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Introduction: Motivation

Time-varying imagery
« A great deal of useful information can be
extracted from time-varying imagery (e.g.,
video).
— Temporal image sequences of a

dynamic world acquired from a
stationary camera.

— Temporal images sequences of a
stationary world acquired from a moving
camera.

— Temporal image sequences of a
dynamic world acquired from a moving
camera.

« It might seem foolhardy to consider
processing multiple images when extracting
information from even one is so challenging.

* However, multiple images imply additional
data on which to base our inferences.

— Typically, the results are well worth the
effort.
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 Motion field vs. optical flow



Motion field vs. optical flow: Motion field

Basics

*  When objects move in the environment or a
camera moves through the environment
there are corresponding changes in the
images.

« These changes can be used to capture the
relative motions as well as the shape of the
objects.



Motion field vs. optical flow: Motion field

Definition

« The motion field assigns a velocity vector to
each point in the image according to how the
corresponding point in 3D moves.

« At a particular instance in time a point p in

the image corresponds to some point P in
the world according to some operative model
of image projection,

— We have

p=T1(P) !




Motion field vs. optical flow: Motion field

Definition

The motion field assigns a velocity vector to
each point in the image according to how the
corresponding point in 3D moves.

At a particular instance in time a point p in

the image corresponds to some point P in
the world according to some operative model
of image projection.

— We have

p=11(P)

Let the point in the world have velocity V'
relative to the camera, then the image point
will have a corresponding velocity, v.

— We have
p = d—p and V = d—P
dt dt
with
dp dlI(P)

dt dt

N




Motion field vs. optical flow: Optical flow

Basics

« Brightness patterns in the image move as
the objects in the scene that give rise to
them move.

*  Optical flow is the apparent motion of the
brightness pattern.

— The motion that is present in the image.

« |deally, the optical flow will correspond to the
motion field.

— But this is not always the case.



Motion field vs. optical flow: Optical flow

Rotating sphere
« Consider perfect sphere in front of a fixed
imaging system (camera and illumination)

* There will be a smooth spatial variation in
image brightness (shading) since the surface
is curved.
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Motion field vs. optical flow: Optical flow

Rotating sphere

« Consider perfect sphere in front of a fixed
imaging system (camera and illumination)

* There will be a smooth spatial variation in
image brightness (shading) since the surface
is curved.

* Let the sphere rotate.

* There is no change in the shading pattern.

— The relationship between the local surface
orientation and the imaging system does not

vary.
« The optical flow is zero every where...
...despite a nonzero motion field.
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Motion field vs. optical flow: Optical flow

Moving light source

Consider a perfect sphere in front of a
stationary camera, but moving light source.
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Motion field vs. optical flow: Optical flow

Moving light source

» Consider a perfect sphere in front of a
stationary camera, but moving light source.

* Now the shading pattern changes with the
variation in source position.

«  The optical flow is nonzero everywhere...
« ...although the motion field is zero.
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Motion field vs. optical flow: Optical flow

Moving light source

» Consider a perfect sphere in front of a
stationary camera, but moving light source.

* Now the shading pattern changes with the
variation in source position.

«  The optical flow is nonzero everywhere...
« ...although the motion field is zero.

Other sources of discrepancy
« Shadows

»  Specular reflection

« Virtual images

+ Etc.
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Motion field vs. optical flow: Conclusion

Life is tough, but not too...

We are interested in the motion field
— A purely geometric concept
— That relates to the structure and dynamics of the scene
What we have access to is the optical flow
— A photometric concept
— The thing that we can measure in an image.
Typically, the motion field and optical flow are in close correspondence
— But not always
— As our examples have shown
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Brightness constancy

Outline
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Brightness constancy: Constraint equation

Where are we headed?

Accepting the limited correspondence between the motion field and the optical flow
We seek to relate optical flow to measurements of image irradiance.
This will provide constraint on the recovery of flow from the data that we can sense.
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
« Let

— E(x,y,t) be image irradiance at time ¢ and image location (x,y)

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

dx
Let u

=
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

_Y

V=
dt
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

e Let U dx _d_y

=—_) =
5
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt
— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

«  The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow dx

* Let Uu=— , V= d_y
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

«  The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oF oFE oFE
Ex,y,t) +tOx—+0y—+0ot— + hot.= E(x,y,t)
0X 0y ot
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
* Let Uu=— , Y ="
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

«  The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)

. If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oE oE oE
Ex,y,t) +tOx—+0y—+0ot— + hot.= E(x,y,t)
0X 0y ot
Remarks:

« We are seeking constraint on optical flow in terms of things we can calculate from image data.
We want to reduce this expression to something that can be calculated directly from the image.
We know how to calculate derivatives; and we have some.

Let’ s try for a complete expression in terms of differentials.
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
) g P g g P dx dy
et u=— R V=—
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oF oFE oFE
E(x, y,t)+c5x—+6y—+§t—+hot = E(x,,t)
0x Y% ot

We cancel the E(x,y,?)

M+§x—+éy—+5t¥+hot = EGe7,0)
dy
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Relating temporal brightness change to optical flow

Brightness constancy: Constraint equation

dx _d_y

Let -
Uu=—.,v=
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oF oFE oFE
Ex,y,t) +tOx—+0y—+0ot— + hot.= E(x,y,t)
0X 0y ot

We cancel the E(x,y,?)

E E E
5xa—+5ya—+§ta—+h.o.t. =0
0x 0y ot
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
Let U = @ V= d_y
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)

If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oE
E(x, y,t)+c5x—+6y—+§t—+hot = E(x,,t)
0x Y% ot
We cancel the E(x,y,t), divide through by Ot
oE
—+5y—+§t—+h0t =0
0x 0y ot
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
) g P g g P dx dy
et u=— R V=—
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oF oFE oFE
E(x, y,t)+c5x—+6y—+§t—+hot = E(x,,t)
0x Y% ot

We cancel the E(x,y,t), divide through by Ot
Ox 0E Oy OE ot OF

+hot.=0
SO ox ot ay o ot
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow
) g P g g P dx dy
et u=— R V=—
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt

— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
oF oFE oFE
E(x, y,t)+c5x—+6y—+§t—+hot = E(x,,t)
0x Y% ot

We cancel the E(x,y,t), divide through by &¢ and take the limit ot — 0
Ox 0E Oy OE ot OF

+hot.=0
SO ox ot ay o ot
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Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

Let U dx — d_y

=—_) =
5
— E(x,y,t) be image irradiance at time ¢ and image location (x,y) dt dt
— u(x,y) and v(x,y) be the x and y components of the optical flow, respectively

The brightness constancy assumption is that the irradiance will be the same at time ¢ + Ot
at the point (x + dx, y + 0y) withOx = uot and Oy = vt | i.e., for small Ot

E(x+uot,y+vot,t+ot)=E(x,y,t)
If brightness varies smoothly with x, y, and ¢, then we can expand the LHS in a Taylor series

to obtain
ok of ok
Ex,y,t) +tOx—+0y—+0ot— + hot.= E(x,y,t)
0X 0y ot
We cancel the E(x,y,t), divide through by ¢ and take the limit Of — 0 to obtain

8de+aEdy+8E_
ox dt dy dt ot

0
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Brightness constancy: Constraint equation

Optical flow constraint equation
We can rewrite our differential constraint

8de+8Edy+8E_
ox dt ody dt ot

0

to good advantage.
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Optical flow constraint equation
We can rewrite our differential constraint

8de+8Edy+8E_
ox dt ody dt ot

0

to good advantage.
By definition



Brightness constancy: Constraint equation

Optical flow constraint equation
We can rewrite our differential constraint

oFE dx 8Edy+8E_

+ 0
ox dt ody dt ot
to good advantage.
By definition
d.
)
dt dt
Also, for notational convenience, let
E E
g9 g _9E g O
ox )Y ot
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Brightness constancy: Constraint equation

Optical flow constraint equation
We can rewrite our differential constraint

oF dx oE dy OE
+ +— =

0
ox dt dy dt ot
to good advantage.
By definition
d.
I )
dt dt
Also, for notational convenience, let
x Y9y ot

Then we have the standard form for the optical flow constraint equation
Eu+Ev+E =0

which relates spatial and temporal derivatives of irradiance to optical flow.
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Brightness constancy: Constraint equation

Optical flow constraint equation
We can rewrite our differential constraint

oF dx oE dy OE
+ +

=0
ox dt dy dt ot
to good advantage.
* By definition
d
I )
dt dt
 Also, for notational convenience, let
E E E
E = a— E a E = J

T ox Y Y

a
« Then we have the standard form for the optical flo ﬂyw constraint equation

Eu+Ev+E =0

which relates spatial and temporal derivatives of irradiance to optical flow.
— Subject to the brightness constancy assumption.



Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0
y t
But have two unknowns of interest

(V)

The solution is under constrained.
But how so?
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Brightness constancy: Aperture problem

Equation counting

We have derived one equation
EFEu+Ev+E =0
y t
But have two unknowns of interest

(,v)

The solution is under constrained.
But how so?

Interpretation

Consider a translating shape.
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Brightness constancy: Aperture problem

Equation counting

Interpretation

We have derived one equation
Eu+Ev+E =0

But have two unknowns of interest

(V)

The solution is under constrained.
But how so?

Consider a translating shape.

Suppose we restrict consideration to a small
region of the image

— Call this the aperture
Suppose this aperture is so small that we
can see only a single “edge orientation”

— In the limit the image gradient (Ex,Ey)
at a point
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Brightness constancy: Aperture problem

Equation counting

Interpretation
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Eu+Ev+E =0

But have two unknowns of interest

(V)
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But how so?
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Brightness constancy: Aperture problem

Equation counting

Interpretation

We have derived one equation
Eu+Ev+E =0

But have two unknowns of interest

(V)
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But how so?
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
» Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey)
at a point
*  We only have information about the optical
flow across the edge, not along the edge.

*  We refer to this limitation as the aperture
problem.
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

— Suppose we restrict consideration to a
small region of the image

» Call this the aperture

*  Suppose this aperture is so small that we

can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point

*  We only have information about the optical
flow across the edge, not along the edge.

»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
perpendicular to the image gradient
(Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.
*  Suppose we restrict consideration to a small
region of the image
— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey)
at a point
*  We only have information about the optical
flow across the edge, not along the edge.

*  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
v perpendicular to the image gradient
1 (Ex,Ey).

Ex,Ey)

/7 What is the length of the projection
“._ of (u,v) on the gradient direction?

\ 4

Eu+Ev+E =0 .
=>(uav).(waaEvy)=_Evt
(Ex’Ey)_ _E

t

(E.E) [E?+E>*

= (u,v)*



Brightness constancy: Aperture problem

Equation counting

We have derived one equation
In velocity space, all valid (u,v)

E M E yV +E t = 0 must have their nose along a line
«  But have two unknowns of interest v perpendicular to the image gradient

(l/l, V) 1 (Ex,EY).

«  The solution is under constrained. .
«  But how so0? N Ex, Ey)
Interpretation h
+ Consider a translating shape.
*  Suppose we restrict consideration to a small .
region of the image BN
— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”

— In the limit the image gradient (Ex,Ey)

\ 4

at a point
*  We only have information about the optical
flow across the edge, not along the edge. E
*  We refer to this limitation as the aperture i
problem. Ez + Ez

* Y 55



Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point
*  We only have information about the optical
flow across the edge, not along the edge.
»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line

v perpendicular to the image gradient

i (Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point
*  We only have information about the optical
flow across the edge, not along the edge.
»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
perpendicular to the image gradient
(Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point
*  We only have information about the optical
flow across the edge, not along the edge.
»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
perpendicular to the image gradient
(Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point
*  We only have information about the optical
flow across the edge, not along the edge.
»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
perpendicular to the image gradient
(Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Aperture problem

Equation counting
We have derived one equation

Eu+Ev+E =0

. But have two unknowns of interest

(V)

*  The solution is under constrained.
. But how so?

Interpretation
+ Consider a translating shape.

*  Suppose we restrict consideration to a small
region of the image

— Call this the aperture
*  Suppose this aperture is so small that we
can see only a single “edge orientation”
— In the limit the image gradient (Ex,Ey) at
a point
*  We only have information about the optical
flow across the edge, not along the edge.
»  We refer to this limitation as the aperture
problem.

In velocity space, all valid (u,v)
must have their nose along a line
perpendicular to the image gradient
(Ex,EY).

Ex,Ey)

\ 4
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Brightness constancy: Recap

Where are we?

«  We are trying to develop constraints that allow us to recover optical flow from
measurements of image irradiance.

We have introduced the assumption that a local pattern of image intensity remains constant
across an instance of time (brightness constancy).

» This allowed us to derive a fundamental equation that relates derivatives of irradiance to
optical flow (the optical flow constraint equation)

Eu+Ev+E =0

 However, there is not enough constraint to unambiguously determine the flow (aperture
problem).

Where to next?

«  We seek additional constraint to uniquely define the optical flow.
« To allow for algorithmic recovery.

61



Outline

Gradient-based optical flow estimation
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Gradient optical flow estimation: Approaches

We have
We have derived the optical flow constraint equation

Eu+Ev+E =0

«  However, this amounts to one equation in two unknowns, (u,v).
« This is not enough to uniquely define the optical flow solution.

We need

» Additional constraint so that at (every image location) we have two equations in two
unknowns to define a solution.

«  Several approaches have been developed
— Variational smoothness with boundary conditions
— Differentiate the present constraint equation to generate additional constraint equations
— Assume flow constancy over some finite window

63



Gradient optical flow estimation: Approaches

We have
We have derived the optical flow constraint equation

Eu+Ev+E =0

«  However, this amounts to one equation in two unknowns, (u,v).
« This is not enough to uniquely define the optical flow solution.

We need

» Additional constraint so that at (every image location) we have two equations in two
unknowns to define a solution.

«  Several approaches have been developed
— Variational smoothness with boundary conditions
— Differentiate the present constraint equation to generate additional constraint equations
— Assume flow constancy over some finite window
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Gradient optical flow estimation: Flow constancy

Error measure

We seek (u,v) that satisfies the constraint equation
Eu+Ev+E =0

We choose to do this by minimizing the squared violation of this constraint WRT the variable

of interest 5
mm(Eu+E v+ E)
(u,v) X y t
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Gradient optical flow estimation: Flow constancy

Error measure
«  We seek (u,v) that satisfies the constraint equation

Fu+Ev+E =0
X y {
We choose to do this by minimizing the squared violation of this constraint WRT the variable
of interest 5
mm(Eu+E v+ E)
(1) X y t

*  Flow constancy says that over some window, W, the values of (1,v) are constant.
«  Correspondingly, we seek to minimize violation of the optical flow constraint over the

window
minEE (Eu+Ev+E)
(1) & 45 g
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Gradient optical flow estimation: Flow constancy

Generation of constraint equations

To find (1, v) that minimize the flow constancy error

. 2
1(131‘}1)12 ; (Eu+EVv+E)

we follow standard procedure of differentiating WRT the variables of interest, setting to zero
and solving.
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Gradient optical flow estimation: Flow constancy

Generation of constraint equations
To find (1, v) that minimize the flow constancy error

. 2
1(1;11‘}1)12 ; (Eu+Ev+E)

we follow standard procedure of differentiating WRT the variables of interest, setting to zero
and solving.

Differentiating with respect to u and setting to zero yields

E E 2E (Eu+EyVv+E) =0
w
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Gradient optical flow estimation: Flow constancy

Generation of constraint equations
« Tofind (u,v) that minimize the flow constancy error

mlnzz (Eu+kE, v+ E)

(u,v)

we follow standard procedure of dlfferentlatlng WRT the variables of interest, setting to zero
and solving.

« Differentiating with respect to u and setting to zero yields
E z 2E (Eu+Eyv+E)
w
« Differentiating with respect to v and setting to zero yields
YN 2E(Eu+Eyv+E,)
w

«  We now have two equations in the two unknowns of interest (u,v).
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Gradient optical flow estimation: Flow constancy

Solving for optical flow
We have our two equations in two unknowns

E E (Eu+EVv+E)E =0
Y N (Eu+Ev+E)E, =0

To complete our task, we need to explicitly solve for (u,v).
Let us more cleanly isolate these variables from the other terms.
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Gradient optical flow estimation: Flow constancy

Solving for optical flow
We have our two equations in two unknowns

E E (Eu+EVv+E)E =0
Y N (Eu+Ev+E)E, =0

To complete our task, we need to explicitly solve for (u,v).
Let us more cleanly isolate these variables from the other terms.

Since (u,v) is assumed constant over the window of summation, we can move them outside
the summation.

S E k(IS EE b+ SEE =0
SSEEN+ ST Eb+ ST EE -0
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Gradient optical flow estimation: Flow constancy

Solving for optical flow
*  Our equations

SSEN+SSEE N+ ST EE=0
(SSEEN+(SSEN+S SEE =0
225 2 QEE (u)=(—EEExEt
YNEE, SYE v (-YYEE
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Gradient optical flow estimation: Flow constancy

Solving for optical flow
*  Our equations

(EEEz)M(EEEEy)MEEEEt -0
(SSEEN+(SSEN+S SEE =0

22EE 25
S SEE
—EEEyEt

* And our solution becomes

(s %%Ez? |




Gradient optical flow estimation: Flow constancy

Remarks
* An optical flow algorithm follow trivially from our derivation
— Input: A temporal sequence of two images

— Output: A pair of optical flow images; a U image and a V image
— Forall pixels (i,j) in the first image solve the flow constancy equation

[ SSE SSEE (S SEE
y EEEEy EEEj —EEEyEt

and store the recovered (u,v) in the corresponding (i,j) locations in the U and V
images
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Gradient optical flow estimation: Flow constancy

Remarks
* An optical flow algorithm follow trivially from our derivation
— Input: A temporal sequence of two images
— Output: A pair of optical flow images; a U image and a V image
— Forall pixels (i,j) in the first image solve the flow constancy equation

[ SSE SSEE (S SEE
y EEEEy EEEj —EEEyEt

and store the recovered (u,v) in the corresponding (i,j) locations in the U and V
images
*+ How do we choose the window size?
— Smaller windows provide greater precision
— Larger windows provide better performance in presence of low signal-to-noise
— A data dependent trade-off (as with stereo matching)
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Gradient optical flow estimation: Flow constancy

Remarks
*  An optical flow algorithm follow trivially from our derivation
— Input: A temporal sequence of two images
— Output: A pair of optical flow images; a U image and a V image
— For all pixels (i,7) in the first image solve the flow constancy equation

N[ SSE SSEEY (S SEE
y EEEE EEEz —EEEyEt

and store the recovered (u,v) in the corresponding (i,j) locations in the U and V
images

 How do we choose the window size?
— Smaller windows provide greater precision
— Larger windows provide better performance in presence of low signal-to-noise
— A data dependent trade-off (as with stereo matching)
« This is yet another excellent place to exploit coarse-to-fine processing
— Build a pyramid representation
— Initially recover (a coarse estimate) of flow with the lowest resolution images
— Use the initial estimate to seed the next highest resolution estimate
— Etc.
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Gradient-based optical flow estimation: Flow constancy

Benefit of coarse-to-fine flow estimation
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Gradient-based optical flow estimation: Example

Source image
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Gradient-based optical flow estimation: Example

Source image Pyramid representation

40
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradint-bd optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Example
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Gradient-based optical flow estimation: Additional
examples presented in lecture
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Outline

Finite displacement and feature-based methods
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Finite displacement and features: Approaches

Motivation

« Gradient-based techniques work best when the displacements between the image are
relatively small

— This is implicit in the derivation of the optical flow constraint equation via differentials
— Although course-to-fine processing can help with this limitation

»  Well detected and localized features have the potential to be reasonably matched between
images even in presence of much large displacements.

«  Therefore, such approaches have received attention in conjunction with larger motion
displacements.

Two broad classes of approach

« Methods for matching between binocular stereo pairs can be adapted to finite displacement
image motion.

— For example, the feature-based methods are particularly applicable
« Also of interest is the iteration of gradient-based optical flow
— But restricted to interesting feature points
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Finite displacement and features: Approaches

Motivation

« Gradient-based techniques work best when the displacements between the image are
relatively small

— This is implicit in the derivation of the optical flow constraint equation via differentials
— Although course-to-fine processing can help with this limitation
»  Well detected and localized features have the potential to be reasonably matched between
images.
«  Therefore, such approaches have received attention in conjunction with larger motion
displacements.

Two broad classes of approach

« Methods for matching between binocular stereo pairs can be adapted to finite displacement
image motion.

— For example, the feature-based methods are particularly applicable
« Also of interest is the iteration of gradient-based optical flow
— But restricted to interesting feature points
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Finite displacement and features: Iterated gradient

Basic idea
We begin by extracting feature points of interest in image 1 of the input pair.

— For example, the corner/line detector developed earlier in this class is well suited for
this purpose

« We then center windows about a feature of interest and about the same location in the other
image.
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Finite displacement and features: Iterated gradient

Basic idea
We begin by extracting feature points of interest in image 1 of the input pair.
— For example, the corner/line detector developed earlier in this class is well suited for
this purpose
We then center windows about a feature of interest and about the same location in the other
image.
We execute the gradient-based calculation, i.e.,

[ SOE SSEEY (S SEE
v EEEEy EEEj —EEEyEt
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Finite displacement and features: Iterated gradient

Basic idea
«  We begin by extracting feature points of interest in image 1 of the input pair.
— For example, the corner/line detector developed earlier in this class is well suited for
this purpose
*  We then center windows about a feature of interest and about the same location in the other
image.
 We execute the gradient-based calculation, i.e.,

O SSE SSEEY (S SEE
v EEEEy EEEj —EEEyEt

«  Following completion, we shift the entire window about the feature in image 1 according to
the recovered flow vector.

»  We then calculate a similarity measure between the shifted window in image image 1 and
the window in image 2.
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Finite displacement and features: Iterated gradient

Basic idea
«  We begin by extracting feature points of interest in image 1 of the input pair.
— For example, the corner/line detector developed earlier in this class is well suited for
this purpose
*  We then center windows about a feature of interest and about the same location in the other
image.
 We execute the gradient-based calculation, i.e.,

O SSE SSEEY (S SEE
v EEEEy EEEj —EEEyEt

«  Following completion, we shift the entire window about the feature in image 1 according to
the recovered flow vector.

»  We then calculate a similarity measure between the shifted window in image image 1 and
the window in image 2.

« Ifthe similarity is above some threshold, then we say that the match has been found and
we exit.
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Finite displacement and features: Iterated gradient

Basic idea
«  We begin by extracting feature points of interest in image 1 of the input pair.
— For example, the corner/line detector developed earlier in this class is well suited for
this purpose
*  We then center windows about a feature of interest and about the same location in the other
image.
 We execute the gradient-based calculation, i.e.,

O SSE SSEEY (S SEE
v EEEEy EEEj —EEEyEt

«  Following completion, we shift the entire window about the feature in image 1 according to
the recovered flow vector.

»  We then calculate a similarity measure between the shifted window in image image 1 and
the window in image 2.

« Ifthe similarity is above some threshold, then we say that the match has been found and
we exit.

« If the similarity measure is below some threshold, then we iterate the gradient-based
calculation, but now making use of the shifted window in image 1.
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient
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Finite displacement and features: Iterated gradient

Algorithm

« Input: Two images 11 and 12 and a set of features for 11
« Output: A set of displacements, one for each feature of 11.
* Notation: Let
— QI, 02 and be two image windows
— tbe athreshold, a fixed positive real number
— p be a feature point in 11
— d be the unknown displacement for p
« For each feature point p
1. Setd =0 and centre O/ onp

2. Estimate the displacement d0 of p centre of Q1 according to the gradient-based
algorithm

3. Set d=d+d0
4. Let 02 be the image patch obtained by shifting Q7 according to do.

« Calculate the similarity, S, of 02 and the corresponding patch in 12
5. If S<tthen set O/=02 and goto 2; else exit.
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Finite displacement and features: Iterated gradient

Algorithm
» Input: Two images 11 and 12 and a set of features for 11
« Output: A set of displacements, one for each feature of 11.
* Notation: Let
— QI, 02 and be two image windows
— tbe athreshold, a fixed positive real number
— p be a feature point in 11
— d be the unknown displacement for p
« For each feature point p
1. Setd =0 and centre Q7 onp

2. Estimate the displacement d0 of p centre of Q1 according to the gradient-based
algorithm

3. Set d=d+do0
4. Let 02 be the image patch obtained by shifting Q1 according to do.

« Calculate the similarity, S, of 02 and the corresponding patch in 12
5. If S<tthen set 01=02 and goto 2; else exit.

Representative similarity measure

« 1/(Sum of Squared Differences) within the windows of interest is a reasonable
choice for this algorithm. 108



Finite displacement and feature-based estimation:
Example presented in lecture
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