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Introduction: Motivation and approach 

Representation is key to enabling 
understanding 

•  It is often useful to transform an image in 
some way as a preliminary step in our 
analysis. 

•  We seek to produce a new image that is more 
amenable to further manipulation. 

Approach 
•  Introduce  tools with certain analytic 

properties to allow guidance by theory. 
•  Demonstrate the utility of the concept of 

spatial frequency. 

Remarks 
•  Much of what we will cover in this unit  would 

be found as part of a course on image 
processing. 

•  Moreover, many of the tools developed are 
straightforward extensions of those used in 
classical 1D signal representation/analysis. 
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Basics: Linear, shift invariant (LSI) systems 

Intuition 
•  Consider 

–  An ideal, in focus image, f 
–  Its out of focus counterpart, g 

•  Suppose the light is changed so that 
–  the irradiance in f is doubled, 
–  then so is the irradiance in g 

doubled. 
•  Suppose the imaging system is moved so 

that 
–  the pattern in f is shifted, 
–  then the pattern in g is similarly 

shifted. 
•  The transformation from the ideal to the 

out of focus system is said to be a linear, 
shift invariant operation. 

f g 
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Basics: Linear, shift invariant (LSI) systems 

Consider a 2D system 
•  Let the system produce output g1(x,y) when given f1(x,y) 
•  Let the system produce output g2(x,y) when given f2(x,y) 

 
A system is linear 
•  if the output (a g1(x,y) + b g2(x,y)) is produced when the input is (a f1(x,y) + b f2(x,y)). 

 
Remarks 
•  Most real systems are limited in their maximum response and thus cannot be strictly linear. 
•  Irradiance, power/unit area, cannot be negative; so, visual input is restricted to be 

nonnegative. 
 
 

f2 

f1 g1 

g2 

a f1(x,y) + b f2(x,y) a g1(x,y) + b g2(x,y) 
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Basics: Linear, shift invariant (LSI) systems 

Example revisited 
•  Consider 

–  An ideal, in focus image, f(x,y) 
–  Its out of focus counterpart, g(x,y) 
–  The “system” is defocus. 

•  Suppose the light is changed so that 
–  the irradiance in f  is doubled  

 à the system input is 1 f(x,y) + 1 f(x,y) 
–  then the irradiance in g doubled  

 à the system output is 1 g(x,y) + 1 g(x,y). 
–  The system is linear. 

•  Suppose the imaging system is moved so that 
–  the pattern in f is shifted 

 à the system input is f(x-a, y-b) 
–  then the pattern in g is similarly shifted 

 à the system output is g(x-a, y-b). 
–  The system is shift invariant. 

f g 
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Basics: Smoothing via local averaging  

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
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Basics: Smoothing via local averaging 
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
•  We begin by considering a function:  
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
•  And we multiply it with values of another function: 
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
•  But we do this at various offsets: 
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
•  and multiply by infinitesimal support elements: 
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation 

 
Formalization 
•  Finally, we sum up (integrate):  
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Basics: Convolution 

Definition 
•  Consider a system that, given f(x,y) as input, produces output 

•  We say that g is the convolution of f and h, written as g=f*h. 
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Basics: Convolution 

Definition 
•  Consider a system that, given f(x,y) as input, produces output 

•  We say that g is the convolution of f and h, written as g=f*h. 

Convolution is linear 
•  Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)). 
•  Follows from rule for integrating the product of a constant and a function 
•  and the rule for integrating the sum of two functions. 
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Basics: Convolution 
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Basics: Convolution 

Definition 
•  Consider a system that, given f(x,y) as input, produces output 

•  We say that g is the convolution of f and h, written as g=f*h. 

Convolution is linear 
•  Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)). 
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The converse also is true 
•  Any linear shift invariant system performs a convolution. 
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Basics: Another convolution example 

Graphic depiction                                                                 Numerical calculation 
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1   (1)(-1)          1/2

0 -1   (2)(1)
0 (3/2)(0)
1   (1)(-1) 1

1 -1   (2)(1)
0   (2)(0)
1 (3/2)(-1)          1/2

2 -1   (2)(1)
0   (2)(0)
1   (2)(-1) 0

f 

h 

f*h 

∫
∞

∞−
− dsshsxf )()(
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Basics: More fun (?) facts about convolution 

Convolution is commutative  
•  That is a*b = b*a 

 

f g h 

g h f 
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

•  Consider the change of variables (so that h “appears shifted” rather than f) 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(

duduxxu −=−=−= ξξξ , since x is constant here 
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

•  Consider the change of variables (so that h “appears shifted” rather than f) 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(

dvdvyyv
duduxxu
−=−=−=

−=−=−=

ηηη

ξξξ , since x is constant here 

, since y is constant here 
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

•  Consider the change of variables (so that h “appears shifted” rather than f) 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(

dvdvyyv
duduxxu
−=−=−=

−=−=−=

ηηη

ξξξ , since x is constant here 

, since y is constant here 

∞→−∞→−∞→∞→

∞→−∞→−∞→∞→

vv
uu
,,
,,

ηη

ξξ

as
as
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

•  Consider the change of variables (so that h “appears shifted” rather than f) 

  
 which yields 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(

dvdvyyv
duduxxu
−=−=−=

−=−=−=

ηηη

ξξξ , since x is constant here 

, since y is constant here 

∞→−∞→−∞→∞→

∞→−∞→−∞→∞→

vv
uu
,,
,,

ηη

ξξ

as
as

∫ ∫
−∞

∞

−∞

∞
−−−−= ))()(,(),(),(*),( dvduvyuxhvufyxhyxf
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  By definition 

•  Consider the change of variables (so that h “appears shifted” rather than f) 

  
 which yields 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxhyxf ),(),(),(*),(

dvdvyyv
duduxxu
−=−=−=

−=−=−=

ηηη

ξξξ , since x is constant here 

, since y is constant here 

∞→−∞→−∞→∞→

∞→−∞→−∞→∞→

vv
uu
,,
,,

ηη

ξξ

as
as

∫ ∫
−∞

∞

−∞

∞
−−−−= ))()(,(),(),(*),( dvduvyuxhvufyxhyxf
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 
∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 

•  So we can write 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=

∫ ∫
∞

∞−

∞

∞− ⎥⎦
⎤

⎢⎣
⎡ −−−−= dudvvyuxhvufyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 

•  So we can write 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=

∫ ∫
∞

∞−

∞

∞− ⎥⎦
⎤

⎢⎣
⎡ −−−−= dudvvyuxhvufyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 

•  So we can write 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=

∫ ∫
∞

∞−

∞

∞−
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 

•  So we can write 

•  Since the order of multiplication inside the integral does not matter we rewrite as 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=

∫ ∫
∞

∞−

∞

∞−
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

∫ ∫
∞

∞−

∞

∞−
−−= dudvvufvyuxhyxhyxf ),(),(),(*),(
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Basics: More fun (?) facts about convolution 
Convolution is commutative  
•  We have 

•  Recall that 

•  So we can write 

•  Since the order of multiplication inside the integral does not matter we rewrite as 

•  By the definition of convolution, we conclude that 

∫ ∫
−∞

∞

−∞

∞
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

[ ] [ ]∫∫
∞

∞−

−∞

∞
−=

∫ ∫
∞

∞−

∞

∞−
−−= dudvvyuxhvufyxhyxf ),(),(),(*),(

∫ ∫
∞

∞−

∞

∞−
−−= dudvvufvyuxhyxhyxf ),(),(),(*),(

),(*),(),(),(),(*),( yxfyxhdudvvufvyuxhyxhyxf =−−= ∫ ∫
∞

∞−

∞

∞−
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Basics: More fun (?) facts about convolution 

Convolution is commutative  
•  That is a*b = b*a 

 

f g h 

g h f 
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Basics: More fun (?) facts about convolution 

Convolution is commutative  
•  That is a*b = b*a 

 
Convolution is associative 
•  That is (a*b)*c = a*(b*c) 

 
 
 

f g h 

g h f 

f h1 h2 g 

f h1*h2 g 
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Basics: Overview 

Linear, shift invariant systems 
 
Convolution 
 
The point-spread function 
 
The modulation transfer function 
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 
•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  
•  More formally, it is the limit as              of a series of square pulses of width        in x and y 

and height  
 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
0→ε ε2

)4/(1 2ε
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 
•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  
•  More formally, it is the limit as              of a series of square pulses of width        in x and y 

and height  
 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
0→ε ε2

)4/(1 2ε
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 
•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  
•  More formally, it is the limit as              of a series of square pulses of width        in x and y 

and height  
 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
0→ε ε2

)4/(1 2ε
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 
•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  

 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 
•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  
•  More formally, it is the limit as              of a series of square pulses of width        in x and y 

and height  
 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
0→ε ε2

)4/(1 2ε

x 

y 
),( yxδ

ε2 ε2

)4/(1 2ε

Remark 
•  The total “mass” of                is ),( yxδ

1)4/1)(2)(2( 2 =εεε
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Basics: The point spread function 

Relate h to an observable 
•  Given arbitrary h(x,y), can we always find an f(x,y) that produces h(x,y) as output? 

•  Apparently, the desired f must be zero at all points, except the origin. 

•  Further, we will let the integral of this function over any region including the origin be 1. 
•  We call the desired function the unit impulse and denote it as  
•  More formally, it is the limit as              of a series of square pulses of width        in x and y 

and height  
 
The sifting property 
•  We note that 

 

∫ ∫
∞

∞−

∞

∞−
−−= ηξηξηξ ddhyxfyxh ),(),(),(

),( yxδ
0→ε ε2

)4/(1 2ε

)0,0(),(),( hdxdyyxhyx =∫ ∫
∞

∞−

∞

∞−
δ
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Definition 
•  Considered as an image, the unit impulse is black everywhere, except at the origin where 

there is a bright point of light. 
•  So h(x,y) tells how the systems blurs or spreads out a point of light. 

 

Basics: The point spread function 
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Definition 
•  Considered as an image, the unit impulse is black everywhere, except at the origin where 

there is a bright point of light. 
•  So h(x,y) tells how the systems blurs or spreads out a point of light. 
•  As pictorial examples 

•  We call h the point spread function. 

Basics: The point spread function 

h(x,y) corresponding to our smoothing  
via local averaging example the unit impulse ),( yxδ
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Definition 
•  Considered as an image, the unit impulse is black everywhere, except at the origin where 

there is a bright point of light. 
•  So h(x,y) tells how the systems blurs or spreads out a point of light. 
•  As pictorial examples 

•  We call h the point spread function. 

Basics: The point spread function 

h(x,y) corresponding to our smoothing  
via local averaging example the unit impulse ),( yxδ
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Another example revisited 
•  We can take the 2D version of our 1, 0, -1 convolution example to have a point spread 

function, h(x,y),  with the appearance 

•  Apparently this h spreads out a single point of light as pair of opposite polarity points.  

Basics: The point spread function 
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Basics: Overview 

Linear, shift invariant systems 
 
Convolution 
 
The point-spread function 
 
The modulation transfer function 
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Basics: The modulation transfer function (MTF) 

Eigenfunctions 
•  An eigenfunction of a system is one that is simply multiplied by another factor in the output. 

•  We think of this as analogous to the case of eigenvectors from linear algebra.  
 

 
 
 

f(w) A(w) f(w) 
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Basics: The modulation transfer function (MTF) 

Eigenfunctions 
•  An eigenfunction of a system is one that is simply multiplied by another factor in the output. 

•  We think of this as analogous to the case of eigenvectors from linear algebra.  
 
Remark 
•  Notation 

  
 

 with the imaginary number 

 
 
 

f(w) A(w) f(w) 

)exp(iwteiwt =

1−=i
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Basics: The modulation transfer function (MTF) 

Eigenfunctions 
•  An eigenfunction of a system is one that is simply multiplied by another factor in the output. 

•  We think of this as analogous to the case of eigenvectors from linear algebra.  
•  For the case of 1D LSI systems we find that exp(iwt) is an eigenfunction of convolution. 

•  Here A(w) is the (possibly complex) factor by which the input signal is multiplied. 
•  So, from the input exponential we obtain another exponential; but, scaled and shifted in 

phase. 
 
 

 
 
 

f(w) A(w) f(w) 

exp(iwt) A(w) exp(iwt) 
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Basics: The modulation transfer function (MTF) 

Eigenfunctions 
•  An eigenfunction of a system is one that is simply multiplied by another factor in the output. 

•  We think of this as analogous to the case of eigenvectors from linear algebra.  
•  For the case of 1D LSI systems we find that exp(iwt) is an eigenfunction of convolution. 

•  Here A(w) is the (possibly complex) factor by which the input signal is multiplied. 
•  So, from the input exponential we obtain another exponential; but, scaled and shifted in 

phase. 
 
 

 
 
 

f(w) A(w) f(w) 

exp(iwt) A(w) exp(iwt) 

)]}([exp{)(
)exp()](exp[)()exp()(

)()];(exp[)()(

wwtiwS
iwtwiwSiwtwA

scalingwSwiwSwA

ϕ

ϕ

ϕ

+=

=⇒

≡=
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Basics: The modulation transfer function (MTF) 

Eigenfunctions 
•  An eigenfunction of a system is one that is simply multiplied by another factor in the output. 

•  We think of this as analogous to the case of eigenvectors from linear algebra.  
•  For the case of 1D LSI systems we find that exp(iwt) is an eigenfunction of convolution. 

•  Here A(w) is the (possibly complex) factor by which the input signal is multiplied. 
•  So, from the input exponential we obtain another exponential; but, scaled and shifted in 

phase. 
 
Frequency 
•  We call w the frequency (or wave number) of the eigenfunction. 
•  In practice, we use real waveforms, like cos(wt) and sin(wt), with the relationship 
                                                   exp(iwt)=cos(wt) + i sin(wt) 

 which is known as Euler’s relation. 
•  The complex exponential is used in derivations simply because it provides a compact 

notation. 
 

 
 
 

f(w) A(w) f(w) 

exp(iwt) A(w) exp(iwt) 
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Basics: The modulation transfer function (MTF) 
1D frequency 
•  We consider functions of the form 

  f(x) = Acos(ux + d) 
 where 
 A is the amplitude 
 u is the (angular) frequency 
 d is the phase constant. 

•  Notice that the function repeats its value 
when ux + d  increases by      . 

•  For example, when d = 0, the maxima 
and minima occur when             , for k an 
integer. 

•  The wavelength (period),       , is defined 
by calculating when the argument to cos 
at              is          plus that at x 

•  The shift in the peak (from 0) is  
                d/u 

e.g., cos[u(-d/u) + d] = cos[0] = 1 

 
 

πkux =
x 

f(x) 

A 

d/u 

u
duxdxu

/2
2)(

πλ

πλ

=⇒

++=++

u/2π

π2

λ

λ+x π2
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Basics: The modulation transfer function (MTF) 

2D Eigenfunctions 
•  For the case of 2D LSI systems we find that the input f(x,y) = exp(i(ux+vy)) yields output 

  
  

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
−+−= ηξηξηξ ddhyvxuiyxg ),()]}()([exp{),(
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Basics: The modulation transfer function (MTF) 

2D Eigenfunctions 
•  For the case of 2D LSI systems we find that the input f(x,y) = exp(i(ux+vy)) yields output 

  
 or (*) 

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
−+−= ηξηξηξ ddhyvxuiyxg ),()]}()([exp{),(

∫ ∫
∞

∞−

∞

∞−
+−+= ηξηξηξ ddhvuivyuxiyxg ),()](exp[)](exp[),(

* Recall 

)](exp[)](exp[)]}()([exp{
)exp()exp()exp(

ηξηξ vuivyuxiyvxui
baba

+−+=−+−⇒

=+
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Basics: The modulation transfer function (MTF) 

2D Eigenfunctions 
•  For the case of 2D LSI systems we find that the input f(x,y) = exp(i(ux+vy)) yields output 

  
 or (*) 

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
−+−= ηξηξηξ ddhyvxuiyxg ),()]}()([exp{),(

∫ ∫
∞

∞−

∞

∞−
+−+= ηξηξηξ ddhvuivyuxiyxg ),()](exp[)](exp[),(

* Recall 

)](exp[)](exp[)]}()([exp{
)exp()exp()exp(

ηξηξ vuivyuxiyvxui
baba

+−+=−+−⇒

=+
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Basics: The modulation transfer function (MTF) 

2D Eigenfunctions 
•  For the case of 2D LSI systems we find that the input f(x,y) = exp(i(ux+vy)) yields output 

  
 or 

•  The double integral on the right is a function of u and v only 
•  So, the output, g(x,y), is just a scaled, possibly shifted, version of the input, f(x,y) 

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
−+−= ηξηξηξ ddhyvxuiyxg ),()]}()([exp{),(

∫ ∫
∞

∞−

∞

∞−
+−+= ηξηξηξ ddhvuivyuxiyxg ),()](exp[)](exp[),(

∫ ∫
∞

∞−

∞

∞−
+−= ηξηξηξ ddhvuiyxfyxg ),()](exp[),(),(
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Basics: The modulation transfer function (MTF) 

2D Eigenfunctions 
•  For the case of 2D LSI systems we find that the input f(x,y) = exp(i(ux+vy)) yields output 

  
 or 

•  The double integral on the right is a function of u and v only 
•  So, the output, g(x,y), is just a scaled, possibly shifted, version of the input, f(x,y) 

•  We conclude that exp[i(ux+vy)] is an eigenfunction in 2D. 
 
 
 
 

exp[i(ux+vy)] A(u,v) exp[i(ux+vy)] 

∫ ∫
∞

∞−

∞

∞−
−+−= ηξηξηξ ddhyvxuiyxg ),()]}()([exp{),(

∫ ∫
∞

∞−

∞

∞−
+−+= ηξηξηξ ddhvuivyuxiyxg ),()](exp[)](exp[),(

∫ ∫
∞

∞−

∞

∞−
+−= ηξηξηξ ddhvuiyxfyxg ),()](exp[),(),(
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Basics: The modulation transfer function (MTF) 

2D frequency 
•  For two spatial dimensions, we see that 

there are two corresponding frequency 
components, u and v. 

•  We refer to the uv-plane as the frequency 
domain. 

•  We refer to the xy-plane as the spatial 
domain. 

•  The real waveforms cos(ux+vy) and 
sin(ux+vy) correspond to waves in 2D. 

 
 

y 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 

22
2

vu +
π

x 
The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+

(u,v)=(a,0) 
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Basics: The modulation transfer function (MTF) 

2D frequency 
•  For two spatial dimensions, we see that 

there are two corresponding frequency 
components, u and v. 

•  We refer to the uv-plane as the frequency 
domain. 

•  We refer to the xy-plane as the spatial 
domain. 

•  The real waveforms cos(ux+vy) and 
sin(ux+vy) correspond to waves in 2D. 

 
 

y 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 

22
2

vu +
π

x 
The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+

(u,v)=(0,a) 
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Basics: The modulation transfer function (MTF) 

2D frequency 
•  For two spatial dimensions, we see that 

there are two corresponding frequency 
components, u and v. 

•  We refer to the uv-plane as the frequency 
domain. 

•  We refer to the xy-plane as the spatial 
domain. 

•  The real waveforms cos(ux+vy) and 
sin(ux+vy) correspond to waves in 2D. 

 
 

y 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 

22
2

vu +
π

x 
The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+

(u,v)/|(u,v)| 
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Basics: The modulation transfer function (MTF) 

2D frequency 
•  For two spatial dimensions, we see that 

there are two corresponding frequency 
components, u and v. 

•  We refer to the uv-plane as the frequency 
domain. 

•  We refer to the xy-plane as the spatial 
domain. 

•  The real waveforms cos(ux+vy) and 
sin(ux+vy) correspond to waves in 2D. 

Remark 
•  As sinusoids, these waves cannot occur 

on their own in an imaging system (with 
only positive values). 

•  By convention, we consider a constant 
additive offset. 

 
 
 

x 

y 

The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 

22
2

vu +
π

πkvyux =+

(u,v)/|(u,v)| 
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Basics: The modulation transfer function (MTF) 
Definition 
•  Let 

  

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
+−= ηξηξηξ ddhvuivuH ),()](exp[),(
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Basics: The modulation transfer function (MTF) 
Definition 
•  Let 

  
•  Then for the case treated so far 

 with f(x,y) = exp(i(ux+vy)) , we have 
 
 
•  So, in some sense H(u,v) characterizes the system for sinusoidal waveforms. 

–  For each frequency, it tells the response of the system in amplitude and phase. 
–  We refer to H as the modulation transfer function. 

 
 
 
 

∫ ∫
∞

∞−

∞

∞−
+−= ηξηξηξ ddhvuivuH ),()](exp[),(

),(),(),( yxfvuHyxg =

∫ ∫
∞

∞−

∞

∞−
+−+= ηξηξηξ ddhvuivyuxiyxg ),()](exp[)](exp[),(
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Basics: The modulation transfer function (MTF) 
Definition 
•  Let 

  
•  Then for the case treated so far 

 with f(x,y) = exp(i(ux+vy)) , we have 
 
 
•  So, in some sense H(u,v) characterizes the system for sinusoidal waveforms. 

–  For each frequency, it tells the response of the system in amplitude and phase. 
–  We refer to H as the modulation transfer function. 

Remark 
•  Apparently, if we knew how to decompose an arbitrary function, f, into a sum of sinusoidal 

waveforms, then the MTF could be used to characterize the effect of an LSI system 
operating on a function. 

•  It seems that this would be a simpler description (just multiplication!) than that offered by 
convolution with a PSF. 
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Basics: Recapitulation 

Linear, shift invariant systems 
 
Convolution 
 
The point-spread function 
 
The modulation transfer function 
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Outline 
 

Basics  
 

The Fourier transform  
 

Local operators  
 

Restoration and enhancement    
 
The discrete case  

 
Local scale and orientation  
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Fourier transform: Intuition 
Consider 
•  A (periodic) signal with fundamental 

frequency 2 pi 
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Fourier transform: Intuition 
Consider 
•  A (periodic) signal with fundamental 

frequency 2 pi 

  
 with 

 
 
 
 
 
•  A form like this “begs” to have common 

terms collected together  
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Fourier transform: Intuition 
Consider 
•  We further examine our expansion 

  
  

 
 
 
 
 
•  and note that we can cancel terms inside 

the grouped exponents via Euler’s 
relation to yield 
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Fourier transform: Intuition 
Consider 
•  A graphical interpretation 
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Fourier transform: Intuition 
Consider 
•  A graphical interpretation 
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Fourier transform: Intuition 
Consider 
•  A graphical interpretation 
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Fourier transform: Intuition 
Consider 
•  A graphical interpretation 
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Fourier transform: Intuition 
Consider 
•  A graphical interpretation 

Observation 
•  Complicated signals can be represented 

as the sum of simple components. 
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Fourier transform: Intuition 
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Fourier transform: Intuition 
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The Fourier transform: Filtering  

Signal decomposition 
•  An input, f(x,y), can be considered as the sum of an infinite number of sinusoidal waves. 
•  This is a convenient way to decompose the input as, provided the system MTF, H(u,v), we 

know the system response to each component.   
•  Suppose we decompose as 

•  By definition of convolution 

 
•  Previously, we showed that for f(x,y) = exp(i(ux+vy))  

•  So, for f(x,y) an integral (infinite sum) of sinusoids, as we have hypothesized 
 

 
 

∫ ∫
∞

∞−

∞

∞−
+= dudvvyuxivuFyxf )](exp[),(

4
1),( 2π

∫ ∫
∞

∞−

∞

∞−
+== dudvvyuxivuFvuHyxhyxfyxg )](exp[),(),(

4
1),(*),(),( 2π

),(),(),( yxfvuHyxg =

∫ ∫
∞

∞−

∞

∞−
−−== ηξηξηξ ddhyxfyxhyxfyxg ),(),(),(*),(),(



104 

The Fourier transform: Filtering  

Signal decomposition 
•  An input, f(x,y), can be considered as the sum of an infinite number of sinusoidal waves. 
•  This is a convenient way to decompose the input as, provided the system MTF, H(u,v), we 

know the system response to each component.   
•  Suppose we decompose as 

•  By definition of convolution 

 
•  Previously, we showed that for f(x,y) = exp(i(ux+vy))  

•  So, for f(x,y) an integral (infinite sum) of sinusoids, as we have hypothesized 
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The Fourier transform: Filtering  

Signal decomposition 
•  An input, f(x,y), can be considered as the sum of an infinite number of sinusoidal waves. 
•  This is a convenient way to decompose the input as, provided the system MTF, H(u,v), we 

know the system response to each component.   
•  Suppose we decompose as 

•  By definition of convolution 

 
•  Previously, we showed that for f(x,y) = exp(i(ux+vy))  

•  So, for f(x,y) an integral (infinite sum) of sinusoids, as we have hypothesized 
 

 
 

∫ ∫
∞

∞−

∞

∞−
+= dudvvyuxivuFyxf )](exp[),(

4
1),( 2π

∫ ∫
∞

∞−

∞

∞−
+== dudvvyuxivuFvuHyxhyxfyxg )](exp[),(),(

4
1),(*),(),( 2π

),(),(),( yxfvuHyxg =

∫ ∫
∞

∞−

∞

∞−
−−== ηξηξηξ ddhyxfyxhyxfyxg ),(),(),(*),(),(



106 

The Fourier transform: Filtering  

Signal decomposition 
•  An input, f(x,y), can be considered as the sum of an infinite number of sinusoidal waves. 
•  This is a convenient way to decompose the input as, provided the system MTF, H(u,v), we 

know the system response to each component.   
•  Suppose we decompose as 

•  By definition of convolution 

 
•  Previously, we showed that for f(x,y) = exp(i(ux+vy))  

•  So, for f(x,y) an integral (infinite sum) of sinusoids, as we have hypothesized, 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  A useful definition is 

 provided the integral exists. 
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The Fourier transform: Filtering  
How to find F(u,v) given f(x,y) 
•  A useful definition is 

 provided the integral exists. 
•  To see that this makes sense, we substitute into the expression for f(x,y)  

 and use of a change of variables (so that we avoid x, y standing for two different things) 
 

  
 

 to obtain 
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The Fourier transform: Filtering  
How to find F(u,v) given f(x,y) 
•  A useful definition is 

 provided the integral exists. 
•  To see that this makes sense, we substitute into the expression for f(x,y)  

 and use of a change of variables (so that we avoid x, y standing for two different things) 
 

  
 

 to obtain 
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The Fourier transform: Filtering  
How to find F(u,v) given f(x,y) 
•  A useful definition is 

 provided the integral exists. 
•  To see that this makes sense, we substitute into the expression for f(x,y)  

 and use of a change of variables (so that we avoid x, y standing for two different things) 
 

  
 

 to obtain 
 
 
 
 

 or 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 

  
 

  

•  It can be shown that the inner integral can be taken to evaluate to  
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 

  
 

  

•  It can be shown that the inner integral can be taken to evaluate to  
•  This allows us to write 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 

  
 

  

•  It can be shown that the inner integral can be taken to evaluate to  
•  This allows us to write 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 

  
 

  

•  It can be shown that the inner integral can be taken to evaluate to  
•  This allows us to write 

  
 
•  We have now come full cycle and see that our earlier choice for F(u,v) as 
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The Fourier transform: Filtering  

How to find F(u,v) given f(x,y) 
•  We want to understand, in terms of F, the integral 

  
 

  

•  It can be shown that the inner integral can be taken to evaluate to  
•  This allows us to write 

  
 
•  We have now come full cycle and see that our earlier choice for F(u,v) as 
 
 
 

 yields 
 

•  We call F(u,v) the Fourier transform of f(x,y). 
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The Fourier transform: Filtering 

Definition 
•  Sometimes, we will find it convenient to consider the (squared) magnitude of the Fourier 

transform  

•  We call this function the power spectrum of f. 
•  For small 

 gives the power in the rectangular region of the frequency domain lying between                   
and 

•  We take this as a measure of the magnitude or “energy” of the signal in that frequency 
interval, independent of phase information. 
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The Fourier transform: Filtering 
A 2D example 
•  Recall the 1D example 

x 

f(x) F(u) 

u 

for the cosine component 
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The Fourier transform: Filtering 
A 2D example 
•  Recall the 1D example 

•  And the interpretation of 2D spatial frequency 

x 

y 

The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+

(u,v)/|(u,v)| 

x 

f(x) F(u) F(u) 

u 

for the cosine component 
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The Fourier transform: Filtering 
A 2D example 
•  Recall the 1D example 

•  Then a 2D analogue could be 

x 

y 

x 

f(x) F(u) F(u) 

u 

for the cosine component 
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The Fourier transform: Filtering 
A 2D example 
•  Recall the 1D example 

•  Then a 2D analogue could be 
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f(x) F(u) 
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F(u) 
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for the cosine component 
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The Fourier transform: Filtering  

Transforming convolution into multiplication 
•  Let g = f*h, then the Fourier transform G(u,v) of g(x,y) is 

•  Changing the order of integration, we can write 

•  We recognize that the terms in the inner integral are close to that of a Fourier transform, 
which can be made exact via the substitution 

 which yields 
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The Fourier transform: Filtering  

Transforming convolution into multiplication 
•  Let g = f*h, then the Fourier transform G(u,v) of g(x,y) is 

•  Changing the order of integration, we can write 

•  We recognize that the terms in the inner integral are close to that of a Fourier transform, 
which can be made exact via the substitution 

 which yields 
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The Fourier transform: Filtering  

Transforming convolution into multiplication 
•  Let g = f*h, then the Fourier transform G(u,v) of g(x,y) is 

•  Changing the order of integration, we can write 

•  We recognize that the terms in the inner integral are close to that of a Fourier transform, 
which can be made exact via the substitution 

 which yields 
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The Fourier transform: Filtering  

Transforming convolution into multiplication 
•  Let g = f*h, then the Fourier transform G(u,v) of g(x,y) is 

•  Changing the order of integration, we can write 

•  We recognize that the terms in the inner integral are close to that of a Fourier transform, 
which can be made exact via the substitution 

 which yields 
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The Fourier transform: Filtering  

Transforming convolution in multiplication 
•  We have 

•  Our immediate interest is in alpha and beta; so, noting that exp(m+n) = exp(m)exp(n), we 
substitute and rearrange to get 

•  Now, recognizing the exact form for the Fourier transform of  f we write 

•  Similarly, recognizing the Fourier transform of h we write 
 
 
•  We conclude that the convolution of two functions in the spatial domain corresponds to 

taking the product of the two transformed functions in the Fourier domain.  
•  Notably, we see that H is simply the MTF of our linear system. 
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The Fourier transform: Filtering  

Transforming convolution in multiplication 
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The Fourier transform: Filtering  

Transforming convolution in multiplication 
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The Fourier transform: Filtering  

Transforming convolution in multiplication 
•  We have 

•  Our immediate interest is in alpha and beta; so, noting that exp(m+n) = exp(m)exp(n), we 
substitute and rearrange to get 

•  Now, recognizing the exact form for the Fourier transform of  f we write 
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The Fourier transform: Filtering  

Recapitulation 
•  We have seen that denoting the Fourier transform of the system output, g(x,y)=f(x,y)*h(x,y), 

as G(u,v) we can write 
  

 where F is the Fourier transform of f and H, the MTF, is the Fourier transform of h. 
•  Notice the simplicity of the previous expression as compared to 

 
•  More generally, we have seen that 

–  Convolution in the spatial domain corresponds to multiplication in the frequency domain 
–  The converse is true as well 

Remarks 
•  Once again we see that the MTF specifies how a system attenuates or amplifies each 

component F(u,v) of the input. 
•  More generally we note that an LSI system acts as a filter that alters the amplitude and phase 

of the frequency components of its input, but that is all. 
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The Fourier transform: Filtering  

Recapitulation 
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The Fourier transform: Recapitulation 

Spatial domain 
•  f(x,y) 
•  Convolution 
•  Multiplication 
•  Point spread function 

Frequency domain 
•  F(u,v) 
•  Multiplication 
•  Convolution 
•  Modulation transfer function 

Fourier transform 

Inverse Fourier transform 
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The Fourier transform: Recapitulation 

Fourier power spectrum 
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The Fourier transform: Recapitulation 

Source image (J. Fourier)                        Fourier power spectrum 
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 
•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier transforms 

of             and           ? xf ∂∂ yf ∂∂
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 
•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier transforms 

of             and           ? 

Derivation 
•  Consider the transform 
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 

•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier 
transforms of             and            ? 

Derivation 
•  Consider the transform 

•  We break this up as 
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 
•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier transforms 

of             and            ? 

Derivation 
•  Consider the transform 

•  We break this up as 

•  The inner integral yields to integration by parts 
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 
•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier transforms 

of             and            ? 

Derivation 
•  Consider the transform 

•  We break this up as 

•  The inner integral yields to integration by parts 

•  Assuming that                                      , we can write 
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Local operators: Partial derivatives and convolution  

Motivation  
•  We shall use differentiation to accentuate edges in images. 
•  Therefore, it will be useful to know how the Fourier transform of the derived images is 

related to the Fourier transform of the original image. 
•  In particular, if F(u,v) is the Fourier transform of f(x,y), then what are the Fourier transforms 

of             and            ? 

Derivation 
•  Consider the transform 
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Local operators: Partial derivatives and convolution  

Conclusion  
•  We have found that 

•  Further, a similar derivation will yield 

•  We conclude that differentiation accentuates high frequency content at the expense of low 
frequency content. 

•  Indeed, 0 frequency content (constant off-set) is lost completely. 
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Local operators: Partial derivatives and convolution 

Original image: 

Differentiated images: 

d/dx d/dy 
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Local operators: Partial derivatives and convolution  
A closer look 
•  We wonder, why does taking derivatives in the spatial domain correspond to multiplication 

in the frequency domain? 
•  But then we recall that differentiation is a LSI operation; so, it must be a convolution in the 

spatial domain and multiplication in the frequency domain. 
•  This brings another question: What is the function with which we convolve in the spatial 

domain to yield (partial) differentiation? 
•  We have seen that the MTF of              is iu. 
•  The corresponding point spread function is found by taking the inverse transform of iu 

•  Recalling our earlier convention that 

•  and the fact that multiplication of the transform with iu corresponds to differentiation WRT x, 
we evaluate the integral of concern as 
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Local operators: Partial derivatives and convolution  
A closer look 
•  We wonder, why does taking derivatives in the spatial domain correspond to multiplication in the 

frequency domain? 
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Local operators: Partial derivatives and convolution  
A closer look 
•  We wonder, why does taking derivatives in the spatial domain correspond to multiplication in the 

frequency domain? 
•  But then we recall that differentiation is a LSI operation; so, it must be a convolution in the spatial 
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Local operators: Partial derivatives and convolution  
A closer look 
•  We wonder, why does taking derivatives in the spatial domain correspond to multiplication in the 

frequency domain? 
•  But then we recall that differentiation is a LSI operation; so, it must be a convolution in the spatial 

domain and multiplication in the frequency domain. 
•  This brings another question: What is the function with which we convolve in the spatial domain 

to yield (partial) differentiation? 
•  We have seen that the Fourier transform of              is iuF(u,v) and the MTF of           is iu. 
•  The point spread function corresponding to the MTF is found by taking the inverse transform of 

iu 

•  Recalling our earlier convention that 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
•  The delta function already is a so called “generalized function”. 
•  So, we expect to need special care for the definition of its derivative. 
•  We think of it as the limit of the sequence 

  
 where we have two closely spaced impulses of opposite polarity. 

•  We call the result the doublet and denote it as              . 
•  Note that this definition corresponds to the usual definition of a partial derivative as the limit 

of a difference 

•  So, all turns out well in the end. 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
•  The delta function already is a so called “generalized function”. 
•  So, we expect to need special care for the definition of its derivative. 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
•  The delta function already is a so called “generalized function”. 
•  So, we expect to need special care for the definition of its derivative. 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
•  The delta function already is a so called “generalized function”. 
•  So, we expect to need special care for the definition of its derivative. 
•  We think of it as the limit of the sequence 

  
 where we have two closely spaced impulses of opposite polarity. 

•  We call the result the doublet and denote it as              . 
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Local operators: Partial derivatives and convolution  
Another conclusion 
•  We have found that the point spread function corresponding to partial differentiation (in the x 

direction) is 

•  But, how do we interpret this creature? 
•  The delta function already is a so called “generalized function”. 
•  So, we expect to need special care for the definition of its derivative. 
•  We think of it as the limit of the sequence 

  
 where we have two closely spaced impulses of opposite polarity. 
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of a difference 
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Restoration and enhancement: Blur 

Bad blur 
•  In a real-world imaging system we find that light rays that ideally would be focused at a point 

are (slightly) spread out. 

•  Here, we think of g as a defocused version of f. 

f g 
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Restoration and enhancement: Blur 

Bad blur 
•  In a real-world imaging system we find that light rays that ideally would be focused at a point 

are (slightly) spread out. 
•  Such blurring can sometimes be modeled via a Gaussian point spread function 

 with sigma, the standard deviation that gives the spread of the Gaussian. 

•  This point spread function is rotationally symmetric as it depends only on             , not  x and 
y individually. 

•  To understand what is going on, let’s compute the Fourier transform of this point spread 
function (i.e., the system MTF). 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  We want to evaluate 

•  Begin be noticing that the 2D Gaussian can be separated into the product of two functions, so 

•  Let                      so that the first integral on the RHS can be written more compactly as 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  We want to evaluate 

•  Begin be noticing that the 2D Gaussian can be separated into the product of two functions, so 

•  Let                      so that the first integral on the RHS can be written more compactly as 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  A form like 

 is best attacked by completing the square. 
•  Multiply the integrand by                                                  to yield 

 or 

  

•  We rearrange this more compactly as 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  We have 

  
•  It would be nice to make the exponent simpler, so we introduce a change of variable 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  We have 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  Looking at 

 brings to mind that 
•  Fact: 

•  So, the integral of concern evaluates to 

 or, (recalling that                       ) 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  Looking at 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  So, we have found that the first integral in 

  
 evaluates to 

 
 
 
 
•  Not surprisingly, the second integral evaluates similarly. 
•  Overall, we have 
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Restoration and enhancement: Blur 

Fourier transform of the Gaussian 
•  So, we have found that the first integral in 
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Restoration and enhancement: Blur 

Gaussian MTF 
•  W e have found that the MTF of a Gaussian point-spread function is itself a Gaussian 

  
  

•  While H(u,v) has a Gaussian shape, it has a spread that is the inverse of the spread of the 
point spread function 

•  This is an example of the more general inverse relationship between scale changes in the 
spatial and frequency domains. 

•  Lower frequencies pass relatively unattenuated. 
•  Higher frequencies are reduced in amplitude. 

Good blur 
•  A number of image noise sources yield selective corruption of the high spatial frequencies. 
•  These effects can be ameliorated via application of (convolution with) a Gaussian point 

spread function. 
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Restoration and enhancement: Blur 
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Restoration and enhancement: Blur 

Gaussian MTF 
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Restoration and enhancement: Blur 

Noise corrupted image Gaussian blurred image 
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Restoration and enhancement: Beyond blur 

The general case 
•  In a certain precise sense, application of a Gaussian blur point spread function for the 

amelioration of image corruption (noise) is optimal only if the noise is Gaussian. 
•  More generally, we would seek to derive and apply a point spread function whose MTF 

H(u,v) is the inverse of that of the corruption, N(u,v). 

),(),(*),( yxyxhyxn δ=

f(x,y) f(x,y) h*n 
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Restoration and enhancement: Beyond blur 

The general case 
•  In a certain precise sense, application of a Gaussian blur point spread function for the 

amelioration of image corruption (noise) is optimal only if the noise is Gaussian. 
•  More generally, we would seek to derive and apply a point spread function whose MTF 

H(u,v) is the inverse of that of the corruption, N(u,v).   
•  This brings us to the topic of optimal filtering and the work of Wiener, Kolmogorov, and 

others…a path we will not follow any further. 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
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The discrete case: Discrete image sampling 

The forward transform 
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The forward transform 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 
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The discrete case: Discrete image sampling 

The forward transform 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  

•  This is a periodic function 
–  The period in u is 
–  The period in v is 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  

•  This is a periodic function 
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The discrete case: Discrete image sampling 

The forward transform 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  

•  This is a periodic function 
–  The period in u is              : consider 
–  The period in v is              : and similarly for v 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  

•  This is a periodic function 
–  The period in u is 
–  The period in v is 
–  We can ignore that part of F(u,v) for                       and 
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The discrete case: Discrete image sampling 

The forward transform 
•  When the image is digitized, the irradiance is known only at a discrete set of locations. 
•  We think of the results as defined by a discrete grid of impulses 

 where w and h are the horizontal and vertical sampling intervals, respectively. 
•  The Fourier transform now becomes  

•  This is a periodic function 
–  The period in u is 
–  The period in v is 
–  We can ignore that part of F(u,v) for                       and 

•  Moral of the story: By sampling the function in the spatial domain, we have circumscribed 
the information in the frequency domain. 
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The discrete case: Discrete image sampling 

The inverse transform 
•  Let 
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The discrete case: Discrete image sampling 

The inverse transform 
•  Let 

•  The corresponding inverse transform is 
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The discrete case: Discrete image sampling 

The inverse transform 
•  Let 

•  The corresponding inverse transform is 

•  We can write this as 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
Evaluate the integral and perform algebra 
•  Remark 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 
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The discrete case: Discrete image sampling 
The inverse transform 
•  We continue with the evaluation of our integral 

•  We notice that the final expression is simply an interpolation of the sampled image points 
•  Apparently, the fact that F(u,v) was zero beyond a certain range of u and v has made it 

possible to reconstruct the image from a discrete set of samples. 
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                      or                   , then f(x,y) can be recovered from the set 

f(kw,lh) for all integers k and l. 
wu /|| π> hv /|| π>
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                      or                   , then f(x,y) can be recovered from the set 

f(kw,lh) for all integers k and l. 

The sampling interval 
•  If only frequencies less that B occur, then the sampling interval can be a large as 
•  Stated differently, the sampling interval should be less than            , with      the wavelength 

of highest frequency present.  
•  If     is the sampling interval, then our result can be expressed in terms of the Nyquist 

frequency,            . 
•  The signal should contain frequencies only up to the Nyquist frequency. 
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                      or                   , then f(x,y) can be recovered from the set 

f(kw,lh) for all integers k and l. 

The sampling interval 
•  If only frequencies less that B occur, then the sampling interval can be a large as 
•  Stated differently, the sampling interval should be less than            , with      the wavelength 

of highest frequency present.  
•  If     is the sampling interval, then our result can be expressed in terms of the Nyquist 

frequency,            . 
•  The signal should contain frequencies only up to the Nyquist frequency. 
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                     or                 , then f(x,y) can be recovered from the set f(kw,lh) 

for all integers k and l. 

The sampling interval 
•  If only frequencies less that B occur, then the sampling interval can be a large as 
•  Stated differently, the sampling interval should be less than           , with     the wavelength of 

the highest frequency present. 
•  If d is the sampling interval, then our result can be expressed in terms of the Nyquist 

frequency, 
•  The signal should contain frequencies only up to the Nyquist frequency. 

Aliasing 
•  Frequencies higher than the Nyquist frequency, when sampled, look no different than 

frequencies within the acceptable limit. 
•  They will be aliased as lower frequencies in the result. 
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                     or                 , then f(x,y) can be recovered from the set f(kw,lh) 

for all integers k and l. 

The sampling interval 
•  If only frequencies less that B occur, then the sampling interval can be a large as 
•  Stated differently, the sampling interval should be less than           , with     the wavelength of 

the highest frequency present. 
•  If d is the sampling interval, then our result can be expressed in terms of the Nyquist 

frequency, 
•  The signal should contain frequencies only up to the Nyquist frequency. 

Aliasing 
•  Frequencies higher than the Nyquist frequency, when sampled, look no different than 

frequencies within the acceptable limit. 
•  They will be aliased as lower frequencies in the result. 
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The discrete case: The sampling theorem 

What has been shown 
•  We have just seen that a function that is bandlimited (i.e., has frequency components 

evaluating to zero beyond some range) is fully specified by samples on a regular grid. 
•  This result is known as the sampling theorem. 
•  If F(u,v)=0 for                     or                 , then f(x,y) can be recovered from the set f(kw,lh) 

for all integers k and l. 
The sampling interval 
•  If only frequencies less that B occur, then the sampling interval can be a large as 
•  Stated differently, the sampling interval should be less than           , with     the wavelength of 

the highest frequency present. 
•  If d is the sampling interval, then our result can be expressed in terms of the Nyquist 

frequency, 
•  The signal should contain frequencies only up to the Nyquist frequency. 
Aliasing 
•  Frequencies higher than the Nyquist frequency, when sampled, look no different than 

frequencies within the acceptable limit. 
•  They will be aliased as lower frequencies in the result. 
Remark 
•  In order to avoid certain singular situations that can occur when sampling at the minimally 

defined interval we typically sample at a smaller interval. 
•  Indeed, in the presence of significant noise, it is prudent to use a sampling interval a factor 

of 5 or 10 smaller than the minimally defined. 
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The discrete case: Aliasing example 

Consider: A sinusoidal pattern. 
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The discrete case: Aliasing example 

Suppose: That the sinusoid is spatially sampled at an 
                    interval greater than that of half the wavelength.  
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The discrete case: Aliasing example 

Notice: That along the sampled points 
               another sinusoid becomes apparent 
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The discrete case: Aliasing example 

Conclusion: For the dotted sampling grid, the higher frequency  
       sinusoid aliases to the lower frequency sinusoid 
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The discrete case: The discrete Fourier transform 

Definitions 
•  Let an image be specified by the values       of f(x,y) at points (kw,lh) for k=0,1,…,M-1 and 

l=0,1,…,N-1. 
•  The discrete Fourier transform is then given as 

•  The inverse transform is given as 
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The discrete case: The discrete convolution 

Definition 
•  Let the functions f(x,y) and h(x,y) be specified by their values at a discrete grid of points as   

and      , respectively. 
•  We define the discrete convolution      of f and h as 
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The discrete case: The discrete convolution 

Definition 
•  Let the functions f(x,y) and h(x,y) be specified by their values at a discrete grid of points as   

and      , respectively. 
•  We define the discrete convolution      of f and h as 

•  Notice that this is consistent with our earlier continuous definition of convolution as 

  
 with i, j taking the roles of x,y and k,l taking the roles of 

ijf
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The discrete case: Neighborhoods 

Implementation of discrete operations 
•  To apply many of the operations that we have described (convolution, etc.), we must 

sample underlying continuous functions. 
•  Just as we have discussed the sampling of images, 
•  we also will need to sample point spread functions, templates for correlation, etc. 
•  The idea is really the same, we sample the continuous representation to get a discrete 

counterpart. 
•  We will sometimes refer to these discrete counterparts as (digital) masks or stencils. 
•  We will refer to the individual (numerical) elements within the masks as taps. 
•  For example, one reasonable sampling of the Gaussian point spread function (with unit 

standard deviation) yields the following mask 
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The discrete case: Neighborhoods 

Implementation of discrete operations 
•  To apply many of the operations that we have described (convolution, etc.), we must 

sample underlying continuous functions. 
•  Just as we have discussed the sampling of images, 
•  we also will need to sample point spread functions, templates for correlation, etc. 
•  The idea is really the same, we sample the continuous representation to get a discrete 

counterpart. 
•  We will sometimes refer to these discrete counterparts as (digital) masks or stencils. 
•  We will refer to the individual (numerical) elements within the masks as taps. 
•  For example, one reasonable sampling of the Gaussian point spread function (with unit 

standard deviation) yields the following mask 
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The discrete case: Pseudocode 

Procedure 
•  Input: f an N x M image and h an m x m convolution mask, m < N, M. 
•  Output: g an N x M image that is the convolution of f with h. 
•  For all i, j 

 with m/2 integer division (i.e., 3/2 = 1) 
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The discrete case: Pseudocode 

Procedure 
•  Input: f an N x M image and h an m x m convolution mask, m < N, M. 
•  Output: g an N x M image that is the convolution of f with h. 
•  For all i, j 

 with m/2 integer division (i.e., 3/2 = 1). 

Remark 
•  At the image borders, where the mask does not fit within the image, there are several 

choices 
1.  Design special masks that are adapted to such configurations. 
2.  Assume that values outside the image are some constant value, e.g., 0. 
3.  Reflect the image about its borders. 
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The discrete case: Pseudocode 

Procedure 
•  Input: f an N x M image and h an m x m convolution mask, m < N, M. 
•  Output: g an N x M image that is the convolution of f with h. 
•  For all i, j 

 with m/2 integer division (i.e., 3/2 = 1). 

Remark 
•  At the image borders, where the mask does not fit within the image, there are several 

choices 
1.  Design special masks that are adapted to such configurations. 
2.  Assume that values outside the image are some constant value, e.g., 0. 
3.  Reflect the image about its borders. 
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The discrete case: A refinement 

Separability 
•  Notice that 

•  Correspondingly, the 2D convolution can be separated into 2 1D convolutions. 
•  A separable implementation yields increased computational efficiency, e.g., for convolution 

with an N x N mask in 2D requires N^2 operations at each point, while 2 1D convolutions 
require only 2 N operations. 

•  Remark: Here, separability arises from the fact that the underlying Gaussian PSF has the 
form exp(a+b) = exp(a)exp(b). 
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The discrete case: Another refinement 

Steerability 
•  Recall that the directional derivative along some direction v = (cos a, sin a) can be had as 

•  In words: The directional derivative along any direction can be computed as the weighted 
sum of the partial derivatives along just two directions. 

•  We say that the two convolutions are steered according to the coefficients (cos a, sin a) 
specified by v to yield the final result. 

•  Computational advantage can be had as we can precompute the needed interim basis 
results and subsequently combine them according to our subsequent needs. 

•  Remark: Steerability can be invoked when ever the desired function can be represented as 
set of basis functions. 

v• ∂
∂x
, ∂
∂y

⎛

⎝
⎜

⎞

⎠
⎟ f (x, y)

= v• δx ∗ f (x, y),δy * f (x, y)( )

or in terms of convolution as 
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The discrete case: Example revisited 

Noise corrupted image Gaussian blurred image 

Remark: The depicted transformation was accomplished via the just described convolution algorithm 
using the Gaussian PSF mask given a few slides back. 
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Local scale: Motivation 
Where we stand 
•  We have discussed two different ways to 

represent an image 
–  The spatial domain 
–  The frequency domain 
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Local scale: Motivation 
Where we stand 
•  We have discussed two different ways to 

represent an image 
–  The spatial domain 
–  The frequency domain 

Spatial domain 
•  We know spatial position with a precision of 

the sampling interval, d. 
•  Frequency resolution lost: We only can 

identify the frequency to be within the range  
            . 

•  We know the local image intensity (e.g., 
irradiance), but have little knowledge of 
frequency structure. 
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Local scale: Motivation 
Where we stand 
•  We have discussed two different ways to 

represent an image 
–  The spatial domain 
–  The frequency domain 

Spatial domain 
•  We know spatial position with a precision of 

the sampling interval, d. 
•  Frequency resolution lost: We only can 

identify the frequency to be within the range  
             . 

•  We know the local image intensity (e.g., 
irradiance), but have little knowledge of 
frequency structure. 

Frequency domain 
•  We can resolve the frequency content with 

precision. 
•  Spatial position is lost: We only can identify 

the position to be within the range Nd. 
•  We know the frequency structure, but cannot 

localize it spatially. 
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Local scale: Motivation 

Source image (J. Fourier)                                   Power spectrum 
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Local scale: Motivation 

Concept: Provide a local 
representation of frequency 
content. 

Advantage: Provides a principled 
parsing of the local image structure. 
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Local scale: Motivation 
Where we stand 
•  We have discussed two different ways to 

represent an image 
–  The spatial domain 
–  The frequency domain 

We seek a compromise  
•  We desire a joint representation that allows 

us to capture the range of scales present 
locally in the image. 

•  Refer to such representations as multiscale or 
multiresolution. 
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Local scale: Windowed Fourier transform 

Intuition 
•  Imagine breaking an image up into a set of tiles. 
•  Apply the Fourier transform to each tile individually. 
•  Then perhaps we have captured a spatial frequency representation that is local to each tile. 

 

 



237 

Local scale: Windowed Fourier transform 

Intuition 
•  Imagine breaking an image up into a set of tiles. 
•  Apply the Fourier transform to each tile individually. 
•  Then perhaps we have captured a spatial frequency representation that is local to each tile. 

Formalization 
•  We consider application of the Fourier transform, F(u,v),  within a window, w(x,y), of the 

image and move the window across the image. 
•  Generally useful properties for the window include 

–  It has a maximum at its center. 
–  It is (circularly) symmetric about the origin. 
–  It decreases monotonically with distance from the center. 
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Local scale: Windowed Fourier transform 

Intuition 
•  Imagine breaking an image up into a set of tiles. 
•  Apply the Fourier transform to each tile individually. 
•  Then perhaps we have captured a spatial frequency representation that is local to each tile. 

Formalization 
•  We consider application of the Fourier transform, F(u,v),  within a window, w(x,y), of the 

image and move the window across the image. 
•  Generally useful properties for the window include 

–  It has a maximum at its center. 
–  It is (circularly) symmetric about the origin. 
–  It decreases monotonically with distance from the center. 
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Local scale: Windowed Fourier transform 

Intuition 
•  Imagine breaking an image up into a set of tiles. 
•  Apply the Fourier transform to each tile individually. 
•  Then perhaps we have captured a spatial frequency representation that is local to each tile. 

Formalization 
•  We consider application of the Fourier transform, F(u,v),  within a window, w(x,y), of the 

image and move the window across the image. 
•  Generally useful properties for the window include 

–  It has a maximum at its center. 
–  It is (circularly) symmetric about the origin. 
–  It decreases monotonically with distance from the center. 

•  Given such a window, we define the windowed Fourier transform as 

•  So, we associate a local frequency decomposition with each image spatial position. 
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Local scale: Windowed Fourier transform 

A closer look 
•  We notice that our windowed Fourier transform  

 looks almost like a convolution. 
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Local scale: Windowed Fourier transform 

A closer look 
•  We notice that our windowed Fourier transform  

 looks almost like a convolution. 
•  We follow this observation to rewrite       as 

  
 where we have made use of the fact that w(x)=w(-x) by symmetry. 
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Local scale: Windowed Fourier transform 

A closer look 
•  We notice that our windowed Fourier transform  

 looks almost like a convolution. 
•  We follow this observation to rewrite       as 

  
 where we have made use of the fact that w(x)=w(-x) by symmetry. 

•  We now have exactly the form of a convolution, in particular 

 with the inclusion of an additional phase component 
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Local scale: Windowed Fourier transform 

A closer look (continued) 
•  Following our usual plan of attack, we choose to understand the operation of the 

convolution via calculation of the MTF of the point spread function,  
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Local scale: Windowed Fourier transform 

A closer look (continued) 
•  Following our usual plan of attack, we choose to understand the operation of the 

convolution via calculation of the MTF of the point spread function,  

•  Correspondingly, we consider 
 

  
 Where W(u-u0,v-v0) is the Fourier transform of the window function, w(x,y), but shifted to  
 the “centre frequencies” (u0,v0). 
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Local scale: Windowed Fourier transform 

A closer look (continued) 
•  Following our usual plan of attack, we choose to understand the operation of the 

convolution via calculation of the MTF of the point spread function,  

•  Correspondingly, we consider 
 

  
 Where W(u-u0,v-v0) is the Fourier transform of the window function, w(x,y), but shifted to  
 the “centre frequencies” (u0,v0). 
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Local scale: Windowed Fourier transform 

A closer look (continued) 
•  Following our usual plan of attack, we choose to understand the operation of the 

convolution via calculation of the MTF of the point spread function,  

•  Correspondingly, we consider 
 

  
 Where W(u-u0,v-v0) is the Fourier transform of the window function, w(x,y), but shifted to  
 the “centre frequencies” (u0,v0). 
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Local scale: Windowed Fourier transform 

A closer look (continued) 
•  Following our usual plan of attack, we choose to understand the operation of the 

convolution via calculation of the MTF of the point spread function,  

•  Correspondingly, we consider 
 

  
 Where W(u-u0,v-v0) is the Fourier transform of the window function, w(x,y), but shifted to  
 the “centre frequencies” (u0,v0). 

•  In words, we see that the MTF can 
–  Pass the centre frequencies relatively unattenuated. 
–  Suppress frequencies away from the centre so that they are attenuated according to 

the shape of the window function. 
•  We refer to such operation as that of a bandpass filter: It passes frequencies within a certain 

region (band) about the centre frequency. 
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Local scale: Windowed Fourier transform 

Example (pictorial) 

x 

y 
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Local scale: Windowed Fourier transform 

Example (pictorial) 
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Local scale: Windowed Fourier transform 

Example (pictorial) 
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Local scale: Windowed Fourier transform 

Example (pictorial) 
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Local scale: Windowed Fourier transform 

Example (pictorial) 
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Local scale: Windowed Fourier transform 

Example (analytic) 
•  Suppose that we take the window function to be that of a Gaussian 
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Local scale: Windowed Fourier transform 

Example (analytic) 
•  Suppose that we take the window function to be that of a Gaussian 

•  Then the MTF corresponding to the point spread function 

 is (recalling that the Fourier transform of a Gaussian is again a Gaussian with inverse 
standard deviation) 
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Local scale: Windowed Fourier transform 

Example (analytic) 
•  Suppose that we take the window function to be that of a Gaussian 

•  Then the MTF corresponding to the point spread function 

 is (recalling that the Fourier transform of a Gaussian is again a Gaussian with inverse 
standard deviation) 

 
 

•  In words 
–  The (centre) frequencies (u0,v0) are relatively unattenuated. 
–  Frequencies away from the centre are attenuated according to the Gaussian shape. 
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Local scale: Gabor filter 

Definition 
•  The use of a Gaussian window in conjunction with the Fourier transform has been 

particularly popular. 
•  For example, for a given window size this choice provides a good ability to estimate 

precisely the local frequency content. 
•  Therefore, point spread functions of the form 

  
 have been given a particular name, Gabor filters. 
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Local scale: Gabor filter 

Definition 
•  The use of a Gaussian window in conjunction with the Fourier transform has been 

particularly popular. 
•  For example, for a given window size this choice provides a good ability to estimate 

precisely the local frequency content. 
•  Therefore, point spread functions of the form 

  
 have been given a particular name, Gabor filters. 

 

Remark 
•  In practice, such filters are applied by splitting them into their cosinusoidal and sinusoidal 

components 
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Local scale: Quadrature filters 

Some more terminology 
•  Gabor filters are examples of quadrature filters. 
•  That is, the sinusoidal and cosinusoidal components have the same MTF except that they 

are shifted in phase by            . 
•  Technically, they are related by the so called Hilbert transform. 
•  Just in case anybody asks… 
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Local scale & orientation: Relating space & frequency 

Recall 
•  For given u and v in the frequency 

domain, there corresponds a 
(cos)sinusoidal waveforms, cos(ux+vy) 
and sin(ux+vy), at a particular orientation 
and periodicity in the spatial domain. 

 
 
 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 

22
2

vu +
π

x 
The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+

(u,v)/|(u,v)| 
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Local scale & orientation: Relating space and frequency 

Recall 
•  For given u and v in the frequency 

domain, there corresponds a 
(cos)sinusoidal waveforms, cos(ux+vy) 
and sin(ux+vy), at a particular orientation 
and periodicity in the spatial domain. 

Now 
•  Through application of the filters that we 

have just constructed, we can parse the 
image information according to its local 
structural components 

–  Scale: magnitude of the (center) 
frequency |u0,v0| 

–  Orientation: direction of sinusoid 
(u0,v0)/|u0,v0|. 

 
 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 
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The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 

πkvyux =+
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Local scale & orientation: Scale 

Recall 
•  For given u and v in the frequency 

domain, there corresponds a 
(cos)sinusoidal waveforms, cos(ux+vy) 
and sin(ux+vy), at a particular orientation 
and periodicity in the spatial domain. 

Now 
•  Through application of the filters that we 

have just constructed, we can parse the 
image information according to its local 
structural components 

–  Scale: magnitude of the (center) 
frequency |u0,v0| 

–  Orientation: direction of sinusoid 
(u0,v0)/|u0,v0|. 

Consider 
•  For the sake of illustration, let’s think 

about just the scale component. 
•  Here for a given (u0,v0) we consider an 

annulus of frequencies. 

 
 
 

u 

v 

Cross sections orthogonal to 
the ridges show a sinusoidal 
profile with wavelength 
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Local scale: Scale selection 

Frequency domain 
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Local scale: Scale selection 

Frequency domain 
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Local scale: Scale selection 

Frequency domain 



265 

Local scale: Scale selection 

Frequency domain 
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Local scale: Scale selection 

Frequency domain 
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Local scale: Scale selection 

Frequency domain 
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Local scale & orientation: Orientation 

Recall 
•  For given u and v in the frequency 

domain, there corresponds a 
(cos)sinusoidal waveforms, cos(ux+vy) 
and sin(ux+vy), at a particular orientation 
and periodicity in the spatial domain. 

Now 
•  Through application of the filters that we 

have just constructed, we can parse the 
image information according to its local 
structural components 

–  Scale: magnitude of the (center) 
frequency |u0,v0| 

–  Orientation: direction of sinusoid 
(u0,v0)/|u0,v0| 

Consider 
•  For the sake of illustration, let’s think 

about just the orientation component. 
•  Here for a given (u0,v0) we consider a 

slice of frequencies. 
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The maxima and minima 
of the cosinusoids lie 
along parallel equidistant 
lines                         for k 
an integer. 
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Local orientation: Orientation selection 

Frequency domain Spatial domain 
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Local orientation: Orientation selection 

Frequency domain Spatial domain 
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Local orientation: Orientation selection 

Frequency domain Spatial domain 



272 

Local orientation: Orientation selection 

Frequency domain Spatial domain 
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Local orientation: Orientation selection 

Frequency domain Spatial domain 
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Local orientation: Orientation selection 

Frequency domain Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 

Consider the effects of keeping orientation constant, but varying bandwidth. 
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Local orientation: Bandwidth selection 

Spatial domain 



277 

Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local orientation: Bandwidth selection 

Spatial domain 
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Local scale & orientation: Combined analysis 

Recall 
•  For given u and v in the frequency 

domain, there corresponds a 
(cos)sinusoidal waveforms, cos(ux+vy) 
and sin(ux+vy), at a particular orientation 
and periodicity in the spatial domain. 

Now 
•  Through application of the filters that we 

have just constructed, we can parse the 
image information according to its local 
structural components 

–  Scale: magnitude of the (center) 
frequency |u0,v0| 

–  Orientation: direction of sinusoid 

(u0,v0)/|u0,v0| 

Consider 
•  Combine selection for both scale and 

orientation. 
•  Here for a given (u0,v0) we consider a 

wedge of frequencies. 
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Image representation: Local scale x orientation analysis 

Source image 
(natural terrain) 

Locally dominant orientation 
(shown as normal vector) 

Locally dominant scale 
(darker intensity for finer scale) 

Example 
•  Seek to guide subsequent processing by pointing way to locally characteristic/dominant image structure. 
•  Decompose an image according to local scale and orientation via application of bandpass filters. 
•  Select locally dominant scale and orientation via scanning the resulting representation for strongest responses. 
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Local scale: Lowpass filters 

Intuition 
•  We have considered representation of an image by decomposing it according the frequency 

content within a band about a central frequency (bandpass filtering). 

u 

v 
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Local scale: Lowpass filters 

Intuition 
•  We have considered representation of an image by decomposing it according the frequency 

content within a band about a central frequency (bandpass filtering). 

•  A complimentary approach is to represent an image by successively removing its higher 
frequency components. 
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Local scale: Lowpass filters 

Formalization 
•  Apparently we seek a MTF that can be manipulated so as to cover variable portions of the 

frequency domain, centered about the origin. 
•  As an example, we can make use of a Gaussian window function centered about the origin 

in the frequency domain. 

–  When a small value for sigma is used, much of the frequency information will be 
passed relatively unattenutated. 

–  As larger values for sigma are used only the lower frequencies are passed without 
severe attenuation. 

–  We refer to such filters as lowpass filters. 
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Local scale: Lowpass filters 

Formalization 
•  Apparently we seek a MTF that can be manipulated so as to cover variable portions of the 

frequency domain, centered about the origin. 
•  As an example, we can make use of a Gaussian window function centered about the origin 

in the frequency domain. 

–  When a small value for sigma is used, much of the frequency information will be 
passes relatively unattenutated. 

–  As larger values for sigma are used only the lower frequencies are passed without 
severe attenuation. 

–  We refer to such filters as lowpass filters. 
•  Recalling that the inverse Fourier transform is again a Gaussian (with inverse standard 

deviation), the point spread function in the frequency domain must be have the form 

–  When small standard deviations are used, much of the frequency information will be 
passed relatively unattended. 

–  When large standard deviations are used, only the lower frequencies are passed 
without severe attenuation. 
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Local scale: Lowpass example 
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Local scale: Scale space 

Concept: We add an additional 
axis to our image representation 
where scale (lowpass or bandpass) 
is the new dimension. (Here we  
show lowpass.) 

Advantage: Provides a principled 
parsing of the local image structure. 
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Local scale: Scale space 

Concept: We add an additional 
axis to our image representation 
where scale (lowpass or bandpass) 
is the new dimension. (Here we  
show bandpass.) 

Advantage: Provides a principled 
parsing of the local image structure. 
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Local scale: Scale space 

Concept: We add an additional 
axis to our image representation 
where scale (lowpass or bandpass) 
is the new dimension. (Here we 
show bandpass.) 

Disadvantage: A potential 
explosion of storage requirements. 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser 
spatial sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser 
spatial sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 

Formalization 
•  Lowpass Gaussian pyramids can be 

constructed by successively lowpass filtering 
the image and taking every other row and 
column (taking care that that the highest 
passed frequency can be properly captured). 

Gaussian pyramid 

Laplacian pyramid 

- - - 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser 
spatial sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 

Formalization 
•  Lowpass Gaussian pyramids can be 

constructed by successively lowpass filtering 
the image and taking every other row and 
column (taking care that that the highest 
passed frequency can be properly captured). 

•  Bandpass Laplacian pyramids can be 
constructed by taking the pointwise difference 
of successive levels in the lowpass pyramid. 

–  If Gaussian level i captures frequencies 
0-f 

–  Gaussian level j captures frequencies 0-
g 

–  Then the difference of j and i will cover 
frequencies f-g 

Gaussian pyramid 

Laplacian pyramid 

- 
- 

- 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser spatial 
sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 

Formalization 
•  Lowpass Gaussian pyramids can be constructed 

by successively lowpass filtering the image and 
taking every other row and column (taking care 
that that the highest passed frequency can be 
properly captured). 

•  Bandpass Laplacian pyramids can be constructed 
by taking the pointwise difference of successive 
levels in the lowpass pyramid. 

–  If Gaussian level i captures frequencies |0-g| 
–  Gaussian level j captures frequencies |0-f| 
–  Then the difference of i and j will cover 

frequencies |g-f| 

u g -g 

Gaussian pyramid 

Laplacian pyramid 

- 
- 

- 

i 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser spatial 
sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 

Formalization 
•  Lowpass Gaussian pyramids can be constructed 

by successively lowpass filtering the image and 
taking every other row and column (taking care 
that that the highest passed frequency can be 
properly captured). 

•  Bandpass Laplacian pyramids can be constructed 
by taking the pointwise difference of successive 
levels in the lowpass pyramid. 

–  If Gaussian level i captures frequencies |0-g| 
–  Gaussian level j captures frequencies |0-f| 
–  Then the difference of i and j will cover 

frequencies |g-f| 

u f -f g -g 

Gaussian pyramid 

Laplacian pyramid 

- 
- 

- 

i 

j 
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Local scale: Pyramids 
Intuition 
•  Scale space parses information according to 

spatial frequency content. 
•  By the sampling theorem, lower spatial 

frequencies can be captured with coarser spatial 
sampling. 

•  It should be possible to “subsample” the scale 
space components that correspond to lower 
frequencies. 

Formalization 
•  Lowpass Gaussian pyramids can be constructed 

by successively lowpass filtering the image and 
taking every other row and column (taking care 
that that the highest passed frequency can be 
properly captured). 

•  Bandpass Laplacian pyramids can be constructed 
by taking the pointwise difference of successive 
levels in the lowpass pyramid. 

–  If Gaussian level i captures frequencies |0-g| 
–  Gaussian level j captures frequencies |0-f| 
–  Then the difference of i and j will cover 

frequencies |g-f| 

u f -f g -g 

Gaussian pyramid 

Laplacian pyramid 

- 
- 

- 

i 

j 
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Local scale & orientation : Pyramids 

Bringing it all together 
•  Application of oriented filters across pyramid 

levels allows us to build oriented pyramids. 
•  Now we have the ability to decompose an 

image according to local scale and orientation 
content… 

•  …in a storage efficient data structure. 

Oriented pyramid 

sc
al

e 
Remark: One orientation 
band shown at 45 deg. 
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Local scale & orientation: Toward invariance 

Remark 
•  This type of representation can make local 

geometric similarity explicit… 
•  even in the presence of great photometric 

differences. 
•  For example: This type of representation can 

be an enabling component in matching 
images of the same scene across variable  

–  Illumination 
–  View direction 
–  Surface cover 
 

source: 

Remark: Only one of four orientations shown. 

Summer image Winter image 

fine 

 

medium 

coarse 
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Local scale & orientation: Texture analysis 

 
 

source 
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Local scale & orientation: Texture analysis 

 
 

source 

Remark: Only one of four orientations shown. 

horizontal filtering result 

fine 

 

medium 

coarse 
fine scale 

coarse  
scale 
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Local scale & orientation: Texture analysis 

 
 

source vertical filtering result 

fine 

 

medium 

coarse 
fine scale 

coarse  
scale 
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Local scale & orientation: Texture analysis 

 
 

source 
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Local scale & orientation: Texture analysis 

 
 

source 

fine 
 

coarse 
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Local scale & orientation: Texture analysis 

 
 

source 
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Summary 

•  Introduction 

•  Basics  

•  The Fourier transform  

•  Local operators  

•  Restoration and enhancement  

•  The discrete case  

•  Local scale and orientation  
 


