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Introduction: 3D shape from 2D images 
Shape-from-X 
•  Various sources of image derived 

information can support the inference of 
three-dimensional shape. 

•  The term shape-from-X, with X being bound 
to some particular image-based information 
source, is used to refer collectively to such 
methods for shape recovery from images. 

•  In some cases X involves multiple images 
–  Binocular stereo 
–  Motion parallax 
–  Focus 

•  In some cases X requires only a single 
image. 

•  Visual artists exploit the human ability to 
perform shape-from-X to depict 3D via 2D 
renderings. 

Single image cues 
•  Perspective 
•  Contour 
•  Texture 
•  Aerial perspective 
•  Shading 
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Introduction: Motivation 
Definition 
•  The inference of information 

about the 3D structure of a scene 
from two or more images is 
referred to as stereo vision. 

•  Information of interest may take 
the form of 

–  Distance measurements  
–  Surface orientation 
–  Surface curvature 
–  Arrangement of surface 

discontinuities 
•  Minimally, two or more images 

are required with spatial 
displacement of the scene and/or 
sensor. 

•  For the case of two spatially 
displaced sensors we speak of 
binocular stereo. 

•  Owing to the geometry of the 
situation 

–  3D scene points will project to 
different locations in a pair of 
spatially displaced optical 
sensors 

–  From this difference in location 
we recover the 3D information.  

Stereo pair 

Cube



10 

Introduction: Motivation 
Definition 
•  The inference of information 

about the 3D structure of a scene 
from two or more images is 
referred to as stereo vision. 

•  Information of interest may take 
the form of 

–  Distance measurements Surface 
orientation 

–  Surface curvature 
–  Arrangement of surface 

discontinuities 
•  Minimally, two or more images 

are required with spatial 
displacement of the scene and/or 
sensor. 

•  For the case of two spatially 
displaced sensors we speak of 
binocular stereo. 

•  Owing to the geometry of the 
situation 

–  3D scene points will project to 
different locations in a pair of 
spatially displaced optical 
sensors 

–  From this difference in location 
we recover the 3D information.  

Stereo pair 

Pyramid



11 

Introduction: Motivation 
Definition 
•  The inference of information 

about the 3D structure of a scene 
from two or more images is 
referred to as stereo vision. 

•  Information of interest may take 
the form of 

–  Distance measurements Surface 
orientation 

–  Surface curvature 
–  Arrangement of surface 

discontinuities 
•  Minimally, two or more images 

are required with spatial 
displacement of the scene and/or 
sensor. 

•  For the case of two spatially 
displaced sensors we speak of 
binocular stereo. 

•  Owing to the geometry of the 
situation 

–  3D scene points will project to 
different locations in a pair of 
spatially displaced optical 
sensors 

–  From this difference in location 
we recover the 3D information.  

Stereo pair 

Pyramid (lots of depth)



12 

Introduction: Motivation 

Definition 
•  The inference of information about the 3D 

structure of a scene from two or more 
images is referred to as stereo vision. 

•  Information of interest may take the form of 
–  Distance measurements (range map) 
–  Surface orientation 
–  Surface curvature 
–  Arrangement of surface discontinuities 

•  Minimally, two or more images are required 
with spatial displacement of the scene and/or 
sensor. 

•  For the case of two spatially displaced 
sensors we speak of binocular stereo. 

–  We will concentrate on this case. 
•  Owing to the geometry of the situation 

–  3D scene points will project to different 
locations in a pair of spatially displaced 
optical sensors 

–  From this difference in location we 
recover the 3D information.  

Stereo pair 
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Introduction: The two problems of stereo 

Correspondence 
•  Which parts of the left and right images are projections of the same element in the 3D 

scene. 
•  Which image parts should not be matched as they are not visible in the other image. 
•  We require an analysis and algorithm to establish correspondences between all points that 

are visible in both images. 

Reconstruction 
•  Let the difference in position of matched elements between the two views be called 

disparity. 
•  The disparities of all the image points form the disparity map. 
•  If the geometry of the stereo system is known (intrinsic and extrinsic camera parameters), 

then the disparity map can converted to a 3D map of the imaged scene. 
•  We require an analysis and algorithm that allows us to reconstruct the 3D scene from the 

matched binocular elements. 
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Introduction: A simple stereo system 
Geometric model 
•  Consider the top-down view of two pinhole 

cameras. 
•  The left and right images are coplanar, let 

–  Il and Ir be the left and right images, 
respectively. 

–  Ol and Or be the left and right centres 
of projection, respectively. 

•  Take the optical axes as parallel 
–  The fixation point, the intersection of the 

two optical axes, is at infinity 

Ol Or 

Il Ir 
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Introduction: A simple stereo system 
Equations of triangulation 
•  Consider a point P and its projections pl and 

pr. 
•  Let  

–  T be the distance between the centres 
of projection, the baseline. 

–  cl and cr be the centre points of the left 
and right images, respectively 

–  xl and xr be the coordinates of pl and 
pr, respectively. 

–  f be the common focal length of the two 
cameras 

–  Z be the distance of P from the baseline 

Ol Or 

T 

f 

Z 

pl pr 
xl xr 

cl cr 

P 
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•  Letting d = xr-xl be the disparity, we solve 
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Introduction: The parameters of a stereo system 

Intrinsic parameters  
•  For our simple model we have f, cl and cr. 
•  More generally, all of the intrinsic parameters of the two camera systems are of interest. 
•  Note: In the terminology of photogrammetry we speak of interior orientation. 

Extrinsic parameters  
•  For our simple model we have T. 
•  More generally, all of the extrinsic parameters (translation and rotation) that relate the two 

camera systems are of interest. 
•  Note: In the terminology of photogrammetry, the geometry relating one camera to another is 

called relative orientation; a separate parameterization (absolute or exterior orientation) 
would relate the camera (pair) to the world. 

 
Remarks 
•  To perform Euclidean reconstruction all of these parameters must be known. 

–  A need for accurate calibration. 
•  Interesting information can be recovered with only partial (or no calibration). 
•  In the parallel optical axis model, disparity can only decrease with distance to objects. 

–  That is, disparity decreases as we move toward infinity, the effective convergence of 
the optical axes. 

–  More generally, disparity magnitude decreases with closeness to the fixation point, the 
convergence of the optical axes. 
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Correspondence: Basics 

Assumptions  
•  Most scene points are visible from both viewpoints 
•  Corresponding image regions are similar in appearance 
•  Reasonably true for stereo systems where fixation distance >> baseline. 
•  …but false in general 

Cast correspondence as search 
•  Which image elements are to be matched? 
•  What similarity measure to adopt? 
•  Postpone issue that not all points have correspondences. 

Consider two classes of correspondence method 
•  Area-based 
•  Feature-based 
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Correspondence: Area-based 

Motivation 
•  Exploit all available information 
 
Elements to be matched  
•  Image windows 
•  Typically of fixed size 
•  Spatially overlapping. 
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windows in the two images. 
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maximizes the measure over some 
search region. 

similarity 

search offset 
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Formalization: For disparity d 
•  Local matching seeks: 

       For each (x,y) 
 
•  Global matching seeks: 

)]([max dmatch
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that maximizes (minimizes) c(d) over R(pl). 

∑ ∑
= −=

−+−+++=
W

-Wk

W

Wl
dljdkiIrljkiIlmc )]2,1(),,([)(d
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Remarks: We have 
•  (i,j) as a particular image location in the left image about which the match window currently 
   is defined. 
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•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that maximizes (minimizes) c(d) over R(pl). 
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Remarks: We have 
•  (i,j) as a particular image location in the left image about which the match window currently 
   is defined. 
•  (k,l), -W<=k,l<=W defining the domain of the window centred about (i,j). 
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that maximizes (minimizes) c(d) over R(pl). 
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Remarks: We have 
•  (i,j) as a particular image location in the left image about which the match window currently 
   is defined. 
•  (k,l), -W<=k,l<=W defining the domain of the window centred about (i,j). 
•  (d1,d2) as the shift in the right image at which we currently evaluate the match.  
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that maximizes (minimizes) c(d) over R(pl). 
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that minimizes (maximizes) c(d) over R(pl). 

Standard choices for m(u,v) 
•  The squared difference m(u,v)= (u-v)^2 yields the Sum of Squared Differences (SSD). 
•  The product m(u,v)=uv yields cross-correlation. 
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Correspondence: Area-based 

Match measures: Sum of squared differences (SSD) 
•  Let m(u,v) = (u-v)^2 

•  We quantify the goodness of match by  
1.  Taking the pixelwise difference of brightnesses between the two images, Il and Ir,  

within the match window defined by W. 
2.  Squaring the difference (because we only care about the magnitude of the discrepency). 
3.  Summing over the window. 

•  In the end, better matches are defined as having smaller SSDs. 

∑ ∑

∑ ∑

= −=

= −=

−+−+−++=

−+−+++=

W

-Wk

W

Wl

W

-Wk

W

Wl

dljdkiIrljkiIl

dljdkiIrljkiIlmc

2)]2,1(),([

)]2,1(),,([)(d



55 

Correspondence: Area-based 

Match measures: From SSD to correlation 
•  Let us expand the square inside the summation 
 

•  Because they do not depend on the interaction of the two images, we neglect the first and last 
terms inside the summations and restrict consideration to 

 
 
 
•  Apparently the portions of the images within the match windows are most similar when 

  
 is maximized. 
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Correspondence: Area-based 

Match measures: Correlation 
•  Let m(u,v) = (uv) 

•  We quantify the goodness of match by  
1.  Taking the pixelwise product between the two images, Il and Ir,  within the match 

window defined by W. 
2.  Summing over the window. 

•  In the end, better matches are defined as having larger correlations. 
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that minimizes (maximizes) c(d) over R(pl). 

Standard choices for m(u,v) 
•  The squared difference m(u,v)= (u-v)^2 yields the Sum of Squared Differences (SSD). 
•  The product m(u,v)=uv yields cross-correlation. 
•  Remark: Although more computationally expensive, SSD can be superior due to its being 

less biased by large or small image intensity values. 
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Correspondence: Area-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir 
•  Output: Array of disparities (disparity map), one value for each pixel of Il. 
•  Notation: Let 

–  pl and pr be pixels in the left and right images, resp. 
–  2W+1 the width (in pixels) of the match window, 
–  R(pl) the search range in the right image associated with pl 
–  m(u,v) a function of two pixel values, u and v. 

•  For each pixel pl=(i,j) in the left image 
1.  For each displacement d = (d1,d2) of R(pl) calculate 

2.  The disparity of pl is the vector d that maximizes (minimizes) c(d) over R(pl). 

Remarks 
•  Search region can be centred about (0,0). 
•  Size of window depends on knowledge Re. Spatial scale of stable image features. 
•  Oriented-bandpass image representation can systematically expose image structure for matching. 
•  Coarse-to-fine (pyramid) refinement can support large search ranges with modest expense. 
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Correspondence: Area-based 

Benefit of coarse-to-fine stereo correspondence 



60 

Correspondence: Area-based 
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Correspondence: Area-based 
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Correspondence: Area-based 

Benefit of coarse-to-fine stereo correspondence 
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Correspondence: Area-based 

Benefit of coarse-to-fine stereo correspondence 

Search range = 8 
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Correspondence: Area-based 

Benefit of coarse-to-fine stereo correspondence 

Search range = 8 

Search range = 4 
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Correspondence: Area-based 

Benefit of coarse-to-fine stereo correspondence 

Search range = 8 

Search range = 4 

Search range = 2 

Search range = 1 
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Floating Square

Correspondence: Random-dot stereogram 
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Correspondence: Random-dot stereogram 

My book chapter 
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Correspondence: Random-dot stereogram 
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Correspondence: Random-dot stereogram 
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Multiresolution (Laplacian) pyramid representations 
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Correspondence: Random-dot stereogram 
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Correspondence: Random-dot stereogram 

My book chapter 
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Correspondence: Random-dot stereogram 

Multiresolution (Laplacian) pyramid representations 

Estimated (multiresolution) disparity 
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Correspondence: Random-dot stereogram 

Multiresolution (Laplacian) pyramid representations 

Estimated (multiresolution) disparity 



75 

Correspondence: Random-dot stereogram 
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Correspondence: Random-dot stereogram 

Multiresolution (Laplacian) pyramid representations 

Estimated (multiresolution) disparity 
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Correspondence: Random-dot stereogram 

My book chapter 

Input: 
Stereo pair 

Output: 
Disparity map 
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Correspondence: Area-based (recap.) 

Motivation 
•  Exploit all available information 
 
Elements to be matched  
•  Image windows 
•  Typically of fixed size 
•  Spatially overlapping. 

Similarity measure 
•  An integrated pixel difference over 

windows in the two images. 
•  Corresponding element is that which 

maximizes the measure over some 
search region. 
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Correspondence: Feature-based 

Motivation 
•  Not all features are created equal. 
 
Elements to be matched  
•  Sparse set of extracted features. 

–  Edges 
–  Corners… 

•  Numerical and/or symbolic descriptors 
–  Feature length 
–  Feature orientation 
–  Average contrast… 
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Correspondence: Feature-based 

Motivation 
•  Not all features are created equal. 
 
Elements to be matched  
•  Sparse set of extracted features. 

–  Edges 
–  Corners… 
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–  Feature length 
–  Feature orientation 
–  Average contrast… 
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Correspondence: Feature-based 

Motivation 
•  Not all features are created equal. 
 
Elements to be matched  
•  Sparse set of extracted features. 
•  Numerical and/or symbolic descriptors 

associated with features. 

Similarity measure 
•  Distance between feature descriptors. 
•  Corresponding element is that which 

minimizes distance between feature 
descriptors. 
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Correspondence: Feature-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir and associated sets of feature descriptors 
•  Output: List of feature correspondences and (possibly sparse) disparity map. 
•  Notation: Let 

–  fl and fr be left and right image feature descriptors, respectively 

–  R(fl) be the search range in the right image associated with left-image feature descriptor 
fl 

–  d(fl,fr) be the disparity between features fl and fr. 
•  For each  fl pixel in the left image set 

1.  Compare the similarity measure between fl and each image feature in R(fl). 
2.  Select the right-image feature that maximizes the similarity measure. 
3.  Save the correspondence and the disparity of fl 
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Correspondence: Feature-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir and associated sets of feature descriptors 
•  Output: List of feature correspondences and (possibly sparse) (disparity map). 
•  Notation: Let 

–  R(fl) be the search range in the right image associated with left-image feature descriptor 
fl 

–  d(fl,fr) be the disparity between features fl and fr. 
•  For each fl pixel in the left image set 
1.  Compare the similarity measure between fl and each image feature in R(fl). 
2.  Select the right-image feature that maximizes the similarity measure. 
3.  Save the correspondence and the disparity of fl 

Representative similarity measure 
•  Inverse of weighted average of distances between feature descriptors 
•  For example, let 

–            and           be feature lengths in left and right images, resp. 
–            and           be feature contrast in left and right images, resp. 

•  Then the similarity measure would be 
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Correspondence: Feature-based 
Algorithm  
•  Input: Stereo pair of images Il and Ir and associated sets of feature descriptors 
•  Output: List of feature correspondences and (possibly sparse) (disparity map). 
•  Notation: Let 

–  R(fl) be the search range in the right image associated with left-image feature descriptor 
fl 

–  d(fl,fr) be the disparity between features fl and fr. 
•  For each pixel fl in the left image set 
1.  Compare the similarity measure between fl and each image feature in R(fl). 
2.  Select the right-image feature that maximizes the similarity measure. 
3.  Save the correspondence and the disparity of fl 
 
Remarks 
•  Starting search and search range can be set similarly to area-based methods, about (0,0) 
•  Coarse-to-fine processing can also be employed to good advantage  

–  Initially extract features from coarse resolution imagery, 
–  Perform matching 
–  Increase resolution and repeat 
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Correspondence: Feature-based (recap.) 

Motivation 
•  Not all features are created equal. 
 
Elements to be matched  
•  Sparse set of extracted features. 
•  Numerical and/or symbolic descriptors 

associated with features. 

Similarity measure 
•  Distance between feature descriptors. 
•  Corresponding element is that which 

minimizes distance between feature 
descriptors. 
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Correspondence: Final remarks 

Area-based  
•  Easier to implement 
•  Provide dense disparity maps 
•  Require reasonably textured images to drive local match measure 
•  Sensitive to viewpoint and illumination changes between images 

Feature-based 
•  Most suitable when a priori knowledge suggests appropriate feature sets 
•  Although only sparse disparity is produced, can be suitable for many applications 
•  Well chosen features can be more robust to viewpoint and illumination variations. 
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Correspondence: Final remarks 

The issue of unmatchable points 
•  Both methods can be stymied in attempting to match points that appear in only one of the 

two views. 
–  Due to half occlusion 
–  Due to noise 

•  Various techniques are available to help diagnose such situations 
–  Left-right checking looks for consistent matches left-to-right and right-to-left 
–  Epipolar constraint limits match region so it becomes less likely that false matches are 

encountered. 
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•  Both methods can be stymied in attempting to match points that appear in only one of the 

two views. 
–  Due to half occlusion 
–  Due to noise 

•  Various techniques are available to help diagnose such situations 
–  Left-right checking looks for consistent matches left-to-right and right-to-left 
–  Epipolar constraint limits match region so it becomes less likely that false matches are 
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Geometry of half-occlusion 
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Outline 

•  Introduction 

•  The correspondence problem  

•  Epipolar geometry  

•  3-D reconstruction 
 
•  Empirical examples 

•  Summary  
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Epipolar geometry: Pictorial explanation 
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Epipolar geometry: Pictorial explanation 

Point in 3D space 
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Epipolar geometry: Pictorial explanation 
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plane 

Epipolar 
line 

Epipolar 
line 

Given a stereo pair of cameras and a point in 3D space 
•  There is plane that goes through the point and the centres of projection of the cameras 

 - We call this plane the epipolar plane 
•  The lines where the plane intersects the the images are called conjugate epipolar lines 
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Epipolar geometry: Pictorial explanation 
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Epipolar geometry: Pictorial explanation 
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Epipolar geometry: Pictorial explanation 

Epipolar 
line 

Epipolar 
line 

Given a stereo pair of cameras and a point in 3D space 
•  There is plane that goes through the point and the centres of projection of the cameras 

 - We call this plane the epipolar plane 
•  The lines where the plane intersects the the images are called conjugate epipolar lines 

 

The epipolar constraint 
•  Corresponding points must lie on conjugated epipolar lines. 
•   Stereo correspondence has been reduced to a 1D search! 
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Epipolar geometry: Analytic explanation 

Equation of the epipolar plane 
•  Let                          define the translation vector that shifts the left centre of projection,    , to the right 

centre of projection,      .  
•  By definition of the cross product,                 defines a normal to the plane defined by T and the 

coordinate of the point of regard in the left system,      . 
•  For any other vector in the epipolar plane, its projection on the normal must be 0. 

–  One such vector is given by  
•  Combining all these observations allows us to write the equation of the epipolar plane in terms of the 

coplanarity condition 
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Epipolar geometry: Analytic explanation 

Equation of the epipolar plane 
•  Let                          define the translation vector that shifts the left centre of projection,    , to the right 
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Epipolar geometry: Analytic explanation 
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Epipolar geometry: Analytic explanation 
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Epipolar geometry: Analytic explanation 

Equation of the epipolar plane 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  Let                           

–                        define the translation vector that shifts the left centre of projection,      , to the right 
centre of projection,      . 

–  R define the rotation matrix that aligns directions of the coordinate axes in the left and right 
coordinate systems  

–                               define the transformation between the coordinates of P from the left to right 
coordinate systems. 

•  We can now rewrite the coplanarity condition                                      as 
•  Noting that                        for skew symmetric S, we further rewrite the coplanarity condition as. 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  Let                           

–                        define the translation vector that shifts the left centre of projection,      , to the right 
centre of projection,      . 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  Let                           

–                        define the translation vector that shifts the left centre of projection,      , to the right 
centre of projection,      . 

–  R define the rotation matrix that aligns directions of the coordinate axes in the left and right 
coordinate systems  

–                               define the transformation between the coordinates of P from the left to right 
coordinate systems. 

•  We can now rewrite the coplanarity condition                                      as 
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Epipolar geometry: Analytic explanation 

Interlude: Representing cross-products in terms of skew symmetric 
matrices 

•  For 3 x 1                            and                             we define 

 
 
•  We notice that this calculation can be encapsulated in a matrix operation of the form  

•  Letting  

•  We have T X P = S P 
•  Remark: We say that S is skew symmetric in that      . 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  The coplanarity condition has been rewritten as     

                       
•  Making use of rules of matrix manipulation we rearrange so that the left and right coordinates of P are 

on either side of an inner product of matrices RS 

 
•  Letting E=RS we have 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  The coplanarity condition has been rewritten as     

                       
•  Making use of rules of matrix manipulation we rearrange so that the left and right coordinates of P are 

on either side of an inner product of matrices RS 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  The coplanarity condition has been rewritten as     

                       
•  Making use of rules of matrix manipulation we rearrange so that the left and right coordinates of P are 

on either side of an inner product of matrices RS 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  In terms of left and right coordinates of P we have reduced the coplanarity condition to 

•  We complete our derivation by converting to camera coodinates in the image plane, . 
•  From perspective we recall that 

 
•  Substitution and division through by                    yields  

•  We refer to E as the essential matrix. 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  In terms of left and right coordinates of P we have reduced the coplanarity condition to 

•  We complete our derivation by converting to camera coodinates in the image plane, . 
•  From perspective we recall that 
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Epipolar geometry: Analytic explanation 

The essential matrix 
•  In terms of left and right coordinates of P we have reduced the coplanarity condition to 

•  We complete our derivation by converting to camera coodinates in the image plane, . 
•  From perspective we recall that 
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Epipolar geometry: Analytic explanation 
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The essential matrix 
•  In terms of left and right coordinates of P we have reduced the coplanarity condition to 

•  We complete our derivation by converting to camera coodinates in the image plane, . 
•  From perspective we recall that 

•  Substitution and division through by                    yields 
•    

•  Which expresses a fundamental constraint on any two image points,             , that are in binocular 
correspondence. 
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Epipolar geometry: Analytic explanation 
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The essential matrix 
•  In terms of left and right coordinates of P we have reduced the coplanarity condition to 

•  We complete our derivation by converting to camera coodinates in the image plane, . 
•  From perspective we recall that 

•  Substitution and division through by                    yields 
•    

•  Which expresses a fundamental constraint on any two image points,             , that are in binocular 
correspondence. We refer to E as the essential matrix. 
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The fundamental matrix 
•  Use of the essential matrix to relate corresponding image points in the left and right 

views allows us to write 
 
 

 assuming that we can measure image points in camera coordinates,            , rather 
than pixel coordinates,             . 

•  Recall (from Unit 1) that camera and pixel coordinates are related via the matrices of 
intrinsic parameters. 

•  Let                be the intrinsic camera parameter matrices for the left and right systems, 
resp. We have 

•  We can make use of these transformations from camera to pixel coordinates to rewrite 
our correspondence constraint equation as 

 where 
 
 

 is referred to as the fundamental matrix. 

Epipolar geometry: Analytic explanation 
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The fundamental matrix 
•  Use of the essential matrix to relate corresponding image points in the left and right 

views as 
 
 

 assuming that we can measure image points in camera coordinates,            , rather 
than pixel coordinates,             . 

•  Recall (from Unit 1) that camera and pixel coordinates are related via the matrices of 
intrinsic parameters. 

•  Let                be the intrinsic camera parameter matrices for the left and right systems, 
resp. We have 

•  We can make use of these transformations from camera to pixel coordinates to rewrite 
our correspondence constraint equation as 

 where 
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The fundamental matrix 
•  Use of the essential matrix to relate corresponding image points in the left and right 

views as 
 
 

 assuming that we can measure image points in camera coordinates,            , rather 
than pixel coordinates,                   . 

•  Recall (from Unit 1) that camera and pixel coordinates are related via the matrices of 
intrinsic parameters. 

•  Let                be the intrinsic camera parameter matrices for the left and right systems, 
resp. We have 

•  We can make use of these transformations from camera to pixel coordinates to rewrite 
our correspondence constraint equation as 

 where 
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Epipolar geometry: Recovery 

Problem statement 
•  Given a stereo pair of images, how do we calculate the epipolar geometry. 
•  Once in hand, binocular correspondence is simplified to 1D search. 

 
Two approaches 
1.  Calculate camera-to-camera transformation 

–  8 point algorithm 
2.  Calculate camera-to-world transformations 

–  camera calibration 
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Epipolar geometry: Recovery 
The 8 point algorithm 
•  For any pair of corresponding pixel coordinate-based features,             , appeal to the epipolar 

constraint  

 
 allows us to write one equation in the unknown components of the fundamental  matrix, F.  

•  In particular, letting 
  

 
 
 
 

 we have 
 
 
•  Similarly, for a set of n correspondences we can write 
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Epipolar geometry: Recovery 
The 8 point algorithm 
•  For any pair of corresponding pixel coordinate-based features,             , appeal to the epipolar 

constraint  

 
 allows us to write one equation in the unknown components of the fundamental  matrix, F.  

•  In particular, letting 
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Epipolar geometry: Recovery 
The 8 point algorithm 
•  For any pair of corresponding pixel coordinate-based features,             , appeal to the epipolar 

constraint  

 
 allows us to write one equation in the unknown components of the fundamental  matrix, F.  

•  In particular, letting 
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Epipolar geometry: Recovery 

The 8 point algorithm 
•  Since the assembled system of equations 

 A f = 0 
 is homogenous, there are only 8 independent components in f. 
 à   If we have 8 (or more) corresponding features, then we have 8 (or more) 

 constraint equations in 8 unknowns. 
•  Using the constraint equations we can solve for the components of F using any 

reasonable method for solving a system of homogenous linear equations. 
–  One such method appeals to the singular value decomposition, which 

minimizes |A f | subject to the constraint that | f | = 1. 

–  In particular, the solution for f is given by the vector corresponding to the 
smallest singular value in the decomposition 

 i.e., as the last column of V. 
•  Remark: Given correspondences in terms of camera coordinates, we can perform 

similar calculations in terms of the essential matrix E. 

T
UDVA =
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Epipolar geometry: Recovery 
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Epipolar geometry: Recovery 

The 8 point algorithm 
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Epipolar geometry: Recovery 

Interlude: The singular value decomposition (SVD) 
•  Any m x n matrix A can be factored into 
 
 
•  Remarks 

–  The columns of U (m x m) are the eigenvectors of  
–  The columns of V (n x n) are the eigenvectors of  
–  The matrix D (m x n) has nonzero values that are the square roots of the 

nonzero eignevalues of both          and           . These diagonal values,        , 
are ordered such that                                   . 

•  Most numerical linear algebra packages provide support for SVD decomposition. 
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Epipolar geometry: Recovery 

The 8 point algorithm 
•  Since the assembled system of equations 

 A f = 0 
 is homogenous, there are only 8 independent components in f. 
 à   If we have 8 (or more) corresponding features, then we have 8 (or more) 

 constraint equations in 8 unknowns. 
•  Using the constraint equations we can solve for the components of F using any 

reasonable method for solving a system of homogenous linear equations. 
–  One such method appeals to the singular value decomposition, which 

minimizes |A f | subject to the constraint that | f | = 1. 

–  In particular, the solution for f is given by the vector corresponding to the 
smallest singular value in the decomposition 

 i.e., as the last column of V. 
•  Remark: Given correspondences in terms of camera coordinates, we can perform 

similar calculations in terms of the essential matrix E. 
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Epipolar geometry: Recovery 

8 point algorithm 
•  To make the 8 point algorithm work, we 

must discover at least 8 corresponding 
features between a binocular image pair, 
… 

•  … without being able to avail ourselves to 
the epipolar constraint per se. 

•  Extract well localized distinctive features 
on each image. 

–  e.g., corners 
•  Establish 8 (or more) precise 

correspondences between features 
across the image pair. 

–  As general 2D search and match 
problem. 

•  Subsequently use the matches to form 
the system of linear constraint equations 
that are the basis of the 8 point algorithm. 
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Epipolar geometry: Recovery 
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Epipolar geometry: Recovery 

8 point algorithm 
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Epipolar geometry: Recovery 

8 point algorithm 
•  To make the 8 point algorithm work, we 

must discover at least 8 corresponding 
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… 

•  … without being able to avail ourselves to 
the epipolar constraint per se. 

•  Extract well localized distinctive features 
on each image. 
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Epipolar geometry: Recovery 

Camera calibration 
•  Exploit an artificially constructed 

calibration pattern. 
–  Designed to have features that can 

be precisely mensurated in 3D 
position. 

•  Capture images of the calibration pattern 
with both cameras. 

•  Precisely extract corresponding features 
between each image and the 3D 
calibration pattern. 

–  Since this only need be done once 
(occasionally), can be done with 
human intervention. 

•  This allows for exact recovery of the 
intrinsic and extrinsic camera parameters 

–  For each camera separately. 
•  The relative camera geometry is then 

straightforward to recover 
–  Which yields the epipolar geometry. 

•  Remark: Camera calibration is covered in 
some detail in our textbook, chapter 6. 

 

 

Faugeras book 
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Epipolar geometry: Exploitation 
Match constraint 
•  Goal: To allow the correspondence process 

best use of the recovered epipolar geometry. 
•  Approach: Use the recovered fundamental 

matrix F to constrain the search for matching 
points to a linear span.. 

•  Geometrically: Given a point                          
in the right image, we have 

 
 

 letting 
 
 
 
 
 
 

 we write 
   
 

 which is the equation of a line in the left 
image on which the matching point                       
must lie. 

•  Benefit:: The having selected a feature in one 
image, correspondence need only search 
along a line in the other. 
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Epipolar geometry: Exploitation 
Match constraint 
•  Goal: To allow the correspondence process 

best use of the recovered epipolar geometry. 
•  Approach: Use the recovered fundamental 

matrix F to constrain the search for matching 
points to a linear span.. 

•  Geometrically: Given a point                          
in the left image, we can write 

 
 

 letting 
 
 
 
 
 
 

 we write 
   
 

 which is the equation of a line in the left 
image on which the matching point                       
must lie. 

•  Benefit:: The having selected a feature in one 
image, correspondence need only search 
along a line in the other. 
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Epipolar geometry: Exploitation 
Match constraint 
•  Goal: To allow the correspondence process 

best use of the recovered epipolar geometry. 
•  Approach: Use the recovered fundamental 

matrix F to constrain the search for matching 
points to a linear span.. 

•  Geometrically: Given a point                          
in the left image, we can write 
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 we write 
   
 

 which is the equation of a line in the left 
image on which the matching point                       
must lie. 

•  Benefit:: The having selected a feature in one 
image, correspondence need only search 
along a line in the other. 
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Epipolar geometry: Exploitation 
Match constraint 
•  Goal: To allow the correspondence process best 

use of the recovered epipolar geometry. 
•  Approach: Use the recovered fundamental matrix 

F to constrain the search for matching points to a 
linear span.. 

•  Geometrically: Given a point                           
 in the left image, we can write 

 
 

 letting 
 
 
 
 
 
 

 we write 
   
 

 which is the equation of a line in the right image 
on which the matching point                        
 must lie. 

•  Benefit:: The having selected a feature in one 
image, correspondence need only search along 
a line in the other. 
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Epipolar geometry: Exploitation 
Match constraint 
•  Goal: To allow the correspondence process best 

use of the recovered epipolar geometry. 
•  Approach: Use the recovered fundamental matrix 

F to constrain the search for matching points to a 
linear span.. 

•  Geometrically: Given a point                               
in the left image, we can write 
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 we write 
   
 

 which is the equation of a line in the right image 
on which the matching point                        
 must lie. 

•  Benefit: The having selected a feature in one 
image, correspondence need only search along 
a line in the other. 
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Epipolar geometry: Exploitation 

Rectification 
•  Goal: To allow the correspondence 

process best use of the recovered 
epipolar geometry. 

•  Approach: Warp the images so that 
conjugate epipolar lines map to 
corresponding horizontal scan lines. 

•  Geometrically: The transformation 
amounts to a projective transformation of 
the images. 

–  They are as if the original optical 
axes were parallel. 

–  The simple stereo geometry that 
was introduced earlier.  

•  Benefit: The having selected a feature in 
one image, correspondence need only 
search along the corresponding 
horizontal raster in the other. 

 

 3D point in world 
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Epipolar geometry: Exploitation 

Rectification 
•  Goal: To allow the correspondence 

process best use of the recovered 
epipolar geometry. 

•  Approach: Warp the images so that 
conjugate epipolar lines map to 
corresponding horizontal scan lines. 

•  Geometrically: The transformation 
amounts to a projective transformation of 
the images.  

–  They are as if the original optical 
axes were parallel. 

–  The simple stereo geometry that 
was introduced earlier.  

•  Benefit: Having selected a feature in one 
image, correspondence need only search 
along the corresponding horizontal raster 
in the other. 

 

 3D point in world 
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Epipolar geometry: Exploitation 

Rectification 
•  Goal: To allow the correspondence 

process best use of the recovered 
epipolar geometry. 

•  Approach: Warp the images so that 
conjugate epipolar lines map to 
corresponding horizontal scan lines. 

•  Geometrically: The transformation 
amounts to a projective transformation of 
the images. 

–  They are as if the original optical 
axes were parallel. 

–  The simple stereo geometry that 
was introduced earlier.  

•  Benefit: Having selected a feature in one 
image, correspondence need only search 
along the corresponding horizontal raster 
in the other. 

–  Although, in practice we check a few 
nearby rasters as well, because life 
isn’t perfect. 

 

 3D point in world 
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Epipolar geometry: Exploitation 
Rectification analysis 
•  Assumptions (in both cameras) 

–  The origin of the image reference frame is the principle point. 
–  The focal length is f 
–  The relative orientation between cameras is specified by rotation, R, and translation T. 

•  What needs to be accomplished 
1.  Rotate the left camera by H so that the epipole goes to infinity along the horizontal axis. 
2.  Apply the same rotation to the right camera to recover the original geometry. 
3.  Rotate the right camera by R 
4.  Adjust the scale in both camera reference frames. 

Rectification formalization 
•  To specify H we need a triple of mutually orthogonal unit vectors,             , so that  

•  Since the image centre is in the origin, the epipole is           , by definition and we want to map it 
to (1, 0, 0). 

•  Correspondingly, we take  
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Epipolar geometry: Exploitation 
Rectification analysis 
•  Assumptions (in both cameras) 

–  The origin of the image reference frame is the principle point. 
–  The focal length is f 
–  The relative orientation between cameras is specified by rotation, R, and translation T. 

•  What needs to be accomplished 
1.  Rotate the left camera by H so that the epipole goes to infinity along the horizontal axis. 
2.  Apply the same rotation to the right camera to recover the original geometry. 
3.  Rotate the right camera by R 
4.  Adjust the scale in both camera reference frames. 

Rectification formalization 
•  To specify H we need a triple of mutually orthogonal unit vectors,             , so that  

•  Since the image centre is in the origin, the epipole is           , by definition and we want to map it 
to (1, 0, 0). 

•  Correspondingly, we take  
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Epipolar geometry: Exploitation 

Rectification algorithm 
1.  Build H. 
2.  Let               and 
3.  For each left camera point,                          , compute 

 and the coordinates of the corresponding rectified point as 
 
 
 
4.  Repeat the previous step for all points in the right camera using  

Remark 
•  A rectified image might not be in the same region of the image plane as the original image. To 

keep all points of the rectified images in regions of the same size as the originals the focal 
lengths can be adjusted. 
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Epipolar geometry: Exploitation 

Rectification algorithm 
1.  Build H. 
2.  Let               and 
3.  For each left camera point,                          , compute 

 and the coordinates of the corresponding rectified point as 
 
 
 
4.  Repeat the previous step for all points in the right camera using  

Remark 
•  A rectified image might not be in the same region of the image plane as the original image. To 

keep all points of the rectified images in regions of the same size as the originals the focal 
lengths can be adjusted. 
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Epipolar geometry: Rectification example 
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Epipolar geometry: Rectification example 
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Epipolar geometry: Rectification example 



172 

Epipolar geometry: Rectification example 
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Outline 

•  Introduction 

•  The correspondence problem  

•  Epipolar geometry  

•  3-D reconstruction 
 
•  Empirical examples 

•  Summary  
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3D reconstruction: Overview 

Goal  
•  Given binocular stereo images and their correspondences. 
•  Recover the 3D geometry of the imaged scene. 

What can be achieved  
•  Given intrinsic and extrinsic geometry of the cameras: Absolute Euclidean reconstruction. 
•  Given only intrinsic camera geometries: Reconstruction up to a scale factor. 
•  Given no information on camera geometries: Reconstruction up to a projective 

transformation. 
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3D reconstruction: Absolute Euclidean 

Input 
•  A set of correspondences between 

binocular stereo images. 
•  Intrinsic and extrinsic camera geometry. 

Output  
•  Euclidean distance to each matched 

point in the scene. 
•  Assuming rectified stereo pair we have 

simply 

 with disparity d= xr-xl, as calculated 
earlier in this unit 

 

d
TfZ =

Consider a 1D slice along 
corresponding 
horizontal rasters 
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3D reconstruction: Absolute Euclidean 

Input 
•  A set of correspondences between 

binocular stereo images. 
•  Intrinsic and extrinsic camera geometry. 

Output  
•  Euclidean distance to each matched 

point in the scene. 
•  Assuming rectified stereo pair we have 

simply 

 with disparity d as calculated earlier in 
this unit 
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Take these lines to 
stand for corresponding 
horizontal rasters, i.e.,  
our 1D slice 
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3D reconstruction: Absolute Euclidean 

Input 
•  A set of correspondences between 

binocular stereo images. 
•  Intrinsic and extrinsic camera geometry. 

Output  
•  Euclidean distance to each matched 

point in the scene. 
•  Assuming rectified stereo pair we have 

simply 

 with disparity d, as calculated earlier in 
this unit 

 
Remark 
•  In practical situations we may need to do 

additional work. 
•  Matched points may fail to lie on exactly 

the same horizontal raster. 
•  Choose the desired 3D point estimate as 

the that of minimum distance between 
the rays from the centres of projection 
and the matched points. 

d
TfZ =
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3D reconstruction: Absolute Euclidean 

Input 
•  A set of correspondences between 

binocular stereo images. 
•  Intrinsic and extrinsic camera geometry. 

Output  
•  Euclidean distance to each matched 

point in the scene. 
•  Assuming rectified stereo pair we have 

simply 

 with disparity d, as calculated earlier in 
this unit 

 
Remark 
•  In practical situations we may need to do 

additional work. 
•  Matched points may fail to lie on exactly 

the same horizontal raster. 
•  Choose the desired 3D point estimate as 

the that of minimum distance between 
the rays from the centres of projection 
and the matched points. 

d
TfZ =
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3D reconstruction: Recap 

Input 
•  Given binocular stereo images and their correspondences. 
•  Recover the 3D geometry of the imaged scene. 

Output 
•  3D geometry of imaged scene 
•  Exactly what form this takes depends on how much is known about camera geometries 

–  Given intrinsic and extrinsic geometry of the cameras: Absolute Euclidean 
reconstruction. 

–  Given only intrinsic camera geometries: Reconstruction up to a scale factor. 
–  Given no information on camera geometries: Reconstruction up to a projective 

transformation. 
•  While we have focused on recovery of range estimates (3D distance), other information is 

possible 
–  3D surface orientation 
–  3D surface curvature 
–  3D surface discontinuities 
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Outline 

•  Introduction 

•  The correspondence problem  

•  Epipolar geometry  

•  3-D reconstruction 
 
•  Empirical examples 

•  Summary  
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Empirical examples: Random-dot stereogram 

My book chapter 
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Empirical examples: Random-dot stereogram 

My book chapter 
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Empirical examples: Random-dot stereogram 

My book chapter 
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Empirical examples: Random-dot stereogram 

My book chapter 
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Empirical examples: Calibrated laboratory scene 
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Empirical examples: Laboratory scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 



193 

Empirical examples: Real-world scene 
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Empirical example: Feature-based 
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Empirical example: Feature-based 
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Empirical example: Feature-based 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Real-world scene 
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Empirical examples: Recovery of 3D orientation 
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Empirical examples: Recovery of 3D curvature 
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Empirical examples: Recovery of 3D discontinuities 
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Empirical examples: Comparison to ground truth 

left view right view 

ground truth disparity recovered disparity 
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Empirical examples: Comparison to ground truth 

left view right view 

ground truth disparity recovered disparity 
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left view right view 

ground truth disparity recovered disparity 

Empirical examples: Comparison to ground truth 
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Empirical examples: Comparison to ground truth 

Error shown as percentage of points with greater than 1 pixel error. 
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Empirical examples: Stereo video 

Show demonstration video 
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Empirical examples: A mystery 

Recall the case of half-occlusion 
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Empirical examples: A mystery 

A half-occlusion dot pattern stereogram: The only 3D cue is lack of correspondence 

Status 
•  No extant computer vision algorithm can correctly infer 3D from such an impoverished input. 
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Empirical examples: A mystery 

A half-occlusion dot pattern stereogram: The only 3D cue is lack of correspondence 

Status 
•  No extant computer vision algorithm can correctly infer 3D from such an impoverished input. 
•  …but humans can! 
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Floating Square



212 Horizontal Corrugations
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Summary 

•  The correspondence problem  

•  Epipolar geometry  

•  3-D reconstruction 

•  Empirical examples 
 

 


