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•  Motion field vs. optical flow  

•  Brightness constancy 

•  Gradient-based optical flow estimation   

•  Finite displacement and feature-based methods 

•  3D Structure and motion  

•  Summary 
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Introduction: Motivation 

Time-varying imagery 
•  A great deal of useful information can be 

extracted from time-varying imagery (e.g., 
video). 

–  Temporal image sequences  of a 
dynamic world acquired from a 
stationary camera. 

–  Temporal images sequences of a 
stationary world acquired from a moving 
camera. 

–  Temporal image sequences of a 
dynamic world acquired from a moving 
camera. 

•  It might seem foolhardy to consider 
processing multiple images when extracting 
information from even one is so challenging. 

•  However, multiple images imply additional 
data on which to base our inferences. 

–  Typically, the results are well worth the 
effort. 
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Motion field vs. optical flow: Motion field 

Basics 
•  When objects move in the environment or a 

camera moves through the environment 
there are corresponding changes in the 
images. 

•  These changes can be used to capture the 
relative motions as well as the shape of the 
objects. 
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Motion field vs. optical flow: Motion field 

Definition 
•  The motion field assigns a velocity vector to 

each point in the image according to how the 
corresponding point in 3D moves. 

•  At a particular instance in time a point p in 
the image corresponds to some point P in 
the world according to some operative model 
of image projection,  

–  We have 
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•  Let the point in the world have velocity V 

relative to the camera, then the image point 
will have a corresponding velocity, v. 

–  We have 
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Motion field vs. optical flow: Optical flow 

Basics 
•  Brightness patterns in the image move as 

the objects in the scene that give rise to 
them move. 

•  Optical flow is the apparent motion of the 
brightness pattern. 

–  The motion that is present in the image. 
•  Ideally, the optical flow will correspond to the 

motion field. 
–  But this is not always the case. 
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Motion field vs. optical flow: Optical flow 

Rotating sphere 
•  Consider perfect sphere in front of a fixed 

imaging system (camera and illumination) 
•  There will be a smooth spatial variation in 

image brightness (shading) since the surface 
is curved. 
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Motion field vs. optical flow: Optical flow 

Rotating sphere 
•  Consider perfect sphere in front of a fixed 

imaging system (camera and illumination) 
•  There will be a smooth spatial variation in 

image brightness (shading) since the surface 
is curved. 

•  Let the sphere rotate. 
•  There is no change in the shading pattern. 

–  The relationship between the local surface 
orientation and the imaging system does not 
vary. 

•  The optical flow is zero every where… 
•  …despite a nonzero motion field. 
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Motion field vs. optical flow: Optical flow 

Moving light source 
•  Consider a perfect sphere in front of a 

stationary camera, but moving light source. 
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Motion field vs. optical flow: Optical flow 

Moving light source 
•  Consider a perfect sphere in front of a 

stationary camera, but moving light source. 
•  Now the shading pattern changes with the 

variation in source position. 
•  The optical flow is nonzero everywhere… 
•  …although the motion field is zero. 
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Motion field vs. optical flow: Optical flow 

Moving light source 
•  Consider a perfect sphere in front of a 

stationary camera, but moving light source. 
•  Now the shading pattern changes with the 

variation in source position. 
•  The optical flow is nonzero everywhere… 
•  …although the motion field is zero. 

Other sources of discrepancy  
•  Shadows 
•  Specular reflection 
•  Virtual images 
•  Etc. 
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Motion field vs. optical flow: Conclusion 

Life is tough, but not too…  
•  We are interested in the motion field 

–  A purely geometric concept 
–  That relates to the structure and dynamics of the scene 

•  What we have access to is the optical flow 
–  A photometric concept 
–  The thing that we can measure in an image. 

•  Typically, the motion field and optical flow are in close correspondence 
–  But not always 
–  As our examples have shown 
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Brightness constancy: Constraint equation 

Where are we headed? 
•  Accepting the limited correspondence between the motion field and the optical flow 
•  We seek to relate optical flow to measurements of image irradiance. 
•  This will provide constraint on the recovery of flow from the data that we can sense. 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 

–  E(x,y,t) be image irradiance at time t and image location (x,y) 
–  u(x,y) and v(x,y) be the x and y components of the optical flow, respectively 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 
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Remarks:  
•   We are seeking constraint on optical flow in terms of things we can calculate from image data. 
•   We want to reduce this expression to something that can be calculated directly from the image. 
•   We know how to calculate derivatives; and we have some. 
•   Let’s try for a complete expression in terms of differentials. 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 

–  E(x,y,t) be image irradiance at time t and image location (x,y) 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 

–  E(x,y,t) be image irradiance at time t and image location (x,y) 
–  u(x,y) and v(x,y) be the x and y components of the optical flow, respectively 

•  The brightness constancy assumption is that the irradiance will be the same at time            
at the point                               with                 and                  , i.e., for small  
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 

–  E(x,y,t) be image irradiance at time t and image location (x,y) 
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Brightness constancy: Constraint equation 

Relating temporal brightness change to optical flow 
•  Let 
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Brightness constancy: Constraint equation 

Optical flow constraint equation 
•  We can rewrite our differential constraint  

  
 to good advantage. 
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Brightness constancy: Constraint equation 

Optical flow constraint equation 
•  We can rewrite our differential constraint  

  
 to good advantage. 
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Brightness constancy: Constraint equation 

Optical flow constraint equation 
•  We can rewrite our differential constraint  

  
 to good advantage. 

•  By definition 

•  Also, for notational convenience, let 
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Brightness constancy: Constraint equation 

Optical flow constraint equation 
•  We can rewrite our differential constraint  

  
 to good advantage. 

•  By definition 

•  Also, for notational convenience, let 

•  Then we have the standard form for the optical flow constraint equation 

 which relates spatial and temporal derivatives of irradiance to optical flow. 
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Brightness constancy: Constraint equation 
Optical flow constraint equation 
•  We can rewrite our differential constraint  

  
 to good advantage. 

•  By definition 

•  Also, for notational convenience, let 

•  Then we have the standard form for the optical flow constraint equation 

 which relates spatial and temporal derivatives of irradiance to optical flow. 
–  Subject to the brightness constancy assumption. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 

0=++ tyx EvEuE

),( vu



40 

Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation 
•  Consider a translating shape.  
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation” 

–  In the limit the image gradient (Ex,Ey) 
at a point 
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Brightness constancy: Aperture problem 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) 
at a point 

•  We only have information about the optical 
flow across the edge, not along the edge. 

•  We refer to this limitation as the aperture 
problem. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 

–  Suppose we restrict consideration to a 
small region of the image 

•  Call this the aperture 
•  Suppose this aperture is so small that we 

can see only a single “edge orientation”  
–  In the limit the image gradient (Ex,Ey) at 

a point 
•  We only have information about the optical 

flow across the edge, not along the edge. 
•  We refer to this limitation as the aperture 

problem. 
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(Ex,Ey) 

In velocity space, all valid (u,v) 
must have their nose along a line 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) 
at a point 
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flow across the edge, not along the edge. 
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problem. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) 
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flow across the edge, not along the edge. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) at 
a point 

•  We only have information about the optical 
flow across the edge, not along the edge. 

•  We refer to this limitation as the aperture 
problem. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) at 
a point 

•  We only have information about the optical 
flow across the edge, not along the edge. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) at 
a point 

•  We only have information about the optical 
flow across the edge, not along the edge. 

•  We refer to this limitation as the aperture 
problem. 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 
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Brightness constancy: Aperture problem 
Equation counting 
•  We have derived one equation 

•  But have two unknowns of interest 

•  The solution is under constrained. 
•  But how so? 
Interpretation  
•  Consider a translating shape. 
•  Suppose we restrict consideration to a small 

region of the image 
–  Call this the aperture 

•  Suppose this aperture is so small that we 
can see only a single “edge orientation”  

–  In the limit the image gradient (Ex,Ey) at 
a point 

•  We only have information about the optical 
flow across the edge, not along the edge. 

•  We refer to this limitation as the aperture 
problem. 
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Brightness constancy: Recap 

Where are we? 
•  We are trying to develop constraints that allow us to recover optical flow from 

measurements of image irradiance. 
•  We have introduced the assumption that a local pattern of image intensity remains constant 

across an instance of time (brightness constancy). 
•  This allowed us to derive a fundamental equation that relates derivatives of irradiance to 

optical flow (the optical flow constraint equation) 

•  However, there is not enough constraint to unambiguously determine the flow (aperture 
problem). 

Where to next? 
•  We seek additional constraint to uniquely define the optical flow. 
•  To allow for algorithmic recovery. 
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Outline 

•  Introduction 

•  Motion field vs. optical flow  

•  Brightness constancy 

•  Gradient-based optical flow estimation  

•  Finite displacement and feature-based methods 

•  3D Structure and motion 

•  Summary 
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Gradient optical flow estimation: Approaches 

We have 
•  We have derived the optical flow constraint equation 

•  However, this amounts to one equation in two unknowns, (u,v). 
•  This is not enough to uniquely define the optical flow solution. 

We need 
•  Additional constraint so that at (every image location) we have two equations in two 

unknowns to define a solution. 
•  Several approaches have been developed 

–  Variational smoothness with boundary conditions 
–  Differentiate the present constraint equation to generate additional constraint equations 
–  Assume flow constancy over some finite window 
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Gradient optical flow estimation: Approaches 

We have 
•  We have derived the optical flow constraint equation 

•  However, this amounts to one equation in two unknowns, (u,v). 
•  This is not enough to uniquely define the optical flow solution. 

We need 
•  Additional constraint so that at (every image location) we have two equations in two 

unknowns to define a solution. 
•  Several approaches have been developed 

–  Variational smoothness with boundary conditions 
–  Differentiate the present constraint equation to generate additional constraint equations 
–  Assume flow constancy over some finite window 
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Gradient optical flow estimation: Flow constancy 

Error measure 
•  We seek (u,v) that satisfies the constraint equation 

•  We choose to do this by minimizing the squared violation of this constraint WRT the variable 
of interest 
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Gradient optical flow estimation: Flow constancy 

Error measure 
•  We seek (u,v) that satisfies the constraint equation 

•  We choose to do this by minimizing the squared violation of this constraint WRT the variable 
of interest 

•  Flow constancy says that over some window, W, the values of (u,v) are constant. 
•  Correspondingly, we seek to minimize violation of the optical flow constraint over the 

window 
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Gradient optical flow estimation: Flow constancy 

Generation of constraint equations 
•  To find (u,v) that minimize the flow constancy error 

 we follow standard procedure of differentiating WRT the variables of interest, setting to zero 
and solving. 
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Gradient optical flow estimation: Flow constancy 

Generation of constraint equations 
•  To find (u,v) that minimize the flow constancy error 

 we follow standard procedure of differentiating WRT the variables of interest, setting to zero 
and solving. 

•  Differentiating with respect to u and setting to zero yields 
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Gradient optical flow estimation: Flow constancy 

Generation of constraint equations 
•  To find (u,v) that minimize the flow constancy error 

 we follow standard procedure of differentiating WRT the variables of interest, setting to zero 
and solving. 

•  Differentiating with respect to u and setting to zero yields 

•  Differentiating with respect to v and setting to zero yields 

•  We now have two equations in the two unknowns of interest (u,v). 
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Gradient optical flow estimation: Flow constancy 

Solving for optical flow 
•  We have our two equations in two unknowns 

•  To complete our task, we need to explicitly solve for (u,v). 
•  Let us more cleanly isolate these variables from the other terms. 
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Gradient optical flow estimation: Flow constancy 

Solving for optical flow 
•  We have our two equations in two unknowns 

•  To complete our task, we need to explicitly solve for (u,v). 
•  Let us more cleanly isolate these variables from the other terms. 
•  Since (u,v) is assumed constant over the window of summation, we can move them outside 

the summation. 
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Gradient optical flow estimation: Flow constancy 

Solving for optical flow 
•  Our equations  

 now suggest the matrix form 
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Gradient optical flow estimation: Flow constancy 

Solving for optical flow 
•  Our equations  

 now suggest the matrix form 
 
 
 
 
 
•  And our solution becomes 
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Gradient optical flow estimation: Flow constancy 

Remarks 
•  An optical flow algorithm follow trivially from our derivation 

–  Input: A temporal sequence of two images 
–  Output: A pair of optical flow images; a U image and a V image 
–  For all pixels (i,j) in the first image solve the flow constancy equation 

 
 

 and store the recovered (u,v) in the corresponding (i,j) locations in the U  and V 
images  
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Gradient optical flow estimation: Flow constancy 

Remarks 
•  An optical flow algorithm follow trivially from our derivation 

–  Input: A temporal sequence of two images 
–  Output: A pair of optical flow images; a U image and a V image 
–  For all pixels (i,j) in the first image solve the flow constancy equation 

 
 

 and store the recovered (u,v) in the corresponding (i,j) locations in the U  and V 
images  

•  How do we choose the window size? 
–  Smaller windows provide greater precision 
–  Larger windows provide better performance in presence of low signal-to-noise 
–  A data dependent trade-off (as with stereo matching) 
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Gradient optical flow estimation: Flow constancy 
Remarks 
•  An optical flow algorithm follow trivially from our derivation 

–  Input: A temporal sequence of two images 
–  Output: A pair of optical flow images; a U image and a V image 
–  For all pixels (i,j) in the first image solve the flow constancy equation 

 
 

 and store the recovered (u,v) in the corresponding (i,j) locations in the U  and V 
images  

•  How do we choose the window size? 
–  Smaller windows provide greater precision 
–  Larger windows provide better performance in presence of low signal-to-noise 
–  A data dependent trade-off (as with stereo matching) 

•  This is yet another excellent place to exploit coarse-to-fine processing 
–  Build a pyramid representation 
–  Initially recover (a coarse estimate) of flow with the lowest resolution images 
–  Use the initial estimate to seed the next highest resolution estimate 
–  Etc. 
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Gradient-based optical flow estimation: Flow constancy 

Benefit of coarse-to-fine flow estimation 

 (u,v) = (8,8) 

(u,v) = (4,4) 

(u,v) = (2,2) 

(u,v) = (1,1) 
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Gradient-based optical flow estimation: Example 
Source image 
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Gradient-based optical flow estimation: Example 
Source image Pyramid representation 
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Gradient-based optical flow estimation: Example 

U 

V 
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Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 
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V 



83 

Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Example 



89 

Gradient-based optical flow estimation: Example 
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Gradient-based optical flow estimation: Additional 
examples presented in lecture 
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Outline 

•  Introduction 

•  Motion field vs. optical flow  

•  Brightness constancy 

•  Gradient-based optical flow estimation  

•  Finite displacement and feature-based methods 

•  3D Structure and motion 

•  Summary 
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Finite displacement and features: Approaches 

Motivation 
•  Gradient-based techniques work best when the displacements between the image are 

relatively small 
–  This is implicit in the derivation of the optical flow constraint equation via differentials 
–  Although course-to-fine processing can help with this limitation 

•  Well detected and localized features have the potential to be reasonably matched between 
images even in presence of much large displacements. 

•  Therefore, such approaches have received attention in conjunction with larger motion 
displacements. 

Two broad classes of approach 
•  Methods for matching between binocular stereo pairs can be adapted to finite displacement 

image motion. 
–  For example, the feature-based methods are particularly applicable 

•  Also of interest is the iteration of gradient-based optical flow 
–  But restricted to interesting feature points 
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Finite displacement and features: Approaches 

Motivation 
•  Gradient-based techniques work best when the displacements between the image are 

relatively small 
–  This is implicit in the derivation of the optical flow constraint equation via differentials 
–  Although course-to-fine processing can help with this limitation 

•  Well detected and localized features have the potential to be reasonably matched between 
images. 

•  Therefore, such approaches have received attention in conjunction with larger motion 
displacements. 

Two broad classes of approach 
•  Methods for matching between binocular stereo pairs can be adapted to finite displacement 

image motion. 
–  For example, the feature-based methods are particularly applicable 

•  Also of interest is the iteration of gradient-based optical flow 
–  But restricted to interesting feature points 
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Finite displacement and features: Iterated gradient 

Basic idea 
•  We begin by extracting feature points of interest in image 1 of the input pair. 

–  For example, the corner/line detector developed earlier in this class is well suited for 
this purpose 

•  We then center windows about a feature of interest and about the same location in the other 
image. 
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Finite displacement and features: Iterated gradient 

Basic idea 
•  We begin by extracting feature points of interest in image 1 of the input pair. 

–  For example, the corner/line detector developed earlier in this class is well suited for 
this purpose 

•  We then center windows about a feature of interest and about the same location in the other 
image. 

•  We execute the gradient-based calculation, i.e., 
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Finite displacement and features: Iterated gradient 

Basic idea 
•  We begin by extracting feature points of interest in image 1 of the input pair. 

–  For example, the corner/line detector developed earlier in this class is well suited for 
this purpose 

•  We then center windows about a feature of interest and about the same location in the other 
image. 

•  We execute the gradient-based calculation, i.e., 

•  Following completion, we shift the entire window about the feature in image 1 according to 
the recovered flow vector. 

•  We then calculate a similarity measure between the shifted window in image image 1 and 
the window in image 2. 
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Finite displacement and features: Iterated gradient 

Basic idea 
•  We begin by extracting feature points of interest in image 1 of the input pair. 

–  For example, the corner/line detector developed earlier in this class is well suited for 
this purpose 

•  We then center windows about a feature of interest and about the same location in the other 
image. 

•  We execute the gradient-based calculation, i.e., 

•  Following completion, we shift the entire window about the feature in image 1 according to 
the recovered flow vector. 

•  We then calculate a similarity measure between the shifted window in image image 1 and 
the window in image 2. 

•  If the  similarity is above some threshold, then we say that the match has been found and 
we exit. 

•  If the similarity measure is below some threshold, then we iterate the gradient-based 
calculation, but now making use of the shifted window in image 1. 
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Finite displacement and features: Iterated gradient 

Basic idea 
•  We begin by extracting feature points of interest in image 1 of the input pair. 

–  For example, the corner/line detector developed earlier in this class is well suited for 
this purpose 

•  We then center windows about a feature of interest and about the same location in the other 
image. 

•  We execute the gradient-based calculation, i.e., 

•  Following completion, we shift the entire window about the feature in image 1 according to 
the recovered flow vector. 

•  We then calculate a similarity measure between the shifted window in image image 1 and 
the window in image 2. 

•  If the  similarity is above some threshold, then we say that the match has been found and 
we exit. 

•  If the similarity measure is below some threshold, then we iterate the gradient-based 
calculation, but now making use of the shifted window in image 1. 
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Finite displacement and features: Iterated gradient 
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Finite displacement and features: Iterated gradient 
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Finite displacement and features: Iterated gradient 
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Finite displacement and features: Iterated gradient 
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Finite displacement and features: Iterated gradient 
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Finite displacement and features: Iterated gradient 

Algorithm  
•  Input: Two images I1 and I2 and a set of features for I1 
•  Output: A set of displacements, one for each feature of I1. 
•  Notation: Let 

–  Q1, Q2 and be two image windows 
–  t be a threshold, a fixed positive real number 
–  p be a feature point in I1 
–  d be the unknown displacement for p 

•  For each feature point p 
1.  Set d = 0 and centre Q1 on p 
2.  Estimate the displacement d0 of p centre of Q1 according to the gradient-based 

algorithm 
3.  Set d=d+d0 
4.  Let Q2 be the image patch obtained by shifting Q1 according to d0. 

•  Calculate the similarity, S, of Q2 and the corresponding patch in I2 
5.   If S<t then set Q1=Q2 and goto 2; else exit. 
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Finite displacement and features: Iterated gradient 
Algorithm  
•  Input: Two images I1 and I2 and a set of features for I1 
•  Output: A set of displacements, one for each feature of I1. 
•  Notation: Let 

–  Q1, Q2 and be two image windows 
–  t be a threshold, a fixed positive real number 
–  p be a feature point in I1 
–  d be the unknown displacement for p 

•  For each feature point p 
1.  Set d = 0 and centre Q1 on p 
2.  Estimate the displacement d0 of p centre of Q1 according to the gradient-based 

algorithm 
3.  Set d=d+d0 
4.  Let Q2 be the image patch obtained by shifting Q1 according to d0. 

•  Calculate the similarity, S, of Q2 and the corresponding patch in I2 
5.  If S<t then set Q1=Q2 and goto 2; else exit. 

Representative similarity measure 
•  1/(Sum of Squared Differences)  within the windows of interest is a reasonable 

choice for this algorithm. 
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Finite displacement and feature-based estimation: 
Example presented in lecture 


