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Introduction: Motivation 
Incremental abstraction 
•  We have investigated approaches to 

representing images so as to make local 
stuctural information explicit. 

–  Local scale 
–  Local orientation 

•  Information content in images can be fairly 
localized. 

–  Abrupt changes in image irradiance: 
edges, corners,… 

–  Configurations of intensity changes 
corresponding to simple patterns: 
extended lines, circles,… 

Definition 
•  Image features are local, meaningful and 

detectable parts of an image. 
•  Local implies limited spatial support. 
•  Meaningful implies that they can be of use to 

subsequent operations. 
•  Detectable implies that we can develop an 

algorithm for extracting the position and 
description of these entities given image 
data. 
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Edge detection: Basics 
What is an edge 
•  Intuitively, an edge is a border between two 

regions, each of which have approximately 
uniform brightness. 

•  In an image, edges often arise as the result 
of occluding contours in an image 

–  The two image regions correspond to 
two different surfaces. 

•  Other sources of image edges include 
–  Abrupt changes in surface orientation 
–  Discontinuities in surface reflectance  
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Edge detection: Basics 
What is an edge 
•  Intuitively, an edge is a border between two 

regions, each of which have approximately 
uniform brightness. 

•  In an image, edges often arise as the result 
of occluding contours in an image 

–  The two image regions correspond to 
two different surfaces. 

•  Other sources of image edges include 
–  Abrupt changes in surface orientation 
–  Discontinuities in surface reflectance  

Simple model 
•  Consider a one-dimensional slice through an 

image in the vicinity of an abrupt change in 
image brightness. 

•  Ideally, we might expect to find a step 
change in a plot of brightness vs. position. 
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Edge detection: Basics 
What is an edge 
•  Intuitively, an edge is a border between two 

regions, each of which have approximately 
uniform brightness. 

•  In an image, edges often arise as the result 
of occluding contours in an image 

–  The two image regions correspond to 
two different surfaces. 

•  Other sources of image edges include 
–  Abrupt changes in surface orientation 
–  Discontinuities in surface reflectance  

Simple model 
•  Consider a one-dimensional slice through an 

image in the vicinity of an abrupt change in 
image brightness. 

•  Ideally, we might expect to find a step 
change in a plot of brightness vs. position. 

•  In practice, we find a corrupted version of 
this ideal 

–  Step transition smoothed 
–  Noise transitions superimposed. 

x 

E 

Ideal step edge 
x 

E 

Real step edge 



12 

Edge detection: Basics 
What is an edge 
•  Intuitively, an edge is a border between two 

regions, each of which have approximately 
uniform brightness. 

•  In an image, edges often arise as the result 
of occluding contours in an image 

–  The two image regions correspond to 
two different surfaces. 

•  Other sources of image edges include 
–  Abrupt changes in surface orientation 
–  Discontinuities in surface reflectance  

General approach 
1.  Suppress noise. 
2.  Enhance edges. 
3.  Locate edges. 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
•  Define the unit step function as 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
•  Define the unit step function as 

•  We note that u(z) is just the integral of the 
one-dimensional unit impulse, i.e., 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
•  Define the unit step function as 

•  We note that u(z) is just the integral of the 
one-dimensional unit impulse, i.e., 

•  Suppose that the edge lies along the line 
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Interlude: r,   line parameterization 

Observations 
•  The line intersects the x-axis at  
•  The line intersects the y-axis at  
•  The closest point on the line to the origin is  
•   Parametrically we write  

Exercise  
•  Given a point (x,y), find the nearest point (x0,y0) on the line and its distance. 
•  We define a distance 
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Interlude: r,   line parameterization 

Exercise  
•  Given a point (x,y), find the nearest point (x0,y0) on the line and its distance. 
•  We define a distance 

•  Substituting our parametric expressions for (x0,y0) we obtain 

•  Differentiating WRT s and setting to zero leads to 

•  This result can be substituted back into the parameteric equations for (x0,y0). 
•  To find the distance to the line we compute the differences 

•  And enter into the distance formula to yield 

•  We conclude that the distance of a point from the line is given by the expression of the line 
itself! 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
•  Define the unit step function as 

•  We note that u(z) is just the integral of the 
one-dimensional unit impulse, i.e., 

•  Suppose that the edge lies along the line 

•  Then we write the image brightness as 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
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Edge detection: Differential operators for enhancement 

Formalizing the edge model 
•  Keeping in mind the limitations of the ideal 

step edge model… 
•  We formalize the model as follows. 
•  Define the unit step function as 

•  We note that u(z) is just the integral of the 
one-dimensional unit impulse, i.e., 

•  Suppose that the edge lies along the line 

•  Then we write the image brightness as 
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  

•  We can calculate the partial derivatives 
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  

•  We can calculate the partial derivatives 

•  We define the brightness gradient as 

 and note that it points along the direction of the edge transition. 
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  

•  We can calculate the partial derivatives 

•  We define the brightness gradient as 

 and note that it points along the direction of the edge  
 transition. 
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  

•  We can calculate the partial derivatives 

•  We define the brightness gradient as 

 and note that it points along the direction of the edge transition. 
•  Calculating the squared gradient 

 we see that it has magnitude proportional to the brightness jump as we cross the step. 
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Edge detection: Differential operators for enhancement 
The gradient 
•  Considering our model of the brightness  

•  We can calculate the partial derivatives 

•  We define the brightness gradient as 

 and note that it points along the direction of the edge transition. 
•  Calculating the squared gradient 

 we see that it has magnitude proportional to the brightness jump as we cross the step. 
•  Remarks: 

–  The response of this operator is independent of the edge orientation. 
–  Calculation of the squared gradient is a nonlinear operation. 
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Edge detection: Differential operators for enhancement 

The Laplacian 
•  Now let us consider the second (partial) derivatives 

 where we make use of the notation         for the unit doublet, the derivative of the unit 
impulse (introduced previously). 
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Edge detection: Differential operators for enhancement 

The Laplacian 
•  Keeping in mind that we have 
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Edge detection: Differential operators for enhancement 

The Laplacian 
•  Keeping in mind that we have 

•  We define the Laplacian of the image as 

•  Apparently, this operation will show a “zero-crossing” as we cross an edge. 
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Edge detection: Differential operators for enhancement 

The Laplacian 
•  Keeping in mind that we have 

•  We define the Laplacian of the image as 

•  Apparently, this operation will show a “zero-crossing” as we cross an edge. 
•  We note that (like the squared gradient) 

–  The response of the operator is independent of the edge orientation. 
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Edge detection: Differential operators for enhancement 

The Laplacian 
•  Keeping in mind that we have 

•  We define the Laplacian of the image as 

•  Apparently, this operation will show a “zero-crossing” as we cross an edge. 
•  We note that (like the squared gradient) 

–  The response of the operator is independent of the edge orientation. 
•  We note that (unlike the squared gradient) 

–  The Laplacian is linear 
–  The Laplacian preserves the sign of intensity change across the edge. 
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Edge detection: Discrete approximations 

The gradient 
•  Considering a 2x2 group of pixels 
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Edge detection: Discrete approximations 

The gradient 
•  Considering a 2x2 group of pixels 

•  Using finite differences, we can then estimate the derivatives at the center of this group as 
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Edge detection: Discrete approximations 

The gradient 
•  Considering a 2x2 group of pixels 

•  Using finite differences, we can then estimate the derivatives at the center of this group as 

•  Correspondingly, we calculate the squared gradient estimate as 
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Edge detection: Discrete approximations 

The gradient 
•  Considering a 2x2 group of pixels 

•  Using finite differences, we can then estimate the derivatives at the center of this group as 

•  Correspondingly, we calculate the squared gradient estimate as 

•  Performing this calculation over an image of interest, we obtain large values where the 
image brightness is changing rapidly. 

•  We write the results in a new image array, in which the edges are strongly emphasized. 
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Edge detection: Discrete approximations 
The Laplacian 
•  Considering a 3x3 group of pixels 
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Edge detection: Discrete approximations 
The Laplacian 
•  Considering a 3x3 group of pixels 

•  Using finite differences, we estimate the Laplacian at the center of this group using 
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Edge detection: Discrete approximations 
The Laplacian 
•  Considering a 3x3 group of pixels 

•  Using finite differences, we estimate the Laplacian at the center of this group using 

 to yield 
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Edge detection: Discrete approximations 

The Laplacian 
•  We notice that our discrete Laplacian operation 

 essentially computes a average of the surrounding values and subtracts that of the centre. 
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Edge detection: Discrete approximations 
The Laplacian 
•  We notice that our discrete Laplacian operation 

 essentially computes a average of the surrounding values and subtracts that of the center. 
•  We further note that this operation can be mapped onto our local 3x3 mask as 

  

•  Indeed, we can use this mask as the (discrete) PSF in a (discrete) convolution to perform 
the necessary calculations. 
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Edge detection: Discrete approximations 
The Laplacian 
•  We notice that our discrete Laplacian operation 

 essentially computes a average of the surrounding values and subtracts that of the center. 
•  We further note that this operation can be mapped onto our local 3x3 mask as 

  

•  Indeed, we can use this mask as the (discrete) PSF in a (discrete) convolution to perform 
the necessary calculations. 

•  Recall: Previously we noted that  
–  the Laplacian is linear 
–  And (more generally) differentiation is LSI 
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Edge detection: Example 
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Edge detection: Noise suppression 

Local operators and noise 
•  In practice, application of the discrete operations that we have formulated can lead to poor 

results. 
•  Recalling that differentiation accentuates high frequency components of the image, we 

expect that (high frequency) noise will be accentuated as are the edges of interest. 
•  Our recourse is to rely on the observation that the edges of interest will (typically) have 

frequency components across a wider range of frequencies (especially) lower frequencies 
than the noise. 

 
 



48 

Edge detection: Noise suppression 

Local operators and noise 
•  In practice, application of the discrete operations that we have formulated can lead to poor 

results. 
•  Recalling that differentiation accentuates high frequency components of the image, we 

expect that (high frequency) noise will be accentuated as are the edges of interest. 
•  Our recourse is to rely on the observation that the edges of interest will (typically) have 

frequency components across a wider range of frequencies (especially) lower frequencies 
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•  If this is the case, a useful noise suppression is to convolve the image with a Gaussian PSF 
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Edge detection: Noise suppression 

Local operators and noise 
•  In practice, application of the discrete operations that we have formulated can lead to poor 

results. 
•  Recalling that differentiation accentuates high frequency components of the image, we 

expect that (high frequency) noise will be accentuated as are the edges of interest. 
•  Our recourse is to rely on the observation that the edges of interest will (typically) have 

frequency components across a wider range of frequencies (especially) lower frequencies 
than the noise. 

•  If this is the case, a useful noise suppression is to convolve the image with a Gaussian PSF 

•  Interestingly, recalling that  
–  Derivatives can be implemented as convolutions 
–  Convolution is associative 

 we choose to combine the operations of noise suppression and smoothing via application of 
the PSFs 

 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−= 2

22

2 2
1exp

2
1),(

σπσ
yxyxh

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−−=

2

22

4

2

22

4

2
1exp

2
),(

2
1exp

2
),(

σπσ

σπσ

yxyyxh

yxxyxh

y

x



50 

Edge detection: Noise suppression 

Toward multiresolution analysis 
•  In applying the operators in practice,  

 we frequently will need to select values of the standard deviation so that the resulting PSF 
has a large spatial support. 

•  More generally, we may choose to incorporate the notion of multiresolution processing and 
detect edges using a range of values for the standard deviation. 
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Edge detection: Example 

100 10 1 
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Edge detection: Localization 

A matter of thresholding 
•  Having enhanced the edge loci (hopefully while ameliorating the effects of noise). 
•  We must localize the edges per se. 
•  In essence, this comes down to selecting a threshold for accepting an (enhanced) image 

value as corresponding to an edge (as opposed to noise). 
•  For the gradient magnitude, we seek a decision point above which we will declare a value 

as marking an edge location. 
•  For the Laplacian, we seek a transition magnitude across the zero-crossing above which we 

will declare a value as marking an edge location. 
•  Remark: Having good a priori models of what is an edge and what is noise in a particular 

situation can provide a principled basis for threshold selection. 

count 

edge response 

signal noise 
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Edge detection: Localization 

A matter of thresholding 
•  Having enhanced the edge loci (hopefully while ameliorating the effects of noise). 
•  We must localize the edges per se. 
•  In essence, this comes down to selecting a threshold for accepting an (enhanced) image 

value as corresponding to an edge (as opposed to noise). 
•  For the gradient magnitude, we seek a decision point above which we will declare a value 

as marking an edge location. 
•  For the Laplacian, we seek a transition magnitude across the zero-crossing above which we 

will declare a value as marking an edge location. 
•  Remark: Having good a priori models of what is an edge and what is noise in a particular 

situation can provide a principled basis for threshold selection. 
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Edge detection: Example 

SNR 100 10 1 
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Edge detection: Additional examples presented in lecture 
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Edge detection: Recapitulation 

Model 
•  Edges in the image appear as light/dark transitions; typically with physical meaning. 
•  The ideal step edge. 
•  But as corrupted by noise.  

3 step process 
•  Suppress noise. 
•  Enhance edges. 
•  Locate edges.  
 
Case studies 
•  (Squared) gradient. 
•  Laplacian. 
•  Lots of comparative examples.  
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Outline 

•  Introduction 

•  Edge detection  

•  Corner detection 
 
•  Hough transform 
 
•  Deformable templates  
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Corner detection: Basics 

What is an corner 
•  A corner is an image location where two 

distinct image orientations occur in a local 
region. 

•  Physically, image corners tend to arise for 
similar reasons as edges (e.g., changes of 
reflectance, surface orientation). 

•  Corners are of interest for two main reasons 
1.  Corners provide constrain 2 degrees of 

freedom in a pattern’s location. 
2.  Corners tend to persist across changes in 

viewpoint. 
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Corner detection: Differential analysis 
The gradient 
•  Given that we are concerned with local measures of orientation, one approach is to 

calculate the local spatial derivatives Ex and Ey, using subscript notation for partial 
derivatives 
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Corner detection: Differential analysis 
The gradient 
•  Given that we are concerned with local measures of orientation, one approach is to 

calculate the local spatial derivatives Ex and Ey, using subscript notation for partial 
derivatives 

•  We choose to accumulate these measures over a neighorhood via summation and 
construct the matrix 

•  We appeal to this matrix because it encapsulates the local orientation structure as captured 
by the gradients. 
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Corner detection: Differential analysis 
The gradient 
•  Given that we are concerned with local measures of orientation, one approach is to 

calculate the local spatial derivatives Ex and Ey, using subscript notation for partial 
derivatives 

•  We choose to accumulate these measures over a neighorhood via summation and 
construct the matrix 

•  We appeal to this matrix because it encapsulates the local orientation structure as captured 
by the gradients. 

•  To see this, note that we could choose a vector (x, y) which maximizes  

 as representing the local gradient direction. 
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Corner detection: Differential analysis 
The gradient 
•  Given that we are concerned with local measures of orientation, one approach is to calculate 

the local spatial derivatives Ex and Ey, using subscript notation for partial derivatives 
•  We choose to accumulate these measures over a neighorhood via summation and construct 

the matrix 

•  We appeal to this matrix because it encapsulates the local orientation structure as captured by 
the gradients. 

•  To see this, note that we could choose a vector (x, y) which maximizes  

 as representing the local gradient direction. 
•  We can rewrite this as expression as 
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Corner detection: Differential analysis 
The gradient 
•  Given that we are concerned with local measures of orientation, one approach is to 

calculate the local spatial derivatives Ex and Ey, using subscript notation for partial 
derivatives 

•  We choose to accumulate these measures over a neighorhood via summation and 
construct the matrix 

•  We appeal to this matrix because it encapsulates the local orientation structure as captured 
by the gradients. 

•  To see this, note that we could choose a vector (x, y) which maximizes  

 as representing the local gradient direction. 
•  We can rewrite this as expression as 

  
 which brings us back to our matrix of concern. 
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
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Eigenvectors of C. 
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), 

we are guaranteed that both of the eigenvalues are positive (or perhaps 0 for 
degeneracies). 
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Corner detection: Differential analysis 

Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), we 

are guaranteed that both of the eigenvalues are positive (or perhaps 0 for degeneracies). 
–  Recall the Schwarz inequality:  
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Corner detection: Differential analysis 

Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), we 

are guaranteed that both of the eigenvalues are positive (or perhaps 0 for degeneracies). 
–  Recall the Schwarz inequality:  
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), 

we are guaranteed that both of the eigenvalues are positive (or perhaps 0 for 
degeneracies). 

•  Consider three cases 
1.  If the region of interest is perfectly uniform, then the gradients are identically zero:  
2.  If the region contains and ideal step edge, then there is only one gradient direction: 
3.  If the region contains two orientations, then there are two gradient directions:  
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), 

we are guaranteed that both of the eigenvalues are positive (or perhaps 0 for 
degeneracies). 

•  Consider three cases 
1.  If the region of interest is perfectly uniform, then the gradients are identically zero:  
2.  If the region contains and ideal step edge, then there is only one gradient direction: 
3.  If the region contains two orientations, then there are two gradient directions:  
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), 

we are guaranteed that both of the eigenvalues are positive (or perhaps 0 for 
degeneracies). 

•  Consider three cases 
1.  If the region of interest is perfectly uniform, then the gradients are identically zero:  
2.  If the region contains and ideal step edge, then there is only one gradient direction: 
3.  If the region contains two orientations, then there are two gradient directions:  
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Corner detection: Differential analysis 
Eigenvalues 
•  Because the matrix 

 is symmetric, we can diagonalize it by a rotation of the coordinates axes to yield a form 
 
 
 
 

 where             are the eigenvalues of the matrix. 
•  Remark: Owing  to the fact that our matrix is positive definite (e.g., the determinant is >0), 

we are guaranteed that both of the eigenvalues are positive. 
•  Consider three cases 
1.  If the region of interest is perfectly uniform, then the gradients are identically zero:  
2.  If the region contains and ideal step edge, then there is only one gradient direction: 
3.  If the region contains two orientations, then there are two gradient directions:  
•  In conclusion 

–  The eigenvalues capture edge strength. 
–  The eigenvectors capture edge direction. 
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Corner detection: Differential analysis 

What we have learned 
•  For the summed gradient matrix, C 

–  The eigenvectors capture edge direction. 
–  The eigenvalues capture edge strength. 

 
Resulting approach 
•  Detection of corners and lines 

–  For each point in an image of interest 

–  Construct the 2x2 summed image gradient matrix, C 
–  Calculate the eigenvalues of C 
–  If the eigenvalues are similar (nonzero) magnitude, then a corner is marked. 
–  Also, when only one eigenvalues is nonzero, then a line can be marked. 
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Corner detection: Exploiting local orientation estimates 

An alternative image measurement 
•  Previously, we developed the ability to decompose images according to their local 

orientation structure 
–  E.g., via convolution with Gabor filters 

•  As an application, we noted the abililty to determine the locally dominant orientation and its 
magnitude 

–  E.g., by scanning across the oriented bandpass decomposition for (locally) largest 
magnitudes  

Source image 
(natural terrain) 

Locally dominant orientation 
(shown as normal vector) 

Locally dominant scale 
(darker intensity for finer scale) 
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Corner detection: Exploiting local orientation estimates 

An alternative image measurement 
•  Previously, we developed the ability to decompose images according to their local 

orientation structure 
–  E.g., via convolution with Gabor filters 

•  As an application, we noted the abililty to determine the locally dominant orientation and its 
magnitude 

–  E.g., by scanning across the oriented bandpass decomposition for (locally) largest 
magnitudes  

•  We can exploit that analysis in the present context 
–  Rather than construct our corner (and line) detection matrix with image gradients 
–  Use the locally dominant orientation magnitudes as projected on the coordinate axes. 

•  Let 
–  The dominant orientation be recovered as (cos w, sin w) 
–  The corresponding response magnitude be given as r 
–  Then replace Ex with r (cos w, sin w).(1,0) = r cos w 
–  And replace Ey with r (cos w, sin w).(0,1) = r sin w 

•  This formulation has the advantage of uniformity of  
 representation across levels of our system. 
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Corner detection: Exploiting local orientation estimates 

An alternative image measurement 
•  Previously, we developed the ability to decompose images according to their local 

orientation structure 
–  E.g., via convolution with Gabor filters 

•  As an application, we noted the abililty to determine the locally dominant orientation and its 
magnitude 

–  E.g., by scanning across the oriented bandpass decomposition for (locally) largest 
magnitudes  

•  We can exploit that analysis in the present context 
–  Rather than construct our corner (and line) detection matrix with image gradients 
–  Use the locally dominant orientation magnitudes as projected on the coordinate axes. 

•  Let 
–  The dominant orientation be recovered as (cos w, sin w) 
–  The corresponding response magnitude be given as r 
–  Then replace Ex with r (cos w, sin w).(1,0) = r cos w 
–  And replace Ey with r (cos w, sin w).(0,1) = r sin w 

•  This formulation has the advantage of uniformity of  
 representation across levels of our system. ⎟
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Corner/line detection: Example 

Source image 
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Corner/line detection: Example 

Source image 

Filtered response magnitude at 4 orientations 
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Corner/line detection: Example 

Source image 

Filtered response magnitude at 4 orientations 

Detected lines Detected corners 



80 

Corner detection: Recapitulation 

Model 
•  Image loci where multiple orientations are present. 
•  Local orientation structure captured by summed gradient matrix. 
•  Approach also captures line structure. 

3 step process 
•  Recover local estimates of image orientation structure: direction and magnitude 
•  Accumulate local measures of orientation structure into summed gradient matrix. 
•  Perform eigenvalue decomposition. 
 
Case studies 
•  Image gradient based measurements 
•  More general oriented filtering based measurements 
•  Natural image example.  
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Outline 

•  Introduction 

•  Edge detection  

•  Corner detection  

•  Hough transform 

•  Deformable templates  
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Detecting contour features: Beyond simplest features 

Motivation 
•  So far, the features of interest (edges, 

corners) have been defined on a purely local 
basis. 

•  Now consider configurations of contours that 
correspond to more complicated geometries 

–  Extended lines 
–  Circles 
–  Simply parameterized objects 

•  Two types of approach covered 
1.  First extract edge features; then fit the 

model. 
2.  Fit the model more directly to an (enhanced) 

image. 
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Motivation 
•  So far, the features of interest (edges, 

corners) have been defined on a purely local 
basis. 

•  Now consider configurations of contours that 
correspond to more complicated geometries 

–  Extended lines 
–  Circles 
–  Simply parameterized objects 

•  Two types of approach covered 
1.  First extract edge features; then fit the 
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image. 
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Hough transform: Introduction 

Basic idea 
•  The Hough transform was introduced to 

detect patterns of points in binary images. 
•  It thus corresponds to the class of 

techniques that assume edge (or some other 
primitive detection) already has marked 
points of interest in an image. 

•  The key idea:  
–  transform a potentially difficult problem: 

Detection of a relatively complex 
pattern in the image domain 

–  into a simpler problem of peak detection 
in the space of the pattern’s 
parameters 
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Hough transform: Introduction 

Basic idea 
•  The Hough transform was introduced to 

detect patterns of points in binary images. 
•  It thus corresponds to the class of 

techniques that assume edge (or some other 
primitive detection) already has marked 
points of interest in an image. 

•  The key idea:  
–  transform a potentially difficult problem: 

Detection of a relatively complex 
pattern in the image domain 

–  into a simpler problem of peak detection 
in the space of the pattern’s 
parameters 

Example 
•  Detection of lines 

–  Suppose we represent a line as 
 y = mx +b 

–  Move from the space of image position 
(x,y) 

–  To the space of line parameters (m,b). 

x 

y 

m 

b 

y=(1)x+2 

(1,2) 
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Hough transform: Line detection 

A closer look (in 2 parts) 
1.  Transform line detection into line intersection 
•  Any line y = mx + b is uniquely identified by 

a parameter pair (m,b). 
•  The line is represented by a point in the 

(m,b) plane (parameter space). 

x 

y 

m 

b 

0 

0 

30 

30 
y=2x +2 

(2,2) 
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Hough transform: Line detection 

A closer look (in 2 parts) 
1.  Transform line detection into line intersection 
•  Any line y = mx + b is uniquely identified by 

a parameter pair (m,b). 
•  The line is represented by a point in the 

(m,b) plane (parameter space). 
•  Any point (x,y) in the image corresponds to a 

line b = x(-m) + y in parameter space 
–  As m and b vary, this captures all line 

through (x,y). 
x 

y 

m 

b 

0 

0 

30 

30 
y=2x +2 

(2,2) 

(10,22) 

b=-10m+22 
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Hough transform: Line detection 

A closer look (in 2 parts) 
1.  Transform line detection into line intersection 
•  Any line y = mx + b is uniquely identified by 

a parameter pair (m,b). 
•  The line is represented by a point in the 

(m,b) plane (parameter space). 
•  Any point (x,y) in the image corresponds to a 

line b = x(-m) + y in parameter space 
–  As m and b vary, this captures all line 

through (x,y). 
x 

y 

m 

b 

0 

0 

30 

30 
y=2x +2 

(2,2) 

(10,22) 

b=-10m+22 

y=0x+22 

(0,22) 
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Hough transform: Line detection 

A closer look (in 2 parts) 
1.  Transform line detection into line intersection 
•  Any line y = mx + b is uniquely identified by 

a parameter pair (m,b). 
•  The line is represented by a point in the 

(m,b) plane (parameter space). 
•  Any point (x,y) in the image corresponds to a 

line b = x(-m) + y in parameter space 
–  As m and b vary, this captures all line 

through (x,y). 
•  So, a line defined by N collinear image 

points is identified in parameter space by the 
intersection of the N associated lines in 
parameter space. 

x 

y 

m 

b 

0 

0 

30 

30 
y=2x +2 

(2,2) 

(10,22) 

b=-10m+22 

(30,62) 

b=-30m+62 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 

m 

b 

0 

0 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 
•  For each image point p, increment all counters 

on the corresponding line in parameter space. 

m 

b 

0 

0 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 
•  For each image point p, increment all counters 

on the corresponding line in parameter space. 

m 

b 

0 

0 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 
•  For each image point p, increment all counters 

on the corresponding line in parameter space. 

m 

b 

0 

0 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 
•  For each image point p, increment all counters 

on the corresponding line in parameter space. 
•  Note that for N image points, the 

corresponding N lines in parameter space 
must go through the “true” value of (m,b). 

•  So, the line is identified with the parameters 
corresponding to the largest count, c(m,b). 

m 

b 

0 

0 
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Hough transform: Line detection 

A closer look (in 2 parts) 
2.  Transform line intersection into peak detection 
•  Divide the (m,b)-plane into a finite grid of cells. 
•  Associate a counter c(m,b), with each cell; 

initialize it to 0. 
•  For each image point p, increment all counters 

on the corresponding line in parameter space. 
•  Note that for N image points, the 

corresponding N lines in parameter space 
must go through the “true” value of (m,b). 

•  So, the line is identified with the parameters 
corresponding to the largest count, c(m,b). 

Recap: The 2 parts 
1.  Transform line detection into line intersection 
2.  Transform line intersection into peak detection 

m 

b 

0 

0 
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Hough transform: Line detection 

A few practical considerations 
•  In theory, the parameter values can take on any real value. 

–  Must discretize while weighting precision vs. storage/processing requirements. 
•  Real images will contain pixels “incorrectly” marked as edges due to noise 

–  Must select a threshold on a minimally acceptable value for C(m,b). 
•  There may be multiple lines present in an image 

–  The Hough can simultaneously detect all of these by returning all (m,b) pairs whose 
counter exceeds the threshold. 
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Hough transform: Line detection 

Procedure 
•  Input: Binary image, I(i,j) pixels marked 1 of edge has been detection; else 0. 
•  Output: (m,b) detected line parameters. 
1.  Discretize the parameter space (m,b) using sampling intervals dm, db, which yield precision 

suited to application, yet reasonable storage requirements; let the resulting number of 
values for b and m be B and M, respectively. 

2.  Let C(m,b) be an integer array of counters; initialize all elements to 0. 
3.  For each pixel I(i,j)=1,  

  For each m=1..M  
   i)   Let b’ = j – m i 
   ii) Find the index b closest to b’. 
   iii) Increment C(m,b) by 1. 

4.  Return all (m,b) where C(m,b)> t; t a threshold value. 
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Hough transform: Generalization 

The generalized Hough transform 
•  We start by assuming that we are given a set of edge points  
•  Suppose we represent a contour geometry of interest as a parametric expression of the 

form 

 with p a parameter vector. 

niyx ii ..1),,( =

0)p,,( =ii yxg
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Hough transform: Generalization 

The generalized Hough transform 
•  We start by assuming that we are given a set of edge points  
•  Suppose we represent a contour geometry of interest as a parametric expression of the 

form 

 with p a parameter vector. 

niyx ii ..1),,( =

0)p,,( =ii yxg e.g., for line: mx+b-y=0 
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Hough transform: Generalization 

The generalized Hough transform 
•  We start by assuming that we are given a set of edge points  
•  Suppose we represent a contour geometry of interest as a parametric expression of the 

form 

 with p a parameter vector. 
•  Let the characteristic function of g be  
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Hough transform: Generalization 

The generalized Hough transform 
•  We start by assuming that we are given a set of edge points  
•  Suppose we represent a contour geometry of interest as a parametric expression of the 

form 

 with p a parameter vector. 
•  Let the characteristic function of g be 

•  Then we define the (generalized) Hough transform as 

 

niyx ii ..1),,( =

0)p,,( =ii yxg

⎭
⎬
⎫

⎩
⎨
⎧ =

=
otherwise,0

0),,(,1
),,(

p
p ii

ii

yxg
yxh

∑
=

=
n

i
ii yxhH

1

),,()( pp



102 

Hough transform: Generalization 

The generalized Hough transform 
•  We start by assuming that we are given a set of edge points  
•  Suppose we represent a contour geometry of interest as a parametric expression of the 

form 

 with p a parameter vector. 
•  Let 

•  Then we define the (generalized) Hough transform as 

 
Example 
•  For a circle, we might let 
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Hough transform: Examples 
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Hough transform: Examples 
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Hough transform: Remarks 

Pluses 
•  The Hough can convert difficult model fitting problems into a simple histogramming 

operation. 
•  For a given image, it allows for simultaneous detection of multiple instances of a model. 
•  It is robust, to outliers in the data (marked edge pixels).  
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Hough transform: Remarks 

Pluses 
•  The Hough can convert difficult model fitting problems into a simple histogramming 

operation. 
•  For a given image, it allows for simultaneous detection of multiple instances of a model. 
•  It is robust, to outliers in the data (marked edge pixels).  

Minuses 
•  The required space can be large for even a moderate number of parameters, if precision is 

required. 
•  The time required in peak search grows rapidly with the number of parameters. 
•  In depending on detected edge pixels, it has no recourse to the original image data. 
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Outline 

•  Introduction 

•  Edge detection  

•  Corner detection  

•  Hough transform 

•  Deformable templates  

 



108 

Deformable templates: Basic idea 

Motivation 
•  Recent thinking has questioned the approach 

of fitting contour models in two discrete stages 
(first extract generic interesting points, then fit 
the model). 

•  At issue is the fact that much of the image 
data is discarded without knowing exactly 
what it will be used for. 

•  Instead, consider fitting a parameterized 
model more directly to the image data. 
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Deformable templates: Basic idea 

Motivation 
•  Recent thinking has questioned the approach 

of fitting contour models in two discrete stages 
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the model). 
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enhanced pixels. 
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Deformable templates: Formalization 

Template model 
•  For illustration, we consider a simple contour model, that of a parabolic segment. 

  
 

 with s varying from 0 to 1. 
•  This contour model varies in shape (deforms) as we vary the parameters a, b, c, d, e, f. 
•  We will seek to vary the parameters so that the final shape lies along high contrast image 

points. 
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Deformable templates: Formalization 
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Deformable templates: Formalization 
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Deformable templates: Formalization 

Template model 
•  For illustration, we consider a simple contour model, that of a parabolic segment. 
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Deformable templates: Formalization 

Template model 
•  For illustration, we consider a simple contour model, that of a parabolic segment. 
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Deformable templates: Formalization 

Template model 
•  For illustration, we consider a simple contour model, that of a parabolic segment. 

  
 

 with s varying from 0 to 1. 
•  This contour model varies in shape (deforms) as we vary the parameters a, b, c, d, e, f. 
•  We will seek to vary the parameters so that the final shape lies along high contrast image 

points. 
Energy image 
•  We seek to enhance those portions of the image that have high contrast contours. 
•  Various approaches could be considered (e.g., perhaps most simply, image gradient 

magnitude). 
•  We choose to use an image derived by taking the magnitude of the strongest response in 

our oriented bandpass image decomposition (as derived from Gabor filters). 
•  We refer to this image, I, as the energy image. 

–  It has most energy along high contrast contours. 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 

defined by the template 
–  Let  

–  We seek 

•  To solve, we adjust the parameter values iteratively, by moving in parameter space along 
the gradient direction until a local maximum is reached. 

–  A procedure known as gradient ascent 

⎥
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Deformable templates: Formalization 

Fitting the model 
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Deformable templates: Formalization 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  We seek to adjust automatically the template parameters so that it lies along the largest 

values in the energy. 
•  So, we seek to maximize the total of the energy image values that lie along the contour 
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Deformable templates: Formalization 

Fitting the model (cont.) 
•  For our specific template parameterization 

  

 at each iteration we increment, e.g., a according to 
 
 
 

a
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Deformable templates: Formalization 
Fitting the model (cont.) 
•  For our specific template parameterization 

  
 at each iteration we increment, e.g., a according to 

 
 
 
•  More specifically, recalling that 

 and applying the chain rule yields 
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Deformable templates: Formalization 
Fitting the model (cont.) 
•  For our specific template parameterization 

  
 at each iteration we increment, e.g., b according to 

 
 
 
•  More specifically, recalling that 

 and applying the chain rule yields 
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Deformable templates: Formalization 
Fitting the model (cont.) 
•  For our specific template parameterization 

  
 at each iteration we increment, e.g., c according to 
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Deformable templates: Formalization 
Fitting the model (cont.) 
•  For our specific template parameterization 

  
 at each iteration we increment, e.g., c according to 

 
 
 
•  More specifically, recalling that 

 and applying the chain rule yields 

  
 or 

 

c
Icccc totaloldnew

∂

∂
=ΔΔ+= ;

ds
c
x

x
Ic ∫ ∂

∂

∂

∂
=Δ
1

0

ds
x
Ic ∫ ∂
∂

=Δ
1

0

fesdssy
cbsassx
++=

++=
2

2

)(
)(

⎥
⎦

⎤
⎢
⎣

⎡
= ∫

1

0

),( dsyxIItotal

And similarly for 
d, e and f. 
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Deformable templates: Key components 

Template model 
•  Parameterized contour model. 
•  For example, parabolic segment. 

Image representation 
•  Energy image that enhances high contrast (strong light/dark transition) loci in the image 
•  For example, maximal magnitude of response in oriented bandpass image representation. 

Fitting the model 
•  The model is initialized with a starting set of parameter values, perhaps provided by hand. 
•  Adjust via gradient ascent the template parameters so that it lies along the largest values in 

the energy. 
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Deformable templates: Examples 
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Deformable templates: Examples 
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Deformable templates: Remarks 

Pluses 
•  Make use of all the available image data. 
•  Can accommodate fairly complex contour models. 
•  Can be intuitive in HCI. 
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Deformable templates: Remarks 

Pluses 
•  Make use of all the available image data. 
•  Can accommodate fairly complex contour models. 
•  Can be intuitive in HCI. 

Minuses 
•  The iterative fit can be slow to converge. 
•  Prone to local minima. 
•  Model construction can require careful design. 
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Summary 

•  Introduction 

•  Edge detection  

•  Corner detection  

•  Hough transform 

•  Deformable templates  

 


