EECS 4422/5323

Unit 7: Spatiotemporal analysis

1

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

Introduction

- We have considered the analysis of spatial structure.
 Oriented, bandpass representations.
- We have considered analysis of the temporal dimension
 - Motion
- Now we consider the integrated analysis and interpretation of the spatial and temporal dimensions.
 - Spatiotemporal analysis

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

Orientation in visual space-time: Basics

- The local orientation (or lack thereof) of a pattern is one of its most salient characteristics.
- Geometrically, orientation captures the local firstorder structure of a pattern.
- For vision, local spatiotemporal orientation can have additional interpretations.
 - Image velocity is manifest as spatiotemporal orientation.
 - And more...

Orientation in visual space-time: Graphic

Orientation in visual space-time: Representation

- Goal is to analyze spatiotemporal data according to its local orientation structure.
 - Consider orientation in x-t and y-t planes, with local weighted averaging in orthogonal spatial dimension.
 - Filter for multiple bands each tuned for certain orientations in a spatiotemporal plane.
 - For example, select 4 orientations/plane: horizontal, vertical, 2 diagonals
- Consider single spatiotemporal scale (for now).

Orientation in visual space-time: Filtering

- Apply filters tuned to 4 different orientations in both x-t and y-t domains.
- In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

Orientation in visual space-time: Filtering

- Apply filters tuned to 4 different orientations in both x-t and y-t domains.
- In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

Orientation in visual space-time: Normalization

- For any given orientation, the filter response is a joint function of
 - orientation
 - contrast
- Normalization yields purer measure of orientation

 $R(x, y, t) = \frac{r(x, y, t)}{r(x, y, t) + l(x, y, t) + s_x(x, y, t) + f_x(x, y, t) + \varepsilon}$ with 3 a small bias added for stability.

• Similarly for l_{i,s_x} , f_x and their y-t counterparts.

• Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

 Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

• Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

• Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

 Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.

- Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.
- By taking the difference *r-l* we get a single response that is properly signed WRT velocity.

- Consider the response to a horizontally moving pattern of *r*, *l* and *s* filters.
- By taking the difference *r-l* we get a single response that is properly signed WRT velocity.
- Dividing to get (r-l)/s yields a response that is (approximately) linear with velocity.

Comparison with optical flow constraint equation (OFCE)

• Recall the OFCE as derived from constant brightness assumption

$$E_x u + E_y v + E_t = 0$$

Comparison with optical flow constraint equation (OFCE)

• Recall the OFCE as derived from constant brightness assumption

$$E_x u + E_y v + E_t = 0$$

• Let us restrict consideration to one spatial dimension + time

$$E_x u + E_t = 0$$

• Now, we can directly solve for (1D) velocity

$$u = -E_t / E_x$$

Comparison with optical flow constraint equation (OFCE)

Comparison with optical flow constraint equation (OFCE)

$$l = (E_t + E_x)/2$$

Comparison with optical flow constraint equation (OFCE)

Comparison with optical flow constraint equation (OFCE)

Comparison with optical flow constraint equation (OFCE)

Comparison with optical flow constraint equation (OFCE)

• In contrast, let us consider simple differential filters for leftward and rightward movement

$$l = (E_t + E_x)/2$$

 \sim

Comparison with optical flow constraint equation (OFCE)

• In contrast, let us consider simple differential filters for leftward and rightward movement \sim

$$l = (E_t + E_x)/2$$
 $r = (E_t - E_x)/2$

• Indeed, as we are concerned not with sign for a given direction, but rather magnitude, it suffices to consider the squared filter responses

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

Comparison with optical flow constraint equation (OFCE)

• In contrast, let us consider simple differential filters for leftward and rightward movement \sim

$$l = (E_t + E_x)/2$$
 $r = (E_t - E_x)/2$

• Indeed, as we are concerned not with sign for a given direction, but rather magnitude, it suffices to consider the squared filter responses

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

• To get a single (signed) measure of movement, we difference the two squared responses

$$r - l = -E_x E_t$$

Comparison with optical flow constraint equation (OFCE)

• In contrast, let us consider simple differential filters for leftward and rightward movement \sim

$$l = (E_t + E_x)/2$$
 $r = (E_t - E_x)/2$

• Indeed, as we are concerned not with sign for a given direction, but rather magnitude, it suffices to consider the squared filter responses

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

• To get a single (signed) measure of movement, we difference the two squared responses

$$r - l = -E_x E_t$$

• Finally, to avoid being biased by locally large values of image contrast, we divide through by the square of a first-order measure of local contrast $s = E_x^2$

$$(r-l)/s = -E_t/E_x$$

Comparison with optical flow constraint equation (OFCE)

• In contrast, let us consider simple differential filters for leftward and rightward movement \sim

$$l = (E_t + E_x)/2$$
 $r = (E_t - E_x)/2$

• Indeed, as we are concerned not with sign for a given direction, but rather magnitude, it suffices to consider the squared filter responses

$$l = (E_t^2 + 2E_x E_t + E_x^2)/4 \qquad r = (E_t^2 - 2E_x E_t + E_x^2)/4$$

• To get a single (signed) measure of movement, we difference the two squared responses

$$r - l = -E_x E_t$$

• Finally, to avoid being biased by locally large values of image contrast, we divide through by the square of a first-order measure of local contrast $s = E_x^2$

$$(r-l)/s = -E_t/E_x$$

• We now recognize that this computation of velocity is equivalent to that based on the OFCE

$$E_x u + E_t = 0 \Longrightarrow u = -E_t / E_x$$

Conclusion

- Oriented filters in visual space-time support the recovery of image velocity, along a particular direction.
- A "bank" of such filters can be used to span direction and provide an approach to optical flow estimation.

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

A representation for spatiotemporal patterns: Motivation

- When confronted with spatiotemporal data, an intelligent system can be overwhelmed by sheer quantity.
- An initial organization would be a key enabler for dealing effectively with data of this nature.
- The organization should afford distinctions that can guide subsequent processing.
- Distinctions that go beyond that of simple velocity.

A representation for spatiotemporal patterns: General approach

- Parse stream of spatiotemporal data into primitive, yet semantically meaningful categories at the earliest stages of processing.
- Make distinctions along the following lines
 - What is moving and what is stationary?
 - Are the moving objects behaving coherently?
 - How much of the variance in the data is due to temporal brightness change?
 - Which portions of the data are simply too unstructured to support further analysis?

A representation for spatiotemporal patterns: General approach

- Integrate information across both the spatial and temporal dimensions.
- Build on analysis of local orientation.
 - The simplest non-trivial characterization of local geometric structure.

A representation for spatiotemporal patterns: Primitive patterns

Consider a spatiotemporal slice

- As an observer views a uniform pattern

A representation for spatiotemporal patterns: Primitive patterns

Consider a spatiotemporal slice

- As an observer views a uniform pattern

Consider a spatiotemporal slice

- As an observer views a uniform pattern

Consider a spatiotemporal slice

As an observer views a uniform pattern

Consider a spatiotemporal slice

As an observer views a uniform pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally static pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally static pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally static pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally static pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally static pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially uniform, temporally flickering pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially uniform, temporally flickering pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially uniform, temporally flickering pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially uniform, temporally flickering pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially uniform, temporally flickering pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern, with > 1 motion

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern, with > 1 motion

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern, with > 1 motion

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern, with > 1 motion

- Consider a spatiotemporal slice
 - As an observer views a spatially structured, temporally moving pattern, with > 1 motion

- Consider a spatiotemporal slice
 - As an observer views a pattern, "randomly" structured in space and time.

- Consider a spatiotemporal slice
 - As an observer views a pattern, "randomly" structured in space and time.

- Consider a spatiotemporal slice
 - As an observer views a pattern, "randomly" structured in space and time.

- Consider a spatiotemporal slice
 - As an observer views a pattern, "randomly" structured in space and time.

- Consider a spatiotemporal slice
 - As an observer views a pattern, "randomly" structured in space and time.

	Unstruc-	Static	Flicker	Coherent	Incoherent	Scintil-
	tured			Motion	Motion	lation
, "					88	
		\Rightarrow			×	\oplus

Orientation in visual space-time: Filtering

- Apply filters tuned to 4 different orientations in both x-t and y-t domains.
- In general, might consider additional directions.
- Filter specifics:
 - Oriented bandpass filters in spatiotemporal slice.
 - Lowpass filter in orthogonal spatial dimension.
 - Pointwise squared to yield local "oriented energy".

Orientation in visual space-time: Normalization

- For any given orientation, the filter response is a joint function of
 - orientation
 - contrast
- Normalization yields purer measure of orientation

 $R(x, y, t) = \frac{r(x, y, t)}{r(x, y, t) + l(x, y, t) + s_x(x, y, t) + f_x(x, y, t) + \varepsilon}$

with \Im a small bias added for stability.

• Similarly for l, s_x , f_x and their y-t counterparts.

A representation for spatiotemporal patterns: Opponency and summation

• The R and L (U and D) components are ambiguous WRT coherent and incoherent motion.

A representation for spatiotemporal patterns: Opponency and summation

- The R and L (U and D) components are ambiguous WRT coherent and incoherent motion.
- Solution: Combine via
 - opponency R-L (U-D)
 - summation R+L (U+D)
- Geometrically a rotation of coordinate axes.

A representation for spatiotemporal patterns: Spatiotemporal representation

• Proposal: A four band representation for both the x-t and y-t dimensions.

A representation for spatiotemporal patterns: Primitives projected on representation

	Unstruc-	Static	Flicker	Coherent	Incoherent	Scintil-
	tured			Motion	Motion	lation
, , , , , , , , , , , , , , , , , , ,					8	
				A	×	\oplus
R-L	0	0	0	++	0	0
R+L	0	++	++	++	++++	++
S_x	0	++	0	+	+	+
F_x	0	0	++	+	+	+

A representation for spatiotemporal patterns: Examples I

- A natural image sequence of each proposed class was acquired, (x,y,t) = (64,64,40).
 - Unstructured: featureless sky
 - static: motionless tree
 - flicker: smooth surface illuminated by lightning flashes
 - coherent motion: field of flowers under camera motion
 - incoherent motion: overlapped legs in complex motion
 - scintillation: rain striking a puddle
- Each sequence brought under proposed representation.
Unstructured

Static

Flicker

Coherent motion

Incoherent motion

Scintillation

A representation for spatiotemporal patterns: Results x-t

	Unstruc-	Static	Flicker	Coherent	Incoherent	Scintil-
	tured			Motion	Motion	lation
у г						
t r					\sim	
R-L					1	
	0.00	0.00	0.00	0.37	0.05	0.02
R+L						
	0.01	0.40	0.36	0.53	0.58	0.50
S_x		the second				
	0.00	0.55	0.00	0.21	0.17	0.25
F_x		and a			a I	
	0.00	0.04	0.63	0.26	0.25	0.23

A representation for spatiotemporal patterns: Results y-t

	Unstruc-	Static	Flicker	Coherent	Incoherent	Scintil-
	tured			Motion	Motion	lation
y						
t t					NON-	
U - D					and the	
	0.00	0.00	0.00	0.34	0.02	0.02
U + D						
	0.01	0.38	0.36	0.52	0.45	0.50
S_{v}		and a second			43	
_	0.00	0.59	0.00	0.19	0.24	0.28
F_y					and a	
	0.00	0.03	0.64	0.29	0.29	0.21

A representation for spatiotemporal patterns: Remarks

- Have described a representation for distinguishing primitive spatiotemporal patterns.
- The representation makes use of oriented bandpass image decomposition.
- Initial empirical results support the hypothesis that the proposed representation can afford the desired distinctions.

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

Boundaries: Motivation

- Detection and localization of spatiotemporal boundaries is an important aspect of chunking information into meaningful pieces.
- Complimentary to the area-based analysis considered so far.
- Differential operators matched to the juxtaposition of contrasting spatiotemporal structure can be assembled from the primitive filter responses, S, F, R-L, R+L, etc.

Boundaries: Coherent motion

- Boundaries in coherent motion discriminate foreground/background.
- Coherent motion related to opponent bands R-L and U-D.
- Combine a spatial Laplacian with opponent filtering to yield double opponent operators.

Boundaries: Coherent motion

- Boundaries in coherent motion discriminate foreground/background.
- Coherent motion related to opponent bands R-L and U-D.
- Combine a spatial Laplacian with opponent filtering to yield double opponent operators.

Boundaries: Signature

- Zero-crossings in the double-opponent motion operator output indicate coherent motion boundaries.
- Slope magnitude taken as strength of boundary signal.
- Sum signals from x-t and y-t dimensions.

$$R - L$$

$$D_x(R - L)$$

$$D_{xx}(R - L)$$

Boundaries: Examples II

- Two image sequences depicting boundaries of coherent motion, (x,y,t) = (256,256,16).
 - random dot cinematogram: left and right sides of display in opposite horizontal motion.
 - natural image sequence: aerial view of tree canopy with movement relative to undergrowth due to camera motion; homogeneous texture of vegetation obscures boundary in any one image.
- Each sequence processed by proposed method for indicating coherent motion boundaries.

Boundaries: Results

Frame of input sequence.

Motion boundary signal intensity.

Boundaries: Results

Frame of input sequence.

Motion boundary signal intensity.

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

Framework: Local orientation

Appeal to orientation is not arbitrary

- The local orientation (or lack thereof) of a pattern is one of its most salient characteristics.
- Geometrically, orientation captures the local first-order correlation structure of a pattern, alternatively the local tangent.
- Provides a formal prerequisite to analysis of higher-contact constructions (e.g., curvature)
- For vision, local spatiotemporal orientation can have additional interpretations.
 - Image velocity is manifest as spatiotemporal orientation.
 - And more...

Framework: Filtering

Orientation selectivity

- Goal is to analyze spatiotemporal data, *I*(*x*, *y*, *t*), according to its local orientation structure.
- Choose a representation with multiple bands each tuned for certain orientations, θ , and scales in 3D (*x*, *y*, *t*).
- Filter specifics:
 - 3D Gaussian second derivatives, $G_{2\theta}$.
 - Corresponding Hilbert transforms, $H_{2\theta}$.
 - Rectified and summed in quadrature pairs to yield local "oriented energy".

$$E_{\theta}(x, y, t) = \left[G_{2\theta} * I(x, y, t)\right]^{2} + \left[H_{2\theta} * I(x, y, t)\right]^{2}$$

input spatiotemporal volume

Framework: Architecture

Framework: Example

oriented energy volume

Framework: Distributions of oriented energy

Key ideas

- Build a distributed representation (i.e., histogram) at each point that measures the amount of energy for various kinds of spacetime oriented structures.
- Base subsequent analysis on the distribution of oriented energies across space and time.

Outline

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary

Applications

Examples provided in lecture.

Summary

- Introduction
- Orientation in visual space-time
- A representation for spatiotemporal patterns
- Spatiotemporal boundaries
- A framework for spatiotemporal analysis
- Applications
- Summary