EECS 4422/5323 Computer Vision

Unit 6: Motion

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Introduction: Motivation

Time-varying imagery

- A great deal of useful information can be extracted from time-varying imagery (e.g., video).
- Temporal image sequences of a dynamic world acquired from a stationary camera.
- Temporal images sequences of a stationary world acquired from a moving camera.
- Temporal image sequences of a dynamic world acquired from a moving camera.
- It might seem foolhardy to consider processing multiple images when extracting information from even one is so challenging.
- However, multiple images imply additional data on which to base our inferences.
- Typically, the results are well worth the
 effort.

Introduction: Motivation

Time-varying imagery

- A great deal of useful information can be extracted from time-varying imagery (e.g., video).
- Temporal image sequences of a dynamic world acquired from a stationary camera.
- Temporal images sequences of a stationary world acquired from a moving camera.
- Temporal image sequences of a dynamic world acquired from a moving camera.
- It might seem foolhardy to consider processing multiple images when extracting information from even one is so challenging.
- However, multiple images imply additional data on which to base our inferences.
- Typically, the results are well worth the effort.

Outline

Introduction

- Motion field vs. optical flow

```
Brightness constancy
Gradient-based optical flow estimation
Finite displacement and feature-based methods
3D Structure and motion
Summary
```


Motion field vs. optical flow: Motion field

Basics

- When objects move in the environment or a camera moves through the environment there are corresponding changes in the images.
- These changes can be used to capture the relative motions as well as the shape of the objects.

Motion field vs. optical flow: Motion field

Definition

- The motion field assigns a velocity vector to each point in the image according to how the corresponding point in 3D moves.
- At a particular instance in time a point \boldsymbol{p} in the image corresponds to some point \boldsymbol{P} in the world according to some operative model of image projection,
- We have

$$
\boldsymbol{p}=\Pi(\boldsymbol{P})
$$

Motion field vs. optical flow: Motion field

Definition

- The motion field assigns a velocity vector to each point in the image according to how the corresponding point in 3D moves.
- At a particular instance in time a point \boldsymbol{p} in the image corresponds to some point \boldsymbol{P} in the world according to some operative model of image projection.
- We have

$$
\boldsymbol{p}=\Pi(\boldsymbol{P})
$$

- Let the point in the world have velocity \boldsymbol{V} relative to the camera, then the image point will have a corresponding velocity, \boldsymbol{v}.
- We have

$$
\boldsymbol{v}=\frac{d \boldsymbol{p}}{d t} \quad \text { and } \quad \boldsymbol{V}=\frac{d \boldsymbol{P}}{d t}
$$

with

$$
\frac{d \boldsymbol{p}}{d t}=\frac{d \Pi(\boldsymbol{P})}{d t}
$$

Motion field vs. optical flow: Optical flow

Basics

- Brightness patterns in the image move as the objects in the scene that give rise to them move.
- Optical flow is the apparent motion of the brightness pattern.
- The motion that is present in the image.
- Ideally, the optical flow will correspond to the motion field.
- But this is not always the case.

Motion field vs. optical flow: Optical flow

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.

Motion field vs. optical flow: Optical flow

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.

Motion field vs. optical flow: Optical flow

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.

Motion field vs. optical flow: Optical flow

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.

Motion field vs. optical flow: Optical flow

Rotating sphere

- Consider perfect sphere in front of a fixed imaging system (camera and illumination)
- There will be a smooth spatial variation in image brightness (shading) since the surface is curved.
- Let the sphere rotate.
- There is no change in the shading pattern.
- The relationship between the local surface orientation and the imaging system does not vary.
- The optical flow is zero every where...
- ...despite a nonzero motion field.

Motion field vs. optical flow: Optical flow

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.

Motion field vs. optical flow: Optical flow

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.

Motion field vs. optical flow: Optical flow

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.

Motion field vs. optical flow: Optical flow

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.
- Now the shading pattern changes with the variation in source position.
- The optical flow is nonzero everywhere...
- ...although the motion field is zero.

Motion field vs. optical flow: Optical flow

Moving light source

- Consider a perfect sphere in front of a stationary camera, but moving light source.
- Now the shading pattern changes with the variation in source position.
- The optical flow is nonzero everywhere...
- ...although the motion field is zero.

Other sources of discrepancy

- Shadows
- Specular reflection
- Virtual images
- Etc.

Motion field vs. optical flow: Conclusion

Life is tough, but not too...

- We are interested in the motion field
- A purely geometric concept
- That relates to the structure and dynamics of the scene
- What we have access to is the optical flow
- A photometric concept
- The thing that we can measure in an image.
- Typically, the motion field and optical flow are in close correspondence
- But not always
- As our examples have shown

Outline

Introduction

- Motion field vs. optical flow
- Brightness constancy

```
Gradient-based optical flow estimation
Finite displacement and feature-based methods
3D Structure and motion
Summary
```


Brightness constancy: Constraint equation

Where are we headed?

- Accepting the limited correspondence between the motion field and the optical flow
- We seek to relate optical flow to measurements of image irradiance.
- This will provide constraint on the recovery of flow from the data that we can sense.

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)
- u(x,y) and $v(x, y)$ be the x and y components of the optical flow, respectively

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- u(x,y) and $v(x, y)$ be the x and y components of the optical flow, respectively

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- u(x,y) and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

Remarks:

- We are seeking constraint on optical flow in terms of things we can calculate from image data.
- We want to reduce this expression to something that can be calculated directly from the image.
- We know how to calculate derivatives; and we have some.
- Let's try for a complete expression in terms of differentials.

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$

$$
\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=0
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$, divide through by δt

$$
\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=0
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$, divide through by δt

$$
\frac{\delta x}{\delta t} \frac{\partial E}{\partial x}+\frac{\delta y}{\delta t} \frac{\partial E}{\partial y}+\frac{\delta t}{\delta t} \frac{\partial E}{\partial t}+\text { h.o.t. }=0
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$, divide through by δt and take the limit $\delta t \rightarrow 0$

$$
\frac{\delta x}{\delta t} \frac{\partial E}{\partial x}+\frac{\delta y}{\delta t} \frac{\partial E}{\partial y}+\frac{\delta t}{\delta t} \frac{\partial E}{\partial t}+\text { h.o.t. }=0
$$

Brightness constancy: Constraint equation

Relating temporal brightness change to optical flow

- Let
- $E(x, y, t)$ be image irradiance at time t and image location (x, y)

$$
u=\frac{d x}{d t}, v=\frac{d y}{d t}
$$

- $u(x, y)$ and $v(x, y)$ be the x and y components of the optical flow, respectively
- The brightness constancy assumption is that the irradiance will be the same at time $t+\delta t$ at the point $(x+\delta x, y+\delta y)$ with $\delta x=u \delta t$ and $\delta y=v \delta t$, i.e., for small δt

$$
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)
$$

- If brightness varies smoothly with x, y, and t, then we can expand the LHS in a Taylor series to obtain

$$
E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+\text { h.o.t. }=E(x, y, t)
$$

- We cancel the $E(x, y, t)$, divide through by δt and take the limit $\delta t \rightarrow 0$ to obtain

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

Brightness constancy: Constraint equation

Optical flow constraint equation

- We can rewrite our differential constraint

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

to good advantage.

Brightness constancy: Constraint equation

Optical flow constraint equation

- We can rewrite our differential constraint

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

to good advantage.

- By definition

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

Brightness constancy: Constraint equation

Optical flow constraint equation

- We can rewrite our differential constraint

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

to good advantage.

- By definition

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

- Also, for notational convenience, let

$$
E_{x}=\frac{\partial E}{\partial x} \quad E_{y}=\frac{\partial E}{\partial y} \quad E_{t}=\frac{\partial E}{\partial t}
$$

Brightness constancy: Constraint equation

Optical flow constraint equation

- We can rewrite our differential constraint

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

to good advantage.

- By definition

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

- Also, for notational convenience, let

$$
E_{x}=\frac{\partial E}{\partial x} \quad E_{y}=\frac{\partial E}{\partial y} \quad E_{t}=\frac{\partial E}{\partial t}
$$

- Then we have the standard form for the optical flow constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

which relates spatial and temporal derivatives of irradiance to optical flow.

Brightness constancy: Constraint equation

Optical flow constraint equation

- We can rewrite our differential constraint

$$
\frac{\partial E}{\partial x} \frac{d x}{d t}+\frac{\partial E}{\partial y} \frac{d y}{d t}+\frac{\partial E}{\partial t}=0
$$

to good advantage.

- By definition

$$
u=\frac{d x}{d t} \quad v=\frac{d y}{d t}
$$

- Also, for notational convenience, let

$$
E_{x}=\frac{\partial E}{\partial x} \quad E_{y}=\frac{\partial E}{\partial y} \quad E_{t}=\frac{\partial E}{\partial t}
$$

- Then we have the standard form for the optical flow constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

which relates spatial and temporal derivatives of irradiance to optical flow.

- Subject to the brightness constancy assumption.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).

$$
\begin{aligned}
& E_{x} u+E_{y} v+E_{t}=0 \\
& \Rightarrow(u, v) \bullet\left(E_{x}, E_{y}\right)=-E_{t}
\end{aligned}
$$

$$
\Rightarrow(u, v) \cdot \frac{\left(E_{x}, E_{y}\right)}{\left|\left(E_{x}, E_{y}\right)\right|}=\frac{-E_{t}}{\sqrt{E_{x}^{2}+E_{y}^{2}}} 54
$$

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Aperture problem

Equation counting

- We have derived one equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- But have two unknowns of interest

$$
(u, v)
$$

- The solution is under constrained.
- But how so?

Interpretation

- Consider a translating shape.
- Suppose we restrict consideration to a small region of the image
- Call this the aperture
- Suppose this aperture is so small that we can see only a single "edge orientation"
- In the limit the image gradient (Ex,Ey) at a point
- We only have information about the optical flow across the edge, not along the edge.
- We refer to this limitation as the aperture problem.

In velocity space, all valid (u, v) must have their nose along a line perpendicular to the image gradient (Ex,Ey).
u

Brightness constancy: Recap

Where are we?

- We are trying to develop constraints that allow us to recover optical flow from measurements of image irradiance.
- We have introduced the assumption that a local pattern of image intensity remains constant across an instance of time (brightness constancy).
- This allowed us to derive a fundamental equation that relates derivatives of irradiance to optical flow (the optical flow constraint equation)

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- However, there is not enough constraint to unambiguously determine the flow (aperture problem).

Where to next?

- We seek additional constraint to uniquely define the optical flow.
- To allow for algorithmic recovery.

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation

Finite displacement and feature-based methods

3D Structure and motion

Summary

Gradient optical flow estimation: Approaches

We have

- We have derived the optical flow constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- However, this amounts to one equation in two unknowns, (u, v).
- This is not enough to uniquely define the optical flow solution.

We need

- Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.
- Several approaches have been developed
- Variational smoothness with boundary conditions
- Differentiate the present constraint equation to generate additional constraint equations
- Assume flow constancy over some finite window

Gradient optical flow estimation: Approaches

We have

- We have derived the optical flow constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- However, this amounts to one equation in two unknowns, (u, v).
- This is not enough to uniquely define the optical flow solution.

We need

- Additional constraint so that at (every image location) we have two equations in two unknowns to define a solution.
- Several approaches have been developed
- Variational smoothness with boundary conditions
- Differentiate the present constraint equation to generate additional constraint equations
- Assume flow constancy over some finite window

Gradient optical flow estimation: Flow constancy

Error measure

- We seek (u, v) that satisfies the constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- We choose to do this by minimizing the squared violation of this constraint WRT the variable of interest

$$
\min _{(u, v)}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

Gradient optical flow estimation: Flow constancy

Error measure

- We seek (u, v) that satisfies the constraint equation

$$
E_{x} u+E_{y} v+E_{t}=0
$$

- We choose to do this by minimizing the squared violation of this constraint WRT the variable of interest

$$
\min _{(u, v)}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

- Flow constancy says that over some window, W, the values of (u, v) are constant.
- Correspondingly, we seek to minimize violation of the optical flow constraint over the window

$$
\min _{(u, v)} \sum \sum_{W}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

Gradient optical flow estimation: Flow constancy

Generation of constraint equations

- To find (u, v) that minimize the flow constancy error

$$
\min _{(u, v)} \sum_{W}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

Gradient optical flow estimation: Flow constancy

Generation of constraint equations

- To find (u, v) that minimize the flow constancy error

$$
\min _{(u, v)} \sum \sum_{W}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

- Differentiating with respect to u and setting to zero yields

$$
\sum \sum_{W} 2 E_{x}\left(E_{x} u+E_{y} v+E_{t}\right)=0
$$

Gradient optical flow estimation: Flow constancy

Generation of constraint equations

- To find (u, v) that minimize the flow constancy error

$$
\min _{(u, v)} \sum \sum_{W}\left(E_{x} u+E_{y} v+E_{t}\right)^{2}
$$

we follow standard procedure of differentiating WRT the variables of interest, setting to zero and solving.

- Differentiating with respect to u and setting to zero yields

$$
\sum \sum_{W} 2 E_{x}\left(E_{x} u+E_{y} v+E_{t}\right)=0
$$

- Differentiating with respect to v and setting to zero yields

$$
\sum \sum_{W} 2 E_{y}\left(E_{x} u+E_{y} v+E_{t}\right)=0
$$

- We now have two equations in the two unknowns of interest (u, v).

Gradient optical flow estimation: Flow constancy

Solving for optical flow

- We have our two equations in two unknowns

$$
\begin{aligned}
& \sum \sum\left(E_{x} u+E_{y} v+E_{t}\right) E_{x}=0 \\
& \sum \sum\left(E_{x} u+E_{y} v+E_{t}\right) E_{y}=0
\end{aligned}
$$

- To complete our task, we need to explicitly solve for (u, v).
- Let us more cleanly isolate these variables from the other terms.

Gradient optical flow estimation: Flow constancy

Solving for optical flow

- We have our two equations in two unknowns

$$
\begin{aligned}
& \sum \sum\left(E_{x} u+E_{y} v+E_{t}\right) E_{x}=0 \\
& \sum \sum\left(E_{x} u+E_{y} v+E_{t}\right) E_{y}=0
\end{aligned}
$$

- To complete our task, we need to explicitly solve for (u, v).
- Let us more cleanly isolate these variables from the other terms.
- Since (u, v) is assumed constant over the window of summation, we can move them outside the summation.

Gradient optical flow estimation: Flow constancy

Solving for optical flow

- Our equations

$$
\begin{aligned}
& \left(\sum \sum E_{x}^{2}\right) u+\left(\sum \sum E_{x} E_{y}\right) v+\sum \sum E_{x} E_{t}=0 \\
& \left(\sum \sum E_{x} E_{y}\right) u+\left(\sum \sum E_{y}^{2}\right) v+\sum \sum E_{y} E_{t}=0
\end{aligned}
$$

now suggest the matrix form

$$
\left(\begin{array}{ll}
\sum \sum E_{x}^{2} & \sum \sum E_{x} E_{y} \\
\sum E_{x} E_{y} & \sum \sum E_{y}^{2}
\end{array}\right)\binom{u}{v}=\left(-\sum \sum E_{x} E_{t}\right)
$$

Gradient optical flow estimation: Flow constancy

Solving for optical flow

- Our equations

$$
\begin{aligned}
& \left(\sum \sum E_{x}^{2}\right) u+\left(\sum \sum E_{x} E_{y}\right) v+\sum \sum E_{x} E_{t}=0 \\
& \left(\sum \sum E_{x} E_{y}\right) u+\left(\sum \sum E_{y}^{2}\right) v+\sum \sum E_{y} E_{t}=0
\end{aligned}
$$

now suggest the matrix form

$$
\left(\begin{array}{ll}
\sum \sum E_{x}^{2} & \sum \sum E_{x} E_{y} \\
\sum E_{x} E_{y} & \sum \sum E_{y}^{2}
\end{array}\right)\binom{u}{v}=\binom{-\sum \sum E_{x} E_{t}}{-\sum \sum E_{y} E_{t}}
$$

- And our solution becomes

Gradient optical flow estimation: Flow constancy

Remarks

- An optical flow algorithm follow trivially from our derivation
- Input: A temporal sequence of two images
- Output: A pair of optical flow images; a U image and a V image
- For all pixels (i, j) in the first image solve the flow constancy equation
and store the recovered (u, v) in the corresponding (i, j) locations in the U and V images

Gradient optical flow estimation: Flow constancy

Remarks

- An optical flow algorithm follow trivially from our derivation
- Input: A temporal sequence of two images
- Output: A pair of optical flow images; a U image and a V image
- For all pixels (i, j) in the first image solve the flow constancy equation
and store the recovered (u, v) in the corresponding (i, j) locations in the U and V images
- How do we choose the window size?
- Smaller windows provide greater precision
- Larger windows provide better performance in presence of low signal-to-noise
- A data dependent trade-off (as with stereo matching)

Gradient optical flow estimation: Flow constancy

Remarks

- An optical flow algorithm follow trivially from our derivation
- Input: A temporal sequence of two images
- Output: A pair of optical flow images; a U image and a V image
- For all pixels (i, j) in the first image solve the flow constancy equation

$$
\binom{u}{v}=\left(\begin{array}{cc}
\sum \sum E_{x}^{2} & \sum \sum E_{x} E_{y} \\
\sum \sum E_{x} E_{y} & \sum \sum E_{y}^{2}
\end{array}\right)^{-1}\left(-\sum \sum \sum E_{x} E_{t}\right)
$$

and store the recovered (u, v) in the corresponding (i, j) locations in the U and V images

- How do we choose the window size?
- Smaller windows provide greater precision
- Larger windows provide better performance in presence of low signal-to-noise
- A data dependent trade-off (as with stereo matching)
- This is yet another excellent place to exploit coarse-to-fine processing
- Build a pyramid representation
- Initially recover (a coarse estimate) of flow with the lowest resolution images
- Use the initial estimate to seed the next highest resolution estimate
- Etc.

Gradient-based optical flow estimation: Flow constancy

Benefit of coarse-to-fine flow estimation

Gradient-based optical flow estimation: Example

Source image

Gradient-based optical flow estimation: Example

Source image

Pyramid representation

Gradient-based optical flow estimation: Example

U

V

Gradient-based optical flow estimation: Example

U

V

Gradient-based optical flow estimation: Example

U

V

Gradient-based optical flow estimation: Example

Gradient-based optical flow estimation: Example

U

Gradient-based optical flow estimation: Example

Gradient-based optical flow estimation: Additional examples presented in lecture

Outline

- Introduction
- Motion field vs. optical flow
- Brightness constancy
- Gradient-based optical flow estimation
- Finite displacement and feature-based methods
- 3D Structure and motion
- Summary

Finite displacement and features: Approaches

Motivation

- Gradient-based techniques work best when the displacements between the image are relatively small
- This is implicit in the derivation of the optical flow constraint equation via differentials
- Although course-to-fine processing can help with this limitation
- Well detected and localized features have the potential to be reasonably matched between images even in presence of much large displacements.
- Therefore, such approaches have received attention in conjunction with larger motion displacements.

Two broad classes of approach

- Methods for matching between binocular stereo pairs can be adapted to finite displacement image motion.
- For example, the feature-based methods are particularly applicable
- Also of interest is the iteration of gradient-based optical flow
- But restricted to interesting feature points

Finite displacement and features: Approaches

Motivation

- Gradient-based techniques work best when the displacements between the image are relatively small
- This is implicit in the derivation of the optical flow constraint equation via differentials
- Although course-to-fine processing can help with this limitation
- Well detected and localized features have the potential to be reasonably matched between images.
- Therefore, such approaches have received attention in conjunction with larger motion displacements.

Two broad classes of approach

- Methods for matching between binocular stereo pairs can be adapted to finite displacement image motion.
- For example, the feature-based methods are particularly applicable
- Also of interest is the iteration of gradient-based optical flow
- But restricted to interesting feature points

Finite displacement and features: Iterated gradient

Basic idea

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.

Finite displacement and features: Iterated gradient

Basic idea

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,

Finite displacement and features: Iterated gradient

Basic idea

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,
- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.

Finite displacement and features: Iterated gradient

Basic idea

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,
- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.
- If the similarity is above some threshold, then we say that the match has been found and we exit.

Finite displacement and features: Iterated gradient

Basic idea

- We begin by extracting feature points of interest in image 1 of the input pair.
- For example, the corner/line detector developed earlier in this class is well suited for this purpose
- We then center windows about a feature of interest and about the same location in the other image.
- We execute the gradient-based calculation, i.e.,
- Following completion, we shift the entire window about the feature in image 1 according to the recovered flow vector.
- We then calculate a similarity measure between the shifted window in image image 1 and the window in image 2.
- If the similarity is above some threshold, then we say that the match has been found and we exit.
- If the similarity measure is below some threshold, then we iterate the gradient-based calculation, but now making use of the shifted window in image 1.

Finite displacement and features: Iterated gradient

Finite displacement and features: Iterated gradient

Algorithm

- Input: Two images I1 and I2 and a set of features for I1
- Output: A set of displacements, one for each feature of I1.
- Notation: Let
- Q1, Q2 and be two image windows
- t be a threshold, a fixed positive real number
- p be a feature point in I1
- \boldsymbol{d} be the unknown displacement for \boldsymbol{p}
- For each feature point \boldsymbol{p}

1. Set $\boldsymbol{d}=0$ and centre $Q 1$ on \boldsymbol{p}
2. Estimate the displacement $d 0$ of \boldsymbol{p} centre of $Q 1$ according to the gradient-based algorithm
3. Set $\boldsymbol{d}=\boldsymbol{d}+\boldsymbol{d} \mathbf{0}$
4. Let $Q 2$ be the image patch obtained by shifting $Q 1$ according to $d 0$.

- Calculate the similarity, S, of $Q 2$ and the corresponding patch in I2

5. If $S<t$ then set $Q 1=Q 2$ and goto 2 ; else exit.

Finite displacement and features: Iterated gradient

Algorithm

- Input: Two images I1 and I2 and a set of features for I1
- Output: A set of displacements, one for each feature of I1.
- Notation: Let
- Q1, Q2 and be two image windows
- t be a threshold, a fixed positive real number
- p be a feature point in I1
- \boldsymbol{d} be the unknown displacement for \boldsymbol{p}
- For each feature point \boldsymbol{p}

1. Set $\boldsymbol{d}=0$ and centre $Q 1$ on \boldsymbol{p}
2. Estimate the displacement $\boldsymbol{d 0}$ of \boldsymbol{p} centre of $Q 1$ according to the gradient-based algorithm
3. Set $\boldsymbol{d}=\boldsymbol{d}+\boldsymbol{d} \boldsymbol{0}$
4. Let $Q 2$ be the image patch obtained by shifting $Q 1$ according to $d 0$.

- Calculate the similarity, S, of $Q 2$ and the corresponding patch in I2

5. If $S<t$ then set $Q 1=Q 2$ and goto 2; else exit.

Representative similarity measure

- $1 /($ Sum of Squared Differences) within the windows of interest is a reasonable choice for this algorithm.

Finite displacement and feature-based estimation:
 Example presented in lecture

