put unit C//

/
)
S

The final emitted signals, zx = input x  xr X2 Xi .. Xd

f(netr), are used as discriminant
functions for classification.



Background: Backpropagation

Training error
targett

outputz ! z; !
output unit Q / g

2 )j »

hidden unit @ @y C o @y
—

b _x 2 XI RN Xd

iput unit @ @] _— @

input x  x; Xi Xd
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Training error

Background: Backpropagation

o targett 1 12 e ... le
Let the training error on a

pattern be the sum over output N : A
units of the squared difference ~ output unit (— 6 e /\6 : @
between desired output # given NS T

outputz ' z: ! z tozk !

by a teacher and the actual W\ LR
output zx hidden unit @W | Qyz : >‘yj | % .
1 (o 5 \ ~ k—/’ - l\>7//‘ ... \\
JW)==Y(,-z,) we | X PSS
2 k=1 ‘XI ' X Axd

\ T
With ¢ the length of the target mpmumt@ j e ’(/} @

and network output vectors and

_ _ input X x: X2 Xi .. Xd
w all the weights in the network.



Background: Backpropagation

Learning
Initialize weights to random variables.



Background: Backpropagation

Learning
Initialize weights to random variables.
Change weights in a direction that reduces the error

Aw = —nﬂ
oW



Background: Backpropagation

Learning
 Initialize weights to random variables.
« Change weights in a direction that reduces the error

Aw = —nﬂ
oW
* |n component form 9]
Aw,, = =1——
ow,,

with n the learning rate that indicates the relative size of change in the
weights.



Background: Backpropagation

Learning
 Initialize weights to random variables.
« Change weights in a direction that reduces the error

Aw = —nﬂ
oW
* |n component form 9]
R

with n the learning rate that indicates the relative size of change in the
weights.

* An iterative algorithm results

wm+1)=w(m)+ Aw(m)

with m the particular pattern presented.



Background: Backpropagation

Hidden-to-output weight update
 We wish to evaluate 9]

awkj

targett 1
outputz t z: ¢
output unit Q G

=\

% I
hidden unit @ @ G //>
5
= fxz ' x ) >
input unit @ @| coe @

input x X Xi Xd
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Background: Backpropagation

Hidden-to-output weight update
 We wish to evaluate
oJ

oW,

« Since the error does not depend explicitly on wi;, we have a problem
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Background: Backpropagation

Hidden-to-output weight update
 We wish to evaluate

oJ
oW,
Since the error does not depend explicitly on wkj, we have a problem
oJ
oW,



Background: Backpropagation

Hidden-to-output weight update

Recall: The “chain rule’,

« We wish to evaluate let
oJ h(x)=g[f(x)]
S then
ow ki h'(x)=g /)1 /" (x)
« Since the error does not depend explicitly on wi;, we use the chain rule
oJ
oW,

46



Hidden-to-output weight update

Background: Backpropagation

Recall: The “chain rule’,

We wish to evaluate let
0J h(x)=g[f(x)]
E— then
ow ki h'(x)=g (X)) [ (x)

Since the error does not depend explicitly on wkj, we use the chain rule

dJ dJ Onet,

dw,, dnet, dw,,

47



Background: Backpropagation

Hidden-to-output weight update
 We wish to evaluate

oJ
« Since the error does not depend explicitly on wi;, we use the chain rule
of _ dJ odnet; _ 5 dnet,
dw,, dnet, dw,, oW,
with
5 = 3J
onet,

the sensitivity of unit £ and describes the overall error change as a
function of the unit’s net activation.



Background: Backpropagation

Hidden-to-output weight update

 Assuming the activation function fis differentiable

0J

onet,

5, =
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Background: Backpropagation

Hidden-to-output weight update

 Assuming the activation function fis differentiable

- = (t, = 7,) [ (net))
¢ onet, dz, dnet, «~ )] ¢

0

onet,

f(net,)



Background: Backpropagation

Hidden-to-output weight update

 Assuming the activation function fis differentiable

- = (t, = 7,) [ (net))
¢ onet, dz, dnet, «~ )] ¢

Next we evaluate the second component of the error

o _ S dnet,

k
oW, ; oW,
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Background: Backpropagation
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 Assuming the activation function fis differentiable
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* Next we evaluate the second component of the error
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Background: Backpropagation

Hidden-to-output weight update

 Assuming the activation function fis differentiable

- = (t, = 7,) [ (net))
¢ onet, dz, dnet, «~ )] ¢

* Next we evaluate the second component of the error

o _ S dnet,

k
oW, ; oW,

as

onet,

oW, IRE

« So that the weight update is
Aw,, =nd,y, =n(t, —z,)f (net,)y



Background: Backpropagation

Input-to-hidden weight update
 We wish to evaluate

0J
aw i

targett
outputz !z !
output unit Q @
hidden unit @ @ G />
: Ixz ; x ' e Xd
input unit @ @' o

input x X Xi Xd



Background: Backpropagation

Input-to-hidden weight update
 We wish to evaluate

oJ
ow ;
Since the error does not depend explicitly on wji, we use the chain rule
oJ dJ dy, dnet,

oW ; B dy; onet; ow




Background: Backpropagation

Input-to-hidden weight update
We wish to evaluate

oJ
ow ;
Since the error does not depend explicitly on wji, we use the chain rule
oJ dJ dy, dnet,
ow, dy; dnet; ow,

Ji
« The first term on the RHS involves all the weights

A (%S(fk—zk)z)

dy, dy;\2:3

because each z, depends on all y;



Background: Backpropagation
Input-to-hidden weight update

Now we evaluate EYi P (li
dy j 0y j

(5=



Background: Backpropagation
Input-to-hidden weight update

Now we evaluate c
oJ 0o (1 z
dy, dy;\2




Background: Backpropagation
Input-to-hidden weight update

Now we evaluate EYi P ( 1 E ,
= Py (tk _Zk) )

dy; dy, 243
C aZ
= — (tk — Zk)a_k
k=1 Yi
z, = f(net,) N c (t . ) dz, dnet,
o onet, 0dy



Background: Backpropagation
Input-to-hidden weight update

Now we evaluate EYi P ( 1 E ,
= Py (tk _Zk) )

dy; dy, 243
C aZ
= (tk - Zk)_k
k=1 dy;
Z, = [f(nety) N C (t . ) dz, dnet,
~ o dnet, dy
c netk



Background: Backpropagation
Input-to-hidden weight update

Now we evaluate EYi P ( 1 E ,
= Py (tk _Zk) )

dy; dy, 243
C aZ
= — (tk_Zk)a_k
k=1 Yj




Background: Backpropagation
Input-to-hidden weight update

Now we evaluate 0J 0 ( 1 E(t )2)
= = Kk~ <k
dy, dy;\2




Background: Backpropagation
Input-to-hidden weight update

Now we evaluate 0] 9 (1
o [380s))

dy;, 0y, \217
C aZ
= (tk RS ) —*
k=1 9y,
N dz, Onet
= (tk Zk) . .
— onet, 0dy
= — (tk — zk)f'(netk W,

I
Ly
=

The sum over output units expresses how the hidden unit y; affects error at
each output unit.



Background: Backpropagation

Input-to-hidden weight update

« We still need to evaluate the remaining two terms on the RHS of the
error

9J aJ Ay, Onet,
ow, dy; dnet, ow

J1




Background: Backpropagation
Input-to-hidden weight update

« We still need to evaluate the remaining two terms on the RHS of the
error

oJ dJ dy; Onet,
ow, dy; dnet, ow

 They yield as

Y= f(netj)
oy.
p yj =f,(lfl€tj)
net.
] net; = ijixi
6ne@ i

l

aw%



Background: Backpropagation
Input-to-hidden weight update

« We still need to evaluate the remaining two terms on the RHS of the
error

9J aJ Ay, Onet,
ow, dy; dnet, ow

 They yield as

ay.

2, = f'(netj)
aneg
6ne@
ow .. l

JI
Pulling all together, we have

Aw ; = n(z wkjék)f'(netj )X,
k=1



Background: Backpropagation

Input-to-hidden weight update
« We can further interpret the update

Aw ; = 17(2 wkjék)f’(netj )X;
k=1

=n&@

« Here, §jis the sensitivity for given (hidden) unit
— The sum of the individual sensitivities of the output units
— Weighted by the hidden-to-output weights

— All modulated by the derivative of the activation function, f



Background: Backpropagation

Recapitulation
* We seek to minimize the training error

J(w)=%i(rk -z)

k=1

as a function of the all the weights, w, in the network.
* To do so, we employ gradient descent.
* The chain rule serves to push the error derivatives through the network.

« While we have only explicitly derived the weight updates for a 3 layer
network, the same methodology works for ever more layers.



Background: Backpropagation

Caveat
« Gradient descent, e.g.,

w(m+1) = w(m) + Aw(m), Aw =-n-2

oW

only finds local minimal

global maximum

local maximum

local minimum

global minimum

-6 - 1 | | | | N
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable

Trainable
— (IR~~~ —— === === 32 Feature | o

extractor

Trainable
Classifier

extractor
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Architecture: Feedforward extraction

Looking under the hood

Our overall architecture is

Trainable

Trainable
Feature |uimimieiaieiibbites 0g Feature

extractor

Trainable
Classifier

extractor

But, what is inside each Feature Extractor?

Trainable

Feature
extractor
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable Trainable
Feature |uimimieiaieiibbites 0g Feature

extractor extractor

Trainable

Classifier

 But, what is inside each Feature Extractor?

Trainable
Feature
extractor

Convolution : . Spat_lal e d  NOrmalization
(learned) pooling
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable Trainable
Feature |uimimieiaieiibbites 0g Feature

extractor extractor

Trainable

Classifier

Remarks
 But, what is inside each Feature Extractor?

Trainable
Feature
extractor

Convolution . ; Spatial e 4 NOrmalization

(learned) pooling
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable Trainable Trainable
Feature |iuieiaieiittttle 0g Feature Classifier
extractor extractor
Remarks
« But, what is inside each Feature Extractor? - Inspiration is, once again, taken
from biology.

Trainable
Feature

extractor

Convolution : . Spat_lal e d  NOrmalization
(learned) pooling
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable

Trainable
Feature |uimimieiaieiibbites 0g Feature

extractor extractor

Trainable
Classifier

Remarks

« But, what is inside each Feature Extractor? - Inspiration is, once again, taken

from biology.

. » Convolution filters learned via
eature ) . )

extractor SUperVISed tralnlng Wlth

backprop of classification error.

|

Trainable

Convolution : . Spat!al e d  NOrmalization
(learned) pooling
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Architecture: Under the hood

Spatial

Convolution +—> B e 4  [NOrmalization

(learned) pooling

Remarks

. Linear Shift Invariant (LSI).

. Local operations.

. Few parameters (PSF weights).

Feature Map



Architecture: Under the hood

Spatial

Convolution +—> B e 4  [NOrmalization

pooling

(learned)

Recall (from our recent past)

* |If we multiply by and sum over a set
of weights, w; at year point, y;, then

net, = Ewkjyj
. .
is exactly a convolution at k.

Input | Feature Map



Architecture: Under the hood

Convolution . Spatial .
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Architecture: Under the hood

Convolution . Spatial

Nonlinearity e 4 NOrmalization

(learned) pooling

relu(x)

~
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Architecture: Under the hood

Convolution Nonlinearity B Spatial s § NOrmalization
(learned)

pooling

relu(x)

Remarks
. Applied independently per element.
. Enhances strong responses at expense of weak responses.

. Popular choices: tanh, sigmoid, rectified linear unit (ReLU). "
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Architecture: Under the hood

Spatial

Convolution —d B e 4 NOrmalization

pooling

(learned)

Remarks
* Role of pooling.
* Invariance to small transformations.
 Larger support regions “see” more of input.
» Can be overlapped or not.
* Popular choices: sum and max.



Architecture: Under the hood

Spatial

Convolution —d B e 4 NOrmalization

(learned)

pooling

Remarks
* Role of pooling.
* Invariance to small transformations.
 Larger support regions “see” more of input.
» Can be overlapped or not.
» Popular choices: sum and max.
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Architecture: Under the hood
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Architecture: Under the hood

Convolution . . Spatial o
e d  Nonlinearit —_— : Normalization
(learned) y pooling

Remarks

» Role of normalization:
« Additional photometric invariance.
* Increased contrast.

» Within and/or across feature maps.

» Subtractive: Subtract from every value in feature map a
weighted average of its neighbors.

* Divisive: Divide every value in feature map by the sum (or
standard deviation) of all feature maps.

 Before or after pooling.



Architecture: Under the hood

Spatial

Convolution — Normalization

(learned) pooling

Remarks
* Role of normalization:
« Additional photometric invariance.
* Increased contrast.
» Within and/or across feature maps.
 Before or after pooling.

Feature Maps
Feature Maps After Contrast Normalization
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Architecture: Feedforward extraction

Looking under the hood
e Qur overall architecture is

Trainable Trainable
Feature |uiuiaiaiaimieibbites 0g Feature

extractor extractor

Trainable

Classifier

« What is inside each Feature Extractor.

Trainable
Feature
extractor

Convolution : . Spat_lal e d  NOrmalization
(learned) pooling
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Architecture: Visualizing ConvNets

Trainable Trainable

Trainable

Feature |uimiieiuimirdumbabite 0g Feature

—_— "
Classifier
extractor extractor /

Learned internal representation

Questions
. What can be said about the nature of the learned
representations?

«  What types of information do they capture?
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Architecture: Visualizing ConvNets

Layer 1
Learned PSFs appear as oriented bandpass kernels.
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Architecture: Visualizing ConvNets
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Architecture: Visualizing ConvNets
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Architecture: Visualizing ConvNets
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Layer 5

«  Top nine patches from images giving maximal response for a filter
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Architecture: Visualizing ConvNets

Learned feature maps depend on training data




Architecture: Visualizing ConvNets

Learned feature maps depend on training data
« Maps trained on handwritten digits.




Architecture: ConvNets vs. traditional

Traditional architecture

Hand-
Crafted Generic
Feature Feature Classifier
extractor extractor

Trainable Trainable
Feature |uimimieiaieiibbitey 2g Feature
extractor

Trainable
Classifier

extractor
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Outline

« Examples
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Examples

Sampling of ConvNet success stories
« Handwritten digits

« Simple recognition

« (Generic object recognition

* Face detection

* Driving
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Examples: ConvNet success stories
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Handwritten digit recognition KA {790/ &
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Examples: ConvNet success stories

J ey /79 bbal

67578634545

Handwritten digit recognition R {79n /a1 ¥ 6
MNIST Handwritten Digit Dataset L7190 2 %9 Y
60,000 training samples T el Y i ul 580
10,000 test samples 19592465 % 1 99
Ciresan et al. 2011: 0.17% error AR 22d3 44§80
DAd EO73857
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Examples: ConvNet success stories

Traffic sign recognition
* Human error rate: 1.16%
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Examples: ConvNet success stories

Traffic sign recognition
« Human error rate: 1.16%
« Ciresan et al. 2011: 0.56% error

Strong performance in simple
recognition tasks

» Butless good with more complicated
datasets (e.g., Caltech-101)
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Examples: ConvNet success stories

IMAGENET

Traffic sign recognition
« Human error rate: 1.16%
« Ciresan et al. 2011: 0.56% error

Strong performance in simple
recognition tasks

» Butless good with more complicated
datasets (e.g., Caltech-101)

 Until recently... [Deng et al. CVP 2009]
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Examples: ConvNet success stories

ImageNet Challenge 2012

~14 million labeled image; 20K
classes

Gathered from Internet
Human labels via Amazon Turk

Challenge: 1.2 million test images;

1000 classes

IMAGENET

[Deng et al. CVPR 2009]
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Examples: ConvNet success stories

Max

:

\

pooling

128
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128
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Max
pooling
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 Similar to LeCun et al. 1998, but ...

192

\Sense

1000

113



Examples: ConvNet success stories

C3:f. maps 16@10x10
INPUT £1: aun meps S4:1. maps 16@5x5
@28x S2: 1. maps

32x32
6@14%14

I
| FUIcoanectlon l Gaussian connectons
Convolutions Subsampling Convolutions  Subsampling Full connection

Krizhevsky, Sutskever & Hinton 2012
 Similar to LeCun et al. 1998, but ...
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Examples: ConvNet success stories

Max
pooling

128

s \
128 \ //2539\>//
// \\

AN
2

9

Max
pooling

Krizhevsky, Sutskever & Hinton 2012
 Similar to LeCun et al. 1998, but ...
« Bigger model: 7 hidden layers, 650,000 units, 60,000,000 params

* More training data: 10"6 vs. 10*3 images

3 192 192

. \

13- 13 \ | \13 /
AN /'
el - i

I 13
192 192 128 Max
pooling

dense dense

2048 2048
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Examples: ConvNet success stories

ImageNet Challenge 2012: Results
* Top performer: Krizhevsky et al: 16.4% error.
* Next best (non-ConvNet): 26.2% error.

116



Examples: ConvNet success stories

ImageNet Challenge 2012: Results

* Top performer: Krizhevsky et al: 16.4% error.
* Next best (non-ConvNet): 26.2% error.
Why?

« More training data; more computational resources:
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Examples: ConvNet success stories

Face detection & pose recognition: Osadchy et al., 2007
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Examples: ConvNet success stories

Driving: LeCun et al. 2005

* Mobile platform with two cameras
* Network trained from recorded stereo video + human steering angles.
« Result maps stereo images to steering angles to avoid obstacles.



Examples: Industry

Industry labs actively pursuing ConvNets include

Facebook: Face and object recognition

France Telcom: Face detection, HCI, handheld apps
Google: OCR, face & license plate removal from StreetView
Microsoft: OCR, handwriting and speech recognition

NEC: Cancer cell detection, automotive apps

Vidient: Video surveillance
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Outline

« Summary
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Summary

ConvNets provide
« Hierarchical representation for invariant pattern recognition that is
— learning based
— biologically inspired
— recently enabled through increased computation power and large
amounts of training data
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— ... but many others as well (e.g., speech recognition, medical, ...)



Summary

ConvNets provide
« Hierarchical representation for invariant pattern recognition that is
— learning based
— biologically inspired
— recently enabled through increased computation power and large
amounts of training data
e Success on a variety of tasks
— Here we concentrate on vision, ...
— ... but many others as well (e.g., speech recognition, medical, ...)

Current limitations include
* Need for large amounts of training data and computational resources
 Little ability to learn without supervision

« Lack of (short term) memory

» Lack of reasoning mechanisms

« Lack of theoretical understanding on what they represent
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