EECS 4422/5323 Computer Vision

Unit 6: Motion

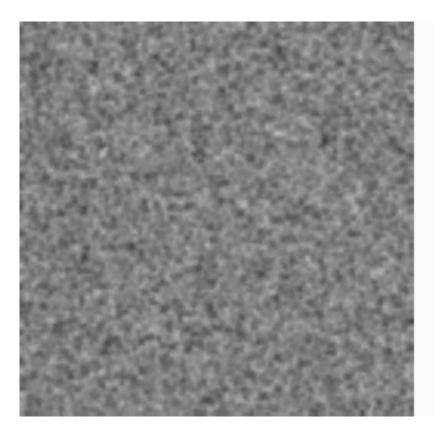
Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Introduction: Motivation

Time-varying imagery

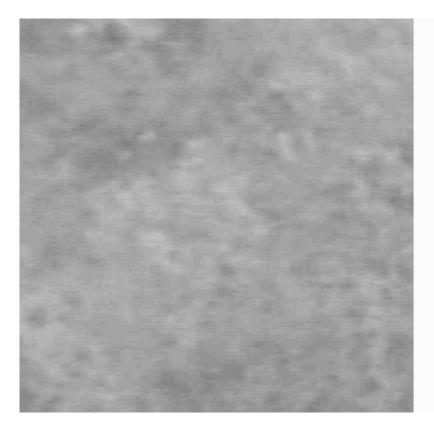
- A great deal of useful information can be extracted from time-varying imagery (e.g., video).
 - Temporal image sequences of a dynamic world acquired from a stationary camera.
 - Temporal images sequences of a stationary world acquired from a moving camera.
 - Temporal image sequences of a dynamic world acquired from a moving camera.
- It might seem foolhardy to consider processing multiple images when extracting information from even one is so challenging.
- However, multiple images imply additional data on which to base our inferences.
 - Typically, the results are well worth the effort.



Introduction: Motivation

Time-varying imagery

- A great deal of useful information can be extracted from time-varying imagery (e.g., video).
 - Temporal image sequences of a dynamic world acquired from a stationary camera.
 - Temporal images sequences of a stationary world acquired from a moving camera.
 - Temporal image sequences of a dynamic world acquired from a moving camera.
- It might seem foolhardy to consider processing multiple images when extracting information from even one is so challenging.
- However, multiple images imply additional data on which to base our inferences.
 - Typically, the results are well worth the effort.



Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Motion field vs. optical flow: Motion field

Basics

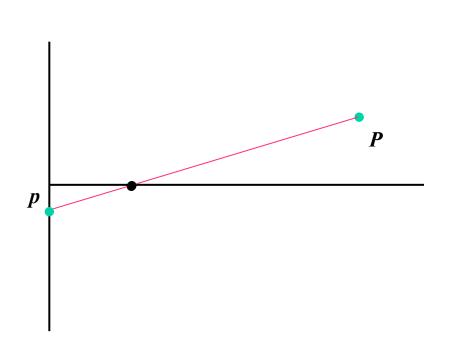
- When objects move in the environment or a camera moves through the environment there are corresponding changes in the images.
- These changes can be used to capture the relative motions as well as the shape of the objects.

Motion field vs. optical flow: Motion field

Definition

- The motion field assigns a velocity vector to each point in the image according to how the corresponding point in 3D moves.
- At a particular instance in time a point *p* in the image corresponds to some point *P* in the world according to some operative model of image projection,
 - We have

$$p = \Pi(P)$$



Motion field vs. optical flow: Motion field

Definition

- The motion field assigns a velocity vector to each point in the image according to how the corresponding point in 3D moves.
- At a particular instance in time a point *p* in the image corresponds to some point *P* in the world according to some operative model of image projection.
 - We have

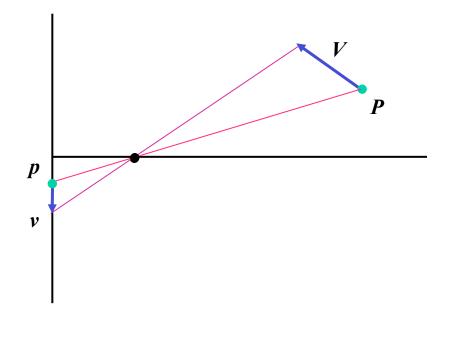
$$p = \Pi(P)$$

- Let the point in the world have velocity V relative to the camera, then the image point will have a corresponding velocity, v.
 - We have

$$v = \frac{dp}{dt}$$
 and $V = \frac{dP}{dt}$

with

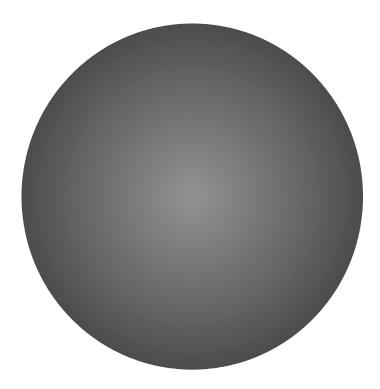
$$\frac{d\boldsymbol{p}}{dt} = \frac{d\Pi(\boldsymbol{P})}{dt}$$



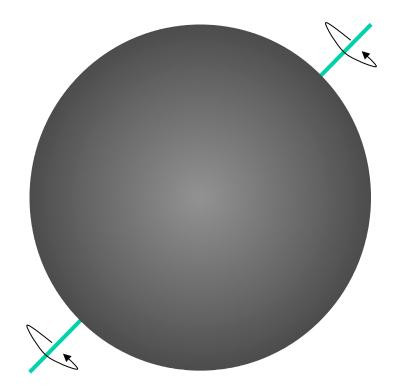
Basics

- Brightness patterns in the image move as the objects in the scene that give rise to them move.
- Optical flow is the apparent motion of the brightness pattern.
 - The motion that is present in the image.
- Ideally, the optical flow will correspond to the motion field.
 - But this is not always the case.

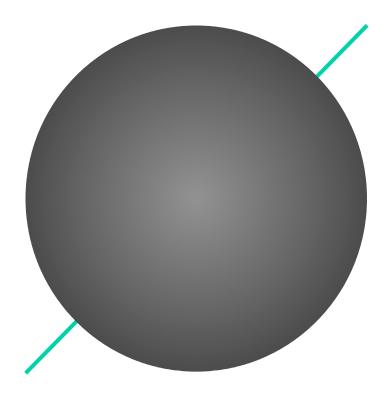
- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.



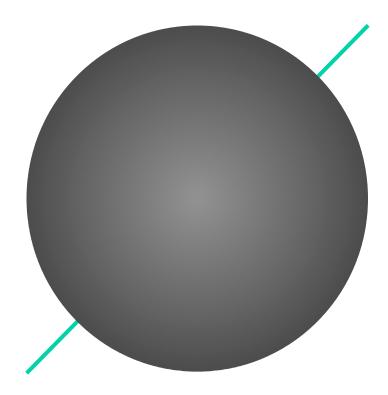
- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.



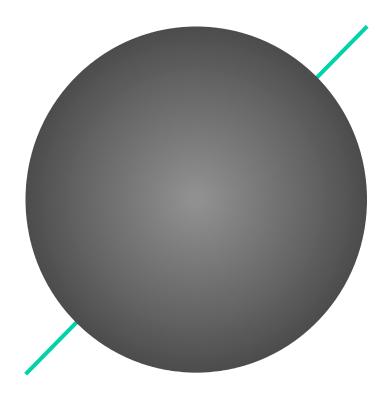
- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.



- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.

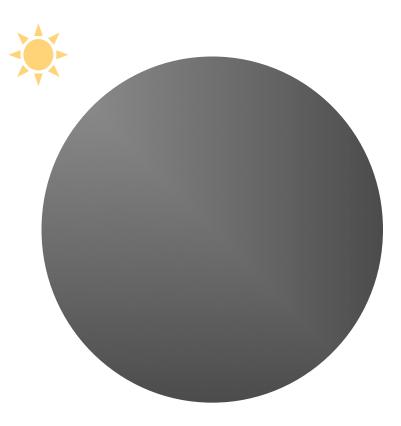


- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.
- There is no change in the shading pattern.
 - The relationship between the local surface orientation and the imaging system does not vary.
- The optical flow is zero every where...
- ...despite a nonzero motion field.



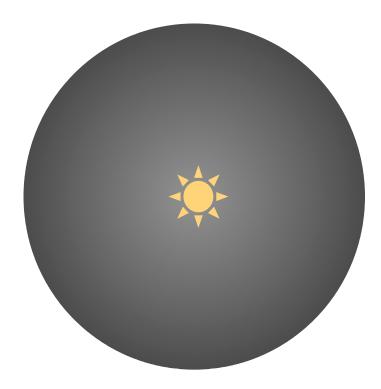
Moving light source

• Consider a perfect sphere in front of a stationary camera, but moving light source.



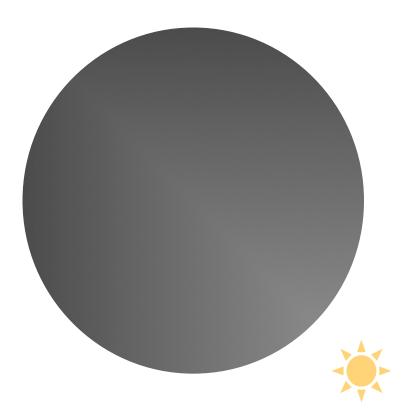
Moving light source

• Consider a perfect sphere in front of a stationary camera, but moving light source.



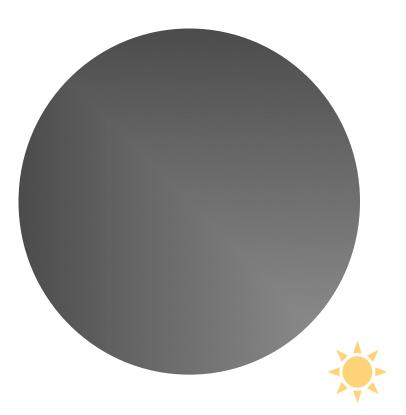
Moving light source

• Consider a perfect sphere in front of a stationary camera, but moving light source.



Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.
- Now the shading pattern changes with the variation in source position.
- The optical flow is nonzero everywhere...
- ...although the motion field is zero.

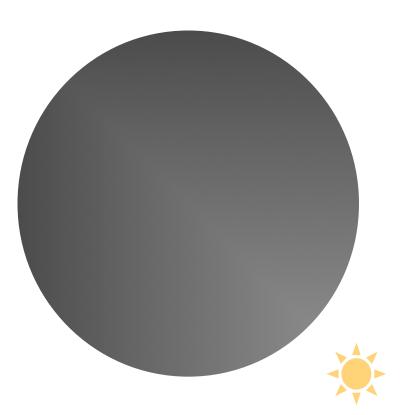


Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.
- Now the shading pattern changes with the variation in source position.
- The optical flow is nonzero everywhere...
- ...although the motion field is zero.

Other sources of discrepancy

- Shadows
- Specular reflection
- Virtual images
- Etc.



Motion field vs. optical flow: Conclusion

Life is tough, but not too...

- We are interested in the motion field
 - A purely geometric concept
 - That relates to the structure and dynamics of the scene
- What we have access to is the optical flow
 - A photometric concept
 - The thing that we can measure in an image.
- Typically, the motion field and optical flow are in close correspondence
 - But not always
 - As our examples have shown

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Where are we headed?

- Accepting the limited correspondence between the motion field and the optical flow
- We seek to relate optical flow to measurements of image irradiance.
- This will provide constraint on the recovery of flow from the data that we can sense.

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)
 - u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)
- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

• If brightness varies smoothly with *x*, *y*, and *t*, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

Remarks:

- We are seeking constraint on optical flow in terms of things we can calculate from image data.
- We want to reduce this expression to something that can be calculated directly from the image.
- We know how to calculate derivatives; and we have some.
- Let's try for a complete expression in terms of differentials.

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t)

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t)

$$\delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = 0$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t), divide through by δt

$$\delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = 0$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t), divide through by δt

$$\frac{\delta x}{\delta t}\frac{\partial E}{\partial x} + \frac{\delta y}{\delta t}\frac{\partial E}{\partial y} + \frac{\delta t}{\delta t}\frac{\partial E}{\partial t} + h.o.t. = 0$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t), divide through by δt and take the limit $\delta t \rightarrow 0$

$$\frac{\delta x}{\delta t}\frac{\partial E}{\partial x} + \frac{\delta y}{\delta t}\frac{\partial E}{\partial y} + \frac{\delta t}{\delta t}\frac{\partial E}{\partial t} + h.o.t. = 0$$

Relating temporal brightness change to optical flow

- Let
 - E(x,y,t) be image irradiance at time t and image location (x,y)

- $u = \frac{dx}{dt}, v = \frac{dy}{dt}$
- u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t + \delta t$ at the point $(x + \delta x, y + \delta y)$ with $\delta x = u \delta t$ and $\delta y = v \delta t$, i.e., for small δt

$$E(x + u\delta t, y + v\delta t, t + \delta t) = E(x, y, t)$$

If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} + h.o.t. = E(x, y, t)$$

• We cancel the E(x,y,t), divide through by δt and take the limit $\delta t \rightarrow 0$ to obtain

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

Optical flow constraint equation

• We can rewrite our differential constraint

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

to good advantage.

Optical flow constraint equation

• We can rewrite our differential constraint

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

to good advantage.

• By definition

$$u = \frac{dx}{dt} \qquad v = \frac{dy}{dt}$$

Optical flow constraint equation

• We can rewrite our differential constraint

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

to good advantage.

• By definition

$$u = \frac{dx}{dt} \qquad v = \frac{dy}{dt}$$

• Also, for notational convenience, let

$$E_x = \frac{\partial E}{\partial x}$$
 $E_y = \frac{\partial E}{\partial y}$ $E_t = \frac{\partial E}{\partial t}$

Brightness constancy: Constraint equation

Optical flow constraint equation

• We can rewrite our differential constraint

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

to good advantage.

• By definition

$$u = \frac{dx}{dt} \qquad v = \frac{dy}{dt}$$

• Also, for notational convenience, let

$$E_x = \frac{\partial E}{\partial x}$$
 $E_y = \frac{\partial E}{\partial y}$ $E_t = \frac{\partial E}{\partial t}$

• Then we have the standard form for the optical flow constraint equation

$$E_x u + E_y v + E_t = 0$$

which relates spatial and temporal derivatives of irradiance to optical flow.

Brightness constancy: Constraint equation

Optical flow constraint equation

• We can rewrite our differential constraint

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

to good advantage.

• By definition

$$u = \frac{dx}{dt} \qquad v = \frac{dy}{dt}$$

• Also, for notational convenience, let

$$E_x = \frac{\partial E}{\partial x}$$
 $E_y = \frac{\partial E}{\partial y}$ $E_t = \frac{\partial E}{\partial t}$

• Then we have the standard form for the optical flow constraint equation

$$E_x u + E_y v + E_t = 0$$

which relates spatial and temporal derivatives of irradiance to optical flow.

- Subject to the brightness constancy assumption.

Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

- The solution is under constrained.
- But how so?

Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation



Equation counting

• We have derived one equation

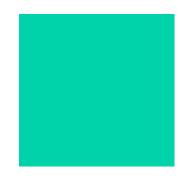
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation



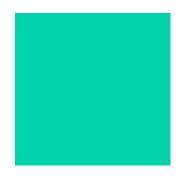
Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

- But have two unknowns of interest $(\mathcal{U},\mathcal{V})$
- The solution is under constrained.
- But how so?

Interpretation



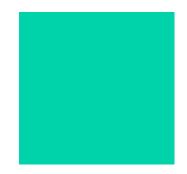
Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

- But have two unknowns of interest $(\mathcal{U},\mathcal{V})$
- The solution is under constrained.
- But how so?

Interpretation



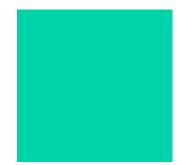
Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

- But have two unknowns of interest $(\mathcal{U},\mathcal{V})$
- The solution is under constrained.
- But how so?

Interpretation



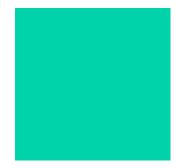
Equation counting

• We have derived one equation

$$E_x u + E_y v + E_t = 0$$

- But have two unknowns of interest $(\mathcal{U},\mathcal{V})$
- The solution is under constrained.
- But how so?

Interpretation



Equation counting

• We have derived one equation

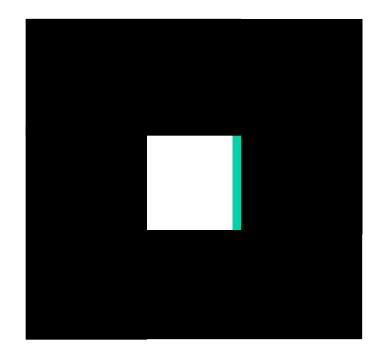
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

• We have derived one equation

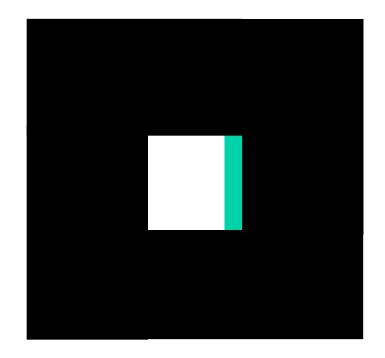
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

• We have derived one equation

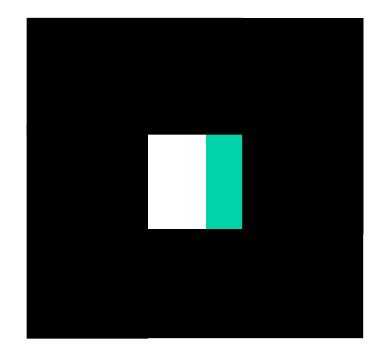
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

• We have derived one equation

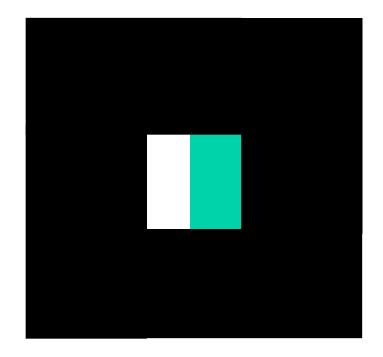
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

• We have derived one equation

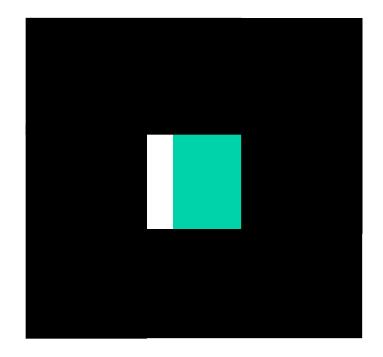
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

• We have derived one equation

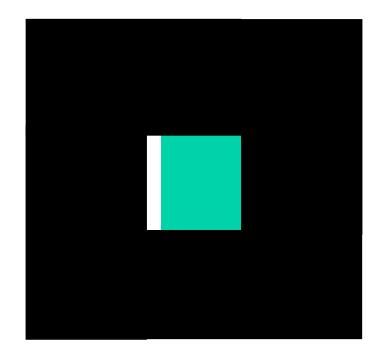
$$E_x u + E_y v + E_t = 0$$

• But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point



Equation counting

We have derived one equation

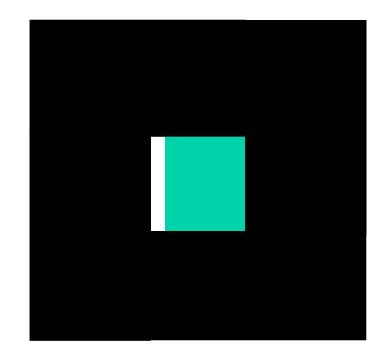
$$E_x u + E_y v + E_t = 0$$

But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex,Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

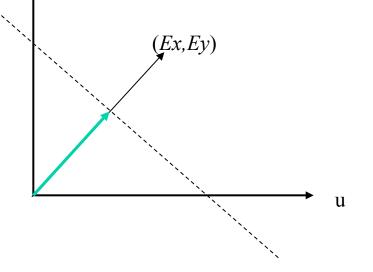
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
 - Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u,v)must have their nose along a line perpendicular to the image gradient (Ex, Ey).

(Ex, Ey)What is the length of the projection of (u,v) on the gradient direction? u $E_x u + E_v v + E_t = 0$ $\Rightarrow (u, v) \bullet (E_x, E_v) = -E_t$ $\Rightarrow (u,v) \bullet \frac{(E_x, E_y)}{|(E_x, E_y)|} = \frac{-E_t}{\sqrt{E_x^2 + E_y^2}} 54$

V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

But have two unknowns of interest

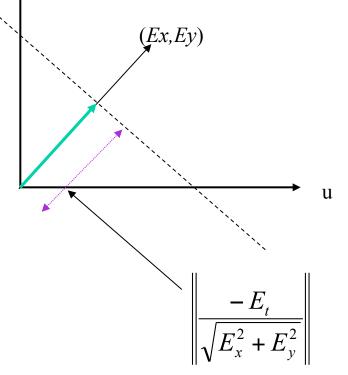
(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*, *Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u,v)must have their nose along a line perpendicular to the image gradient (Ex, Ey).



55

V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

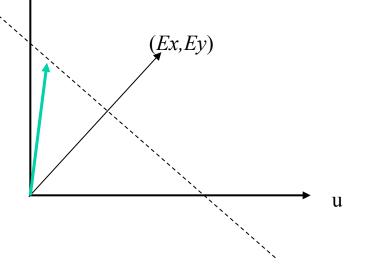
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

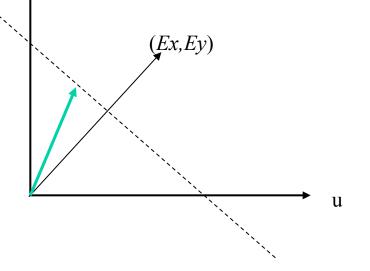
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

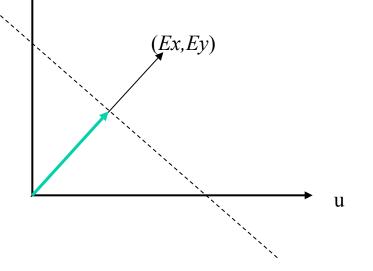
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

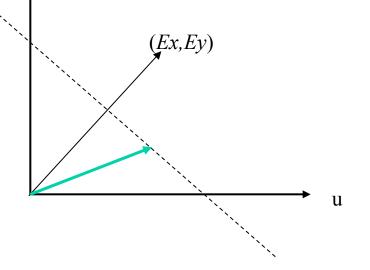
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



V

Equation counting

We have derived one equation

$$E_x u + E_y v + E_t = 0$$

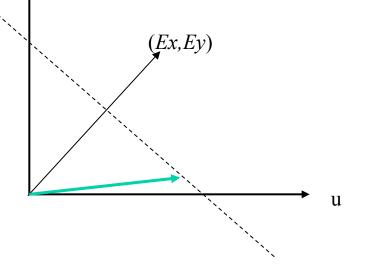
But have two unknowns of interest

(u,v)

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
 - Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
 - In the limit the image gradient (*Ex*,*Ey*) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.



Brightness constancy: Recap

Where are we?

- We are trying to develop constraints that allow us to recover optical flow from measurements of image irradiance.
- We have introduced the assumption that a local pattern of image intensity remains constant across an instance of time (brightness constancy).
- This allowed us to derive a fundamental equation that relates derivatives of irradiance to optical flow (the optical flow constraint equation)

$$E_x u + E_y v + E_t = 0$$

• However, there is not enough constraint to unambiguously determine the flow (aperture problem).

Where to next?

- We seek additional constraint to uniquely define the optical flow.
- To allow for algorithmic recovery.

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Gradient optical flow estimation: Approaches

We have

• We have derived the optical flow constraint equation

$$E_x u + E_y v + E_t = 0$$

- However, this amounts to one equation in two unknowns, (u, v).
- This is not enough to uniquely define the optical flow solution.

We need

- Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.
- Several approaches have been developed
 - Variational smoothness with boundary conditions
 - Differentiate the present constraint equation to generate additional constraint equations
 - Assume flow constancy over some finite window

Gradient optical flow estimation: Approaches

We have

• We have derived the optical flow constraint equation

$$E_x u + E_y v + E_t = 0$$

- However, this amounts to one equation in two unknowns, (u, v).
- This is not enough to uniquely define the optical flow solution.

We need

- Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.
- Several approaches have been developed
 - Variational smoothness with boundary conditions
 - Differentiate the present constraint equation to generate additional constraint equations
 - Assume flow constancy over some finite window

Error measure

• We seek (*u*,*v*) that satisfies the constraint equation

$$E_x u + E_y v + E_t = 0$$

• We choose to do this by minimizing the squared violation of this constraint WRT the variable of interest

$$\min_{(u,v)} (E_x u + E_y v + E_t)^2$$

Error measure

• We seek (u, v) that satisfies the constraint equation

$$E_x u + E_y v + E_t = 0$$

We choose to do this by minimizing the squared violation of this constraint WRT the variable
of interest

$$\min_{(u,v)} (E_x u + E_y v + E_t)^2$$

- Flow constancy says that over some window, W, the values of (u, v) are constant.
- Correspondingly, we seek to minimize violation of the optical flow constraint over the window

$$\min_{(u,v)} \sum \sum_{W} (E_x u + E_y v + E_t)^2$$

Generation of constraint equations

• To find (*u*,*v*) that minimize the flow constancy error

$$\min_{(u,v)} \sum \sum_{W} (E_x u + E_y v + E_t)^2$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

Generation of constraint equations

• To find (*u*,*v*) that minimize the flow constancy error

$$\min_{(u,v)} \sum \sum_{W} (E_x u + E_y v + E_t)^2$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

• Differentiating with respect to u and setting to zero yields

$$\sum_{W} \sum_{w} 2E_x (E_x u + E_y v + E_t) = 0$$

Generation of constraint equations

• To find (*u*, *v*) that minimize the flow constancy error

$$\min_{(u,v)} \sum \sum_{W} (E_x u + E_y v + E_t)^2$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

• Differentiating with respect to u and setting to zero yields

$$\sum_{W} \sum_{w} 2E_x (E_x u + E_y v + E_t) = 0$$

• Differentiating with respect to v and setting to zero yields

$$\sum_{W} \sum_{v} 2E_{v}(E_{x}u + E_{v}v + E_{t}) = 0$$

• We now have two equations in the two unknowns of interest (u, v).

Solving for optical flow

• We have our two equations in two unknowns

$$\sum_{x} \sum_{x} (E_x u + E_y v + E_t) E_x = 0$$

$$\sum_{x} \sum_{x} (E_x u + E_y v + E_t) E_y = 0$$

- To complete our task, we need to explicitly solve for (u, v).
- Let us more cleanly isolate these variables from the other terms.

Solving for optical flow

We have our two equations in two unknowns

$$\sum_{x} \sum_{x} (E_x u + E_y v + E_t) E_x = 0$$

$$\sum_{x} \sum_{x} (E_x u + E_y v + E_t) E_y = 0$$

- To complete our task, we need to explicitly solve for (u, v).
- Let us more cleanly isolate these variables from the other terms.
- Since (*u*,*v*) is assumed constant over the window of summation, we can move them outside the summation.

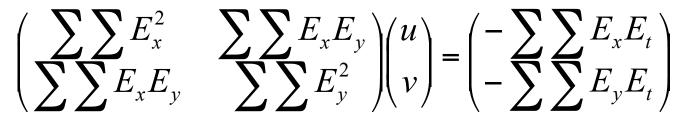
 $\left(\sum_{x}\sum_{x}E_{x}^{2}\right)u + \left(\sum_{x}\sum_{y}E_{x}E_{y}\right)v + \sum_{x}\sum_{x}E_{x}E_{t} = 0$ $\left(\sum_{x}\sum_{x}E_{y}\right)u + \left(\sum_{x}\sum_{y}E_{y}^{2}\right)v + \sum_{x}\sum_{y}E_{y}E_{t} = 0$

Solving for optical flow

Our equations

$$\left(\sum_{x}\sum_{x}E_{x}^{2}\right)u + \left(\sum_{x}\sum_{y}E_{x}E_{y}\right)v + \sum_{x}\sum_{x}E_{x}E_{t} = 0$$
$$\left(\sum_{x}\sum_{x}E_{y}\right)u + \left(\sum_{x}\sum_{y}E_{y}^{2}\right)v + \sum_{x}\sum_{y}E_{y}E_{t} = 0$$

now suggest the matrix form



Solving for optical flow

Our equations •

$$\left(\sum_{x}\sum_{x}E_{x}^{2}\right)u + \left(\sum_{x}\sum_{y}E_{x}E_{y}\right)v + \sum_{x}\sum_{x}E_{x}E_{t} = 0$$
$$\left(\sum_{x}\sum_{x}E_{y}\right)u + \left(\sum_{x}\sum_{y}E_{y}^{2}\right)v + \sum_{x}\sum_{y}E_{y}E_{t} = 0$$

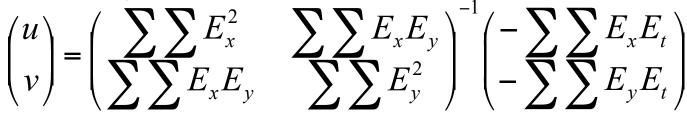
now suggest the matrix form

 $\left(\sum_{v}\sum_{z}E_{x}^{2}-\sum_{v}E_{x}E_{v}\right)\left(u\right)=\left(-\sum_{v}\sum_{z}E_{x}E_{v}\right)\left(u\right)$

And our solution becomes ٠

Remarks

- An optical flow algorithm follow trivially from our derivation
 - Input: A temporal sequence of two images
 - **Output:** A pair of optical flow images; a U image and a V image
 - For all pixels (i,j) in the first image solve the flow constancy equation



and store the recovered (u, v) in the corresponding (i, j) locations in the U and V images

Remarks

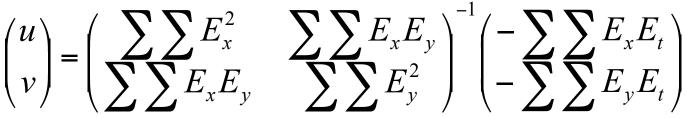
- An optical flow algorithm follow trivially from our derivation
 - Input: A temporal sequence of two images
 - **Output:** A pair of optical flow images; a U image and a V image
 - For all pixels (i,j) in the first image solve the flow constancy equation

and store the recovered (u, v) in the corresponding (i, j) locations in the U and V images

- How do we choose the window size?
 - Smaller windows provide greater precision
 - Larger windows provide better performance in presence of low signal-to-noise
 - A data dependent trade-off (as with stereo matching)

Remarks

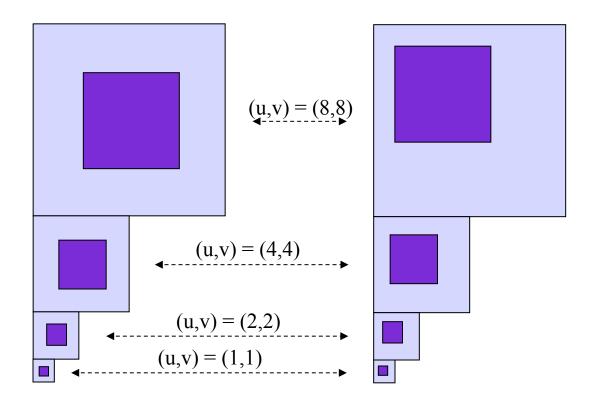
- An optical flow algorithm follow trivially from our derivation
 - Input: A temporal sequence of two images
 - **Output:** A pair of optical flow images; a U image and a V image
 - For all pixels (i,j) in the first image solve the flow constancy equation



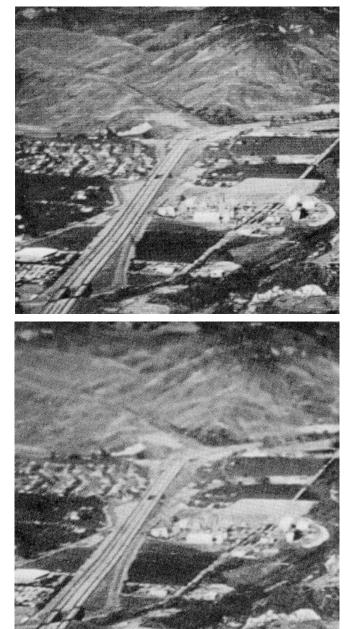
and store the recovered (u,v) in the corresponding (i,j) locations in the U and V images

- How do we choose the window size?
 - Smaller windows provide greater precision
 - Larger windows provide better performance in presence of low signal-to-noise
 - A data dependent trade-off (as with stereo matching)
- This is yet another excellent place to exploit coarse-to-fine processing
 - Build a pyramid representation
 - Initially recover (a coarse estimate) of flow with the lowest resolution images
 - Use the initial estimate to seed the next highest resolution estimate
 - Etc.

Benefit of coarse-to-fine flow estimation

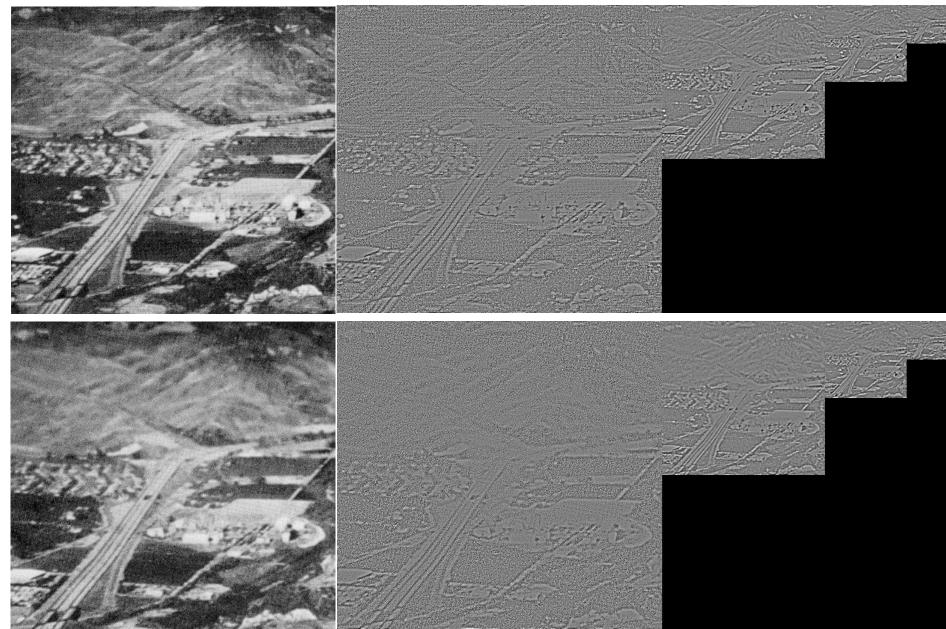


Source image



Source image

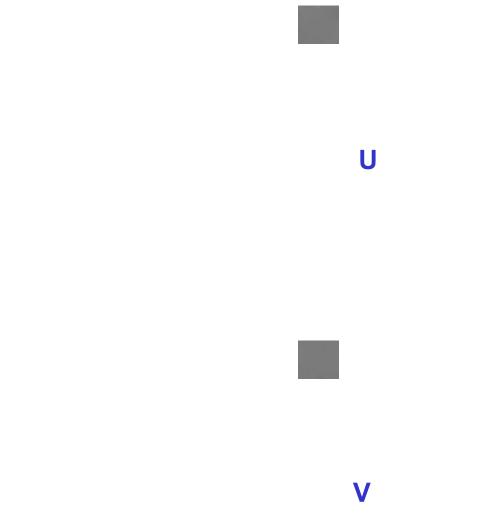
Pyramid representation

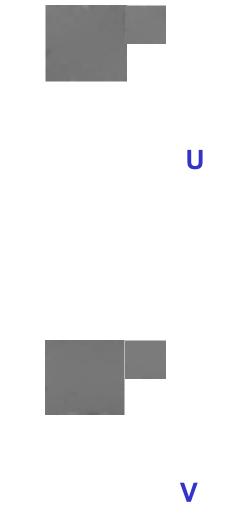


80

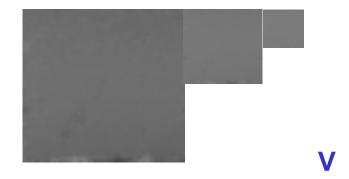
U

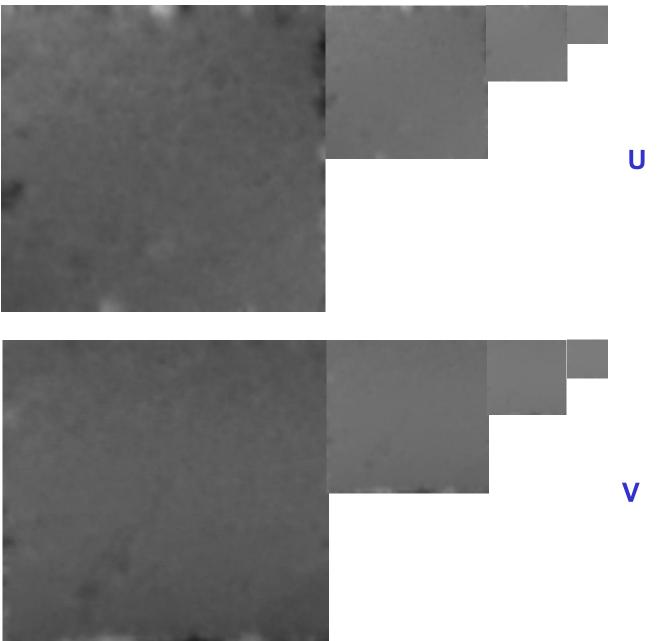
V

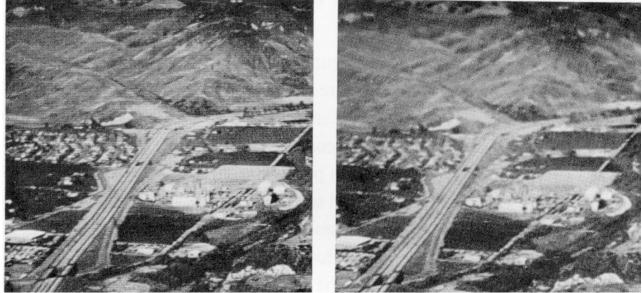


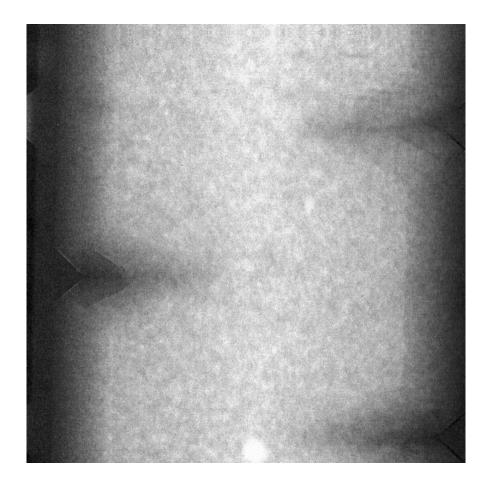


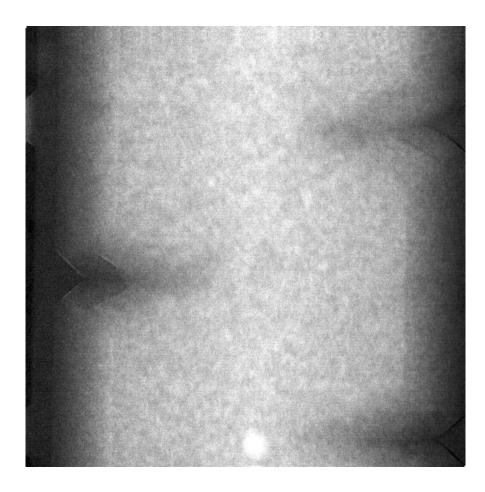
U



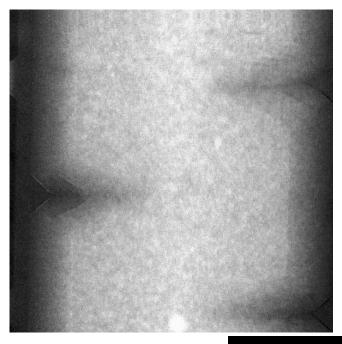


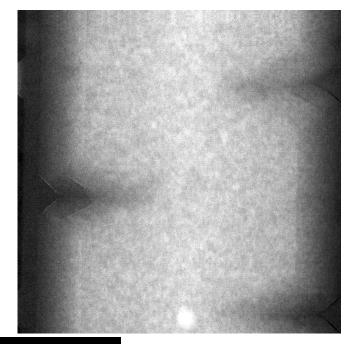


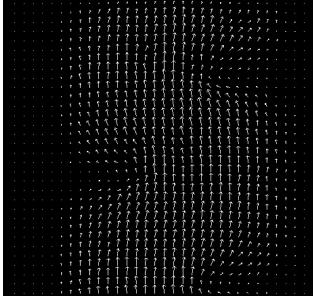












Gradient-based optical flow estimation: Additional examples presented in lecture

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Finite displacement and features: Approaches

Motivation

- Gradient-based techniques work best when the displacements between the image are relatively small
 - This is implicit in the derivation of the optical flow constraint equation via differentials
 - Although course-to-fine processing can help with this limitation
- Well detected and localized features have the potential to be reasonably matched between images even in presence of much large displacements.
- Therefore, such approaches have received attention in conjunction with larger motion displacements.

Two broad classes of approach

- Methods for matching between binocular stereo pairs can be adapted to finite displacement image motion.
 - For example, the feature-based methods are particularly applicable
- Also of interest is the iteration of gradient-based optical flow
 - But restricted to interesting feature points

Finite displacement and features: Approaches

Motivation

- Gradient-based techniques work best when the displacements between the image are relatively small
 - This is implicit in the derivation of the optical flow constraint equation via differentials
 - Although course-to-fine processing can help with this limitation
- Well detected and localized features have the potential to be reasonably matched between images.
- Therefore, such approaches have received attention in conjunction with larger motion displacements.

Two broad classes of approach

- Methods for matching between binocular stereo pairs can be adapted to finite displacement image motion.
 - For example, the feature-based methods are particularly applicable
- Also of interest is the iteration of gradient-based optical flow
 - But restricted to interesting feature points

- We begin by extracting feature points of interest in image 1 of the input pair.
 - For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.

- We begin by extracting feature points of interest in image 1 of the input pair.
 - For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,

- We begin by extracting feature points of interest in image 1 of the input pair.
 - For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum E_x^2 & \sum E_x E_y \\ \sum E_x E_y & \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum E_x E_t \\ -\sum E_y E_t \end{pmatrix}$$

- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.

- We begin by extracting feature points of interest in image 1 of the input pair.
 - For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,

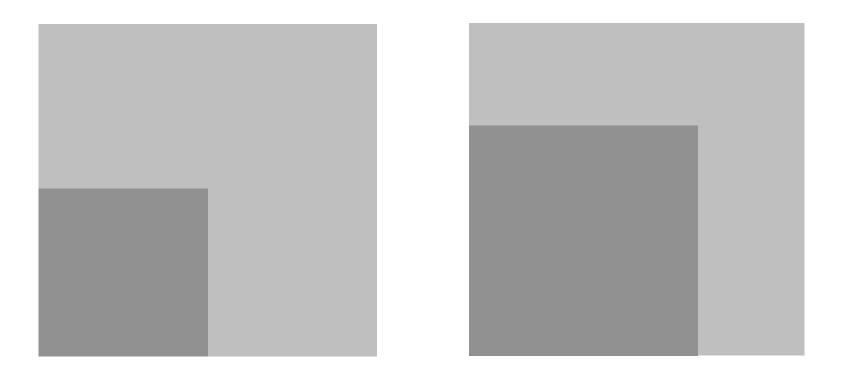
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum E_x^2 & \sum E_x E_y \\ \sum E_x E_y & \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum E_x E_t \\ -\sum E_y E_t \end{pmatrix}$$

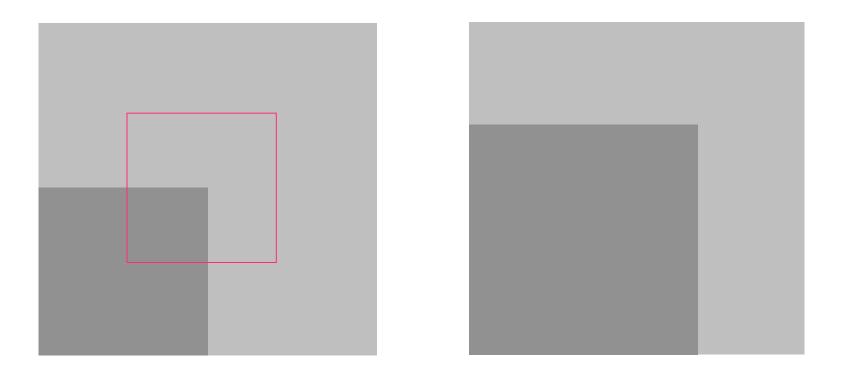
- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.
- If the similarity is above some threshold, then we say that the match has been found and we exit.

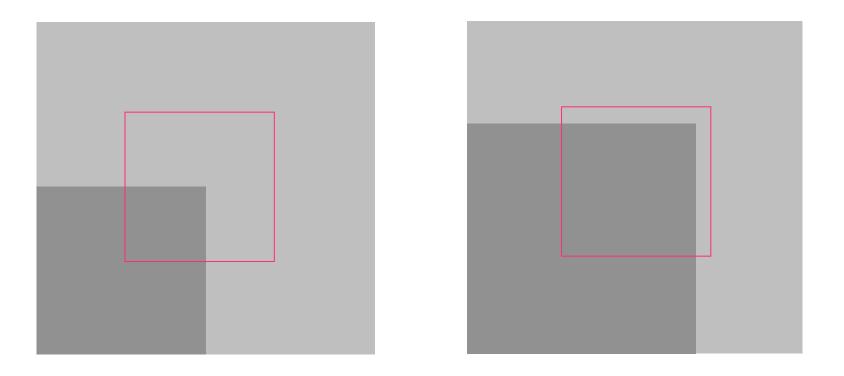
- We begin by extracting feature points of interest in image 1 of the input pair.
 - For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,

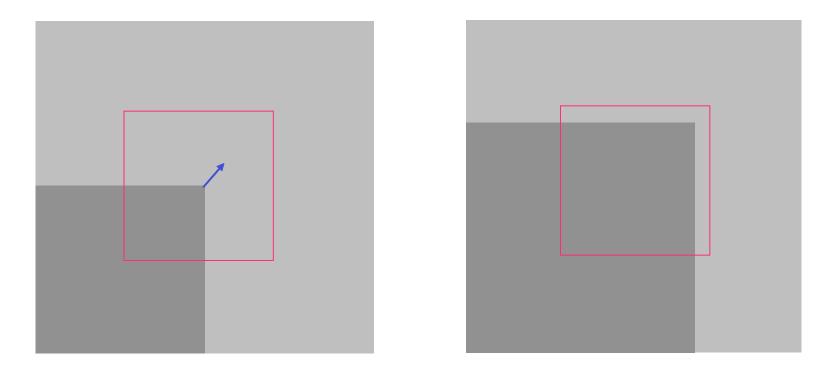
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \sum E_x^2 & \sum E_x E_y \\ \sum E_x E_y & \sum E_y^2 \end{pmatrix}^{-1} \begin{pmatrix} -\sum E_x E_t \\ -\sum E_y E_t \end{pmatrix}$$

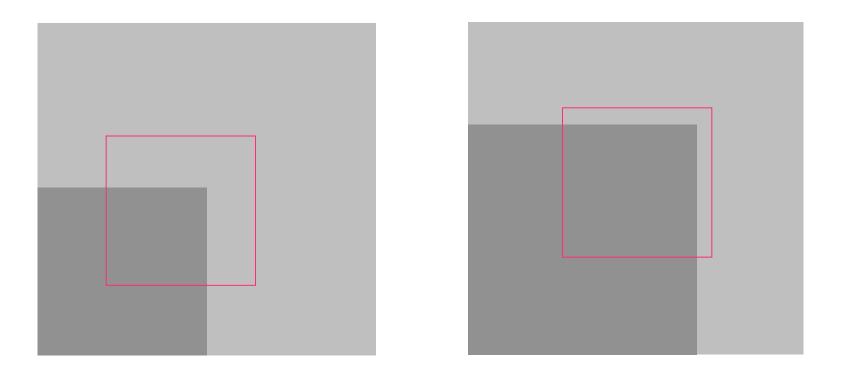
- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.
- If the similarity is above some threshold, then we say that the match has been found and we exit.
- If the similarity measure is below some threshold, then we iterate the gradient-based calculation, but now making use of the shifted window in image 1.

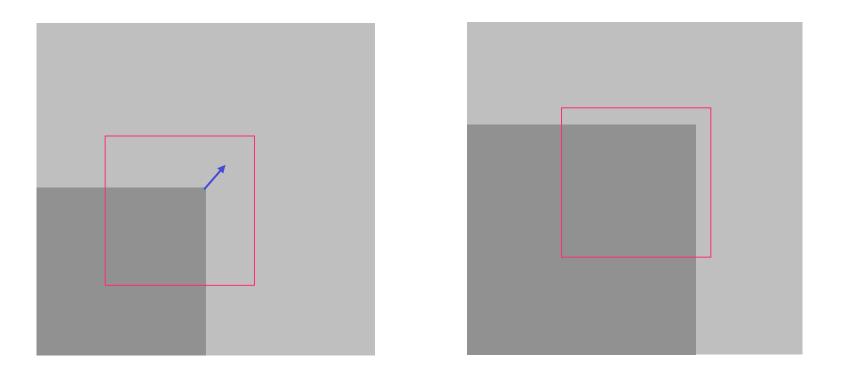


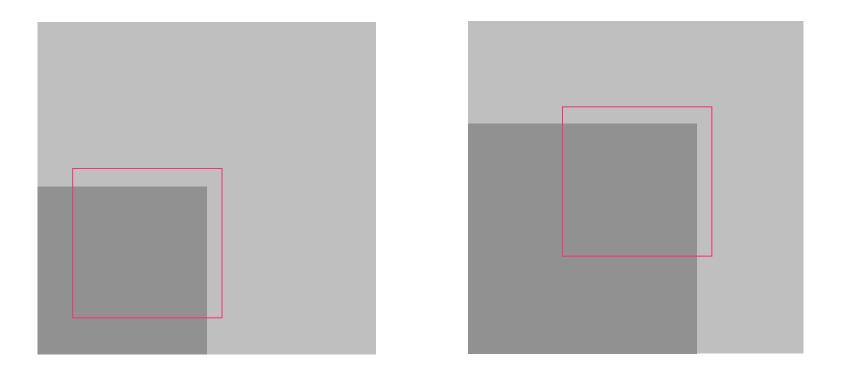


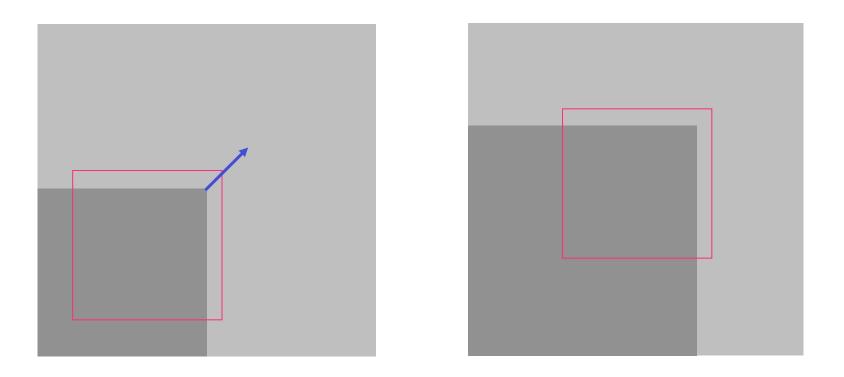












Algorithm

- Input: Two images I1 and I2 and a set of features for I1
- **Output:** A set of displacements, one for each feature of I1.
- Notation: Let
 - *Q1, Q2 and* be two image windows
 - *t* be a threshold, a fixed positive real number
 - *p* be a feature point in I1
 - *d* be the unknown displacement for *p*
- For each feature point *p*
 - 1. Set d = 0 and centre Q1 on p
 - 2. Estimate the displacement $d\theta$ of p centre of Q1 according to the gradient-based algorithm
 - 3. Set $d=d+d\theta$
 - 4. Let Q2 be the image patch obtained by shifting Q1 according to d0.
 - Calculate the similarity, *S*, of *Q2* and the corresponding patch in I2
 - 5. If $S \le t$ then set Q1 = Q2 and goto 2; else exit.

Algorithm

- Input: Two images I1 and I2 and a set of features for I1
- **Output:** A set of displacements, one for each feature of I1.
- Notation: Let
 - *Q1, Q2 and* be two image windows
 - *t* be a threshold, a fixed positive real number
 - *p* be a feature point in I1
 - *d* be the unknown displacement for *p*
- For each feature point *p*
 - 1. Set d = 0 and centre Q1 on p
 - 2. Estimate the displacement $d\theta$ of p centre of Q1 according to the gradient-based algorithm
 - 3. Set $d=d+d\theta$
 - 4. Let Q^2 be the image patch obtained by shifting Q^1 according to $d\theta$.
 - Calculate the similarity, *S*, of *Q2* and the corresponding patch in I2
 - 5. If $S \le t$ then set Q1 = Q2 and goto 2; else exit.

Representative similarity measure

• 1/(Sum of Squared Differences) within the windows of interest is a reasonable choice for this algorithm.

Finite displacement and feature-based estimation: Example presented in lecture