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CSE 4422/5323 Computer Vision

Unit 1: Image Formation
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Introduction: Overview

Motivation
• To fully understand information recovery from 

images

• it is necessary to understand how images are 
formed.

Key questions
• What determines where a 3D scene point will 

appear in an image?

• With what intensity will the point be imaged?
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Introduction: Overview

Major image types used in computer vision
• Intensity images

• Range images

Any digital image is just a numerical array
• Exact relationship of image to physical world 

depends on the image formation process.

• Information in the image is implicit and must be 
recovered through processing.
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Introduction: Basic concepts of intensity images

Optical parameters of lens: Characterize sensor optics
• lens type

• focal length

• field of view

• angular apertures

6

Introduction: Basic concepts of intensity images

Optical parameters of lens: Characterize sensor optics
• lens type

• focal length

• field of view

• angular apertures

Photometric parameters: Models of light energy reaching sensor following
reflection from surfaces in scene

• type, intensity and direction of illumination

• reflectance properties of visible surfaces

• effects of sensor structure on light reaching photoreceptors
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Introduction: Basic concepts of intensity images

Optical parameters of lens: Characterize sensor optics
• lens type

• focal length

• field of view

• angular apertures

Photometric parameters: Models of light energy reaching sensor following
reflection from surfaces in scene

• type, intensity and direction of illumination

• reflectance properties of visible surfaces

• effects of sensor structure on light reaching photoreceptors

Geometric parameters: Determine image position at which 3D points are imaged
• type of projection

• position and orientation of camera in space

• geometric distortions from imaging process
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Introduction: Basic concepts of intensity images

Parameters specific to digital imaging: Photoreceptors of viewing camera
• physical properties of photosensitive matrix

• discrete nature of photoreceptors

• quantization of intensity
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Optics (focus & lens)

Radiometry

Geometry 

Image acquisition 
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Basic optics: Overview

Fundamentals
• Image formation begins when light rays 

enter an aperture to impinge on an 
imaging surface.

• Typically, these rays are reflections of 
light rays off surfaces in the scene,

• but can also be direct images of light 
sources in the scene.

Aperture

Imaging
surface

Lens

Optical
axis
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Basic optics: Focus

Being in focus
• Any single point in the world reflects light in (possibly) many directions.

• Many rays reflected by same point may enter camera.

• To obtain sharp images, want all rays from a single scene point, P, to converge on a single 
image point, p.

• Say the image, p, of P is in focus.
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Basic optics: Focus
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• To obtain sharp images, want all rays from a single scene point, P, to converge on a single 
image point, p.

• Say the image, p, of P is in focus.

Two ways to achieve focus
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Basic optics: Focus

Being in focus
• Any single point in the world reflects light in (possibly) many directions.

• Many rays reflected by same point may enter camera.

• To obtain sharp images, want all rays from a single scene point, P, to converge on a single 
image point, p.

• Say the image, p, of P is in focus.

Two ways to achieve focus
1. Reduce the camera’s aperture to a pinhole.

• Only one ray from a given point enters the camera

• Sharp, undistorted images over wide range of distances.
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Basic optics: Focus

Being in focus
• Any single point in the world reflects light in (possibly) many directions.

• Many rays reflected by same point may enter camera.

• To obtain sharp images, want all rays from a single scene point, P, to converge on a single 
image point, p.

• Say the image, p, of P is in focus.

Two ways to achieve focus
1. Reduce the camera’s aperture to a pinhole.

• Only one ray from a given point enters the camera

• Sharp, undistorted images over wide range of distances.

• Requires long exposure times.

2. Introducing an optical system with apertures, lenses…

• Designed to make all rays coming from same 3D point converge to same image point.

• Sharp, undistorted images over a range of exposure times.
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Basic optics: Focus

Being in focus
• Any single point in the world reflects light in (possibly) many directions.
• Many rays reflected by same point may enter camera.

• To obtain sharp images, want all rays from a single scene point, P, to converge on a single 
image point, p.

• Say the image, p, of P is in focus.

Two ways to achieve focus
1. Reduce the camera’s aperture to a pinhole.
• Only one ray from a given point enters the camera
• Sharp, undistorted images over wide range of distances.
• Requires long exposure times.
2. Introducing an optical system with apertures, lenses…
• Designed to make all rays coming from same 3D point converge to same image point.
• Sharp, undistorted images over a range of exposure times.
• Can be complicated and focus at one distance at a time.
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Basic optics: Thin lens - a simple idealization

Two characterizing elements
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to its plane.

O Optical axis
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to its plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length, from the lens center.

lF

O

rF

f f

Optical axis

lF rF
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to its plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length from the lens center.

Two basic properties
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to the image plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length from the lens center.

Two basic properties
1. Any ray entering the lens parallel to the axis on one side goes through the focus on the other 

side.

lF

O

rF

f f

Optical axis

lF rF
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to the image plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length from the lens center.

Two basic properties
1. Any ray entering the lens parallel to the axis on one side goes through the focus on the other 

side.
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to the image plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length from the lens center.

Two basic properties
1. Any ray entering the lens parallel to the axis on one side goes through the focus on the other 

side.

2. Any ray entering the lens from the focus on one side emerges parallel to the axis on the other 
side.

lF

O

rF

f f

Optical axis

lF rF
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Basic optics: Thin lens - a simple idealization

Two characterizing elements

1. Optical axis going through lens center, O, and perpendicular to the image plane.

2. Two points,     and     , called left and right focus along the optical axis at a distance, f, the 
focal length from the lens center.

Two basic properties
1. Any ray entering the lens parallel to the axis on one side goes through the focus on the other 

side.

2. Any ray entering the lens from the focus on one side emerges parallel to the axis on the other 
side.

lF

O

rF

f f

Optical axis

lF rF
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

lF

O

rF

f f

Optical axis
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

P

lF

O

rF

Z f f

Optical axis
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

P

lF

O

p

rF

Z zf f

Optical axis
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

1. PQ goes through    . 

P

lF

Q

O

p

rF

Z zf f

Optical axis

rF
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

1. PQ goes through    . 

2. PR emerges parallel to the optical axis

that intersect at p, the image of P.

P

lF

Q

O

R p

rF

Z zf f

Optical axis

rF
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

1. PQ goes through    . 

2. PR emerges parallel to the optical axis

that intersect at p, the image of P.

• From similar triangles P S & R    O

S

P

lF

Q

O

R p

rF

Z zf f

Optical axis

rF

OR

PS

f

Z


lFlF

32

Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

1. PQ goes through    . 

2. PR emerges parallel to the optical axis

that intersect at p, the image of P.

• From similar triangles P S & R    O and ps & QO we have 

S

P

lF

Q

O

R

s

p

rF

Z zf f

Optical axis

rF

z

f

sp

QO

OR

PS

f

Z
 &

lFlF rFrF



17

33

Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:
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Basic optics: Thin lens

Fundamental equation of thin lens: Derived from the two basic properties.

• Consider a point P at a distance Z + f from the lens along the optical axis.

• All rays from P are focussed to the same point p; consider 2:

1. PQ goes through    . 

2. PR emerges parallel to the optical axis

that intersect at p, the image of P.

• From similar triangles P S & R    O and ps & QO we have 

• Letting               and              yieldsfZZ 


S

P

lF

Q

O

R

s

p

rF

Z zf f

Optical axis

rF

z

f

sp

QO

OR

PS

f

Z


lFlF rFrF

fzz 


fzZ

111
 

36

Basic optics: Thick lens - a more realistic model

Motivation
• Any simple lens will have number of optical defects.
• For better imaging it is customary to combine several simple lenses by aligning their optical 

axes to yield a compound lens. 
• The thick lens provides a reasonable model of such systems.

Two basic characterizing elements
1. A pair of principle planes parallel to the common optical axis.
2. A pair of nodal points, separated by a distance t – the thickness,  where the planes intersect 

the optical axis.

Fundamental properties
• A ray entering at one nodal point exits at the other without changing direction.

• Produces the same projection as an ideal thin lens, but with an additional offset, t.
• A thin lens is a thick lens where the two nodal points coincide.

Optical axis

a

a

Principle
planes

Nodal points

t
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Basic optics: Additional considerations

Field of view
• An angular measure of the portion of 3D space seen be the camera.

• Let d be the effective diameter of the lens, that portion reachable by light rays.

• Define the field of view, w, as half the angle subtended by the lens diameter as seen from 
the focus

f

d
w

2
tan 

d

f

w
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Basic optics: Additional considerations

Field of view
• An angular measure of the portion of 3D space seen be the camera.

• Let d be the effective diameter of the lens, that portion reachable by light rays.

• Define the field of view, w, as half the angle subtended by the lens diameter as seen from 
the focus

Depth of field
• The fundamental equation of the thin lens tells us that points at a distance Z will be focused 

at z.

• Other points will be images as (small) circles.

• These other points will have been focused at the apex of a cone at a different distance that 
will cut the image plane in circles.
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Optical axis



20

39

Basic optics: Additional considerations

Field of view
• An angular measure of the portion of 3D space seen be the camera.

• Let d be the effective diameter of the lens, that portion reachable by light rays.

• Define the field of view, w, as half the angle subtended by the lens diameter as seen from 
the focus

Depth of field
• The fundamental equation of the thin lens tells us that points at a distance Z will be focused 

at z.

• Other points will be imaged as (small) circles.

• These other points will have been focused at the apex of a cone at a different distance that 
will cut the image plane in circles.
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Basic optics: Additional considerations

Field of view
• An angular measure of the portion of 3D space seen be the camera.

• Let d be the effective diameter of the lens, that portion reachable by light rays.

• Define the field of view, w, as half the angle subtended by the lens diameter as seen from 
the focus

Depth of field
• The fundamental equation of the thin lens tells us that points at a distance Z will be focused 

at z.
• Other points will be images as (small) circles.
• These other points will have been focused at the apex of a cone at a different distance that 

will cut the image plane in circles.

Aberrations
• spherical aberration: defocusing of nonparaxial rays
• chromatic aberration: differential defocusing as function of wavelength of light
• vignetting: loss of image intensity near periphery as complex aperture occlude light
• Remark: Minimization of aberrations becomes more difficult as lens aperture increases

Trade-off between light gathering power and image quality.

f

d
w

2
tan 
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Basic radiometry: Surface reflectance

Prelude: Foreshortening and lengthening

• How does the length A (of the surface element) relate to the length A’ (the viewed projection 
of the surface element)?

a
d

n

A

A’
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Basic radiometry: Surface reflectance

Prelude: Foreshortening and lengthening

• How does the length A (of the surface element) relate to the length A’ (the viewed 
projection of the surface element)?

a
d

n

A
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Basic radiometry: Surface reflectance

Prelude: Foreshortening and lengthening

• How does the length A (of the surface element) relate to the length A’ (the viewed 
projection of the surface element)?

• cos(a) = base/hypotenuse = A’/A

a
d

n

A

A’
a
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Basic radiometry: Surface reflectance

Prelude: Foreshortening and lengthening

• How does the length A (of the surface element) relate to the length A’ (the viewed 
projection of the surface element)?

• cos(a) = base/hypotenuse = A’/A

• A’ = A cos(a), i.e., foreshortening

• A = A’/cos(a), i.e., for a given viewing length, A’,  more of the surface length, A, is seen as 
a increases (and hence cos(a) decreases).

a
d

n

A

A’
a
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Basic radiometry: Overview

Radiometry is concerned with relations between
• amounts of light energy emitted from light sources, I,

• reflected from surfaces, L,

• and registered by sensors, E.

Light source

Surface

Optics

Sensor 
array

I

L E
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Basic radiometry: Overview

Radiometry is concerned with relations between
• amounts of light energy emitted from light sources, I,

• reflected from surfaces, L,

• and registered by sensors, E.

Two purposes in study

1. Modeling how much of illuminating light is reflected from surfaces.

2. Modeling how much of reflected light reaches the sensor array.

Light source

Surface

Optics

Sensor 
array

I

L E
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Basic radiometry: Definitions

Scene radiance

• The power of light, per unit area, emitted at each point, P, of a surface in 3D space in a 
given direction,d.

• Units of power per unit foreshortened area emitted into a unit solid angle

• Denote as L(P,d).

Light source

Surface

Optics

Sensor 
array

I d

I

P

L(P,d) E

)..( 12  srmW
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Basic radiometry: Definitions

Scene radiance

• The power of light, per unit area, emitted at each point, P, of a surface in 3D space in a 
given direction,d.

• Units of power per unit foreshortened area emitted into a unit solid angle

• Denote as L(P,d).

Image irradiance

• The power of light, per unit area, at each point, p, of the image plane.

• Units of power per unit area 

• Denote as E(p).

Light source

Surface

Optics

Sensor 
array

I d

I

P

L(P,d)

p
E(p)

)..( 12  srmW

).( 2mW
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Basic radiometry: Surface reflectance

Lambertian model
• Assumes each surface point appears equally bright from all view directions.

– An approximation for the appearance of matte surfaces.
• Let

– I be the direction and amount of incident light
– n be the unit surface normal at P
– 1>r>0 be the surface albedo, a material property, giving ratio of reflected to incident 

light
• Scene radiance is given as L = r I.n
• Basis of derivation

1. The amount of light reaching a surface is proportional to the cosine of the angle 
between the illumination direction and the surface normal.

2. The amount of light reflected in a given direction is proportional to the cosine of the 
angle, a, between that direction and the surface normal

3. But, the surface’s area seen from that direction is inversely proportional to cos(a); so, 
view direction effects cancel.

Light source

Surface

Optics

Sensor 
array

I

n

d

I

P

L(P,d)

p
E(p)
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Basic radiometry: Surface reflectance

Lambertian model
• Assumes each surface point appears equally bright from all view directions.

– An approximation for the appearance of matte surfaces.
• Let

– I be the direction and amount of incident light
– n be the unit surface normal at P
– 1>r>0 be the surface albedo, a material property, giving ratio of reflected to incident 

light
• Scene radiance is given as L= max(0, r I.n)
• Basis of derivation

1. The amount of light reaching a surface is proportional to the cosine of the angle 
between the illumination direction and the surface normal.

2. The amount of light reflected in a given direction is proportional to the cosine of the 
angle, a, between that direction and the surface normal

3. But, the surface’s area seen from that direction is inversely proportional to cos(a); so, 
view direction effects cancel.

Light source

Surface

Optics

Sensor 
array

I
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d
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P

L(P,d)

p
E(p)
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Basic radiometry: Surface reflectance

Phong  model
• Augments the Lambertian model by including a specular component.

– An approximation for the appearance of (partially) shiny surfaces.

• Let

– h be the bisectrix of the view and illuminant directions

– e be the specular exponent that deterimines how “tight” specularities are

– 0<=a<=1 be the weighting between matte and specular effects

• Scene radiance is given as

• Basis of derivation is that specular component is mirror-like.

Light source

Surface

Optics

Sensor 
array

I

n

d

I

P

L(P,d)

p
E(p)h

]}).)(1().([,0max{ ehnaInarL 
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Basic radiometry: Surface reflectance

Phong  model
• Augments the Lambertian model by including a specular component.

– An approximation for the appearance of (partially) shiny surfaces.
• Let

– h be the bisectrix of the view and illuminant directions

– e be the specular exponent that deterimines how “tight” specularities are

– 0<=a<=1 be the weighting between matte and specular effects
• Scene radiance is given as
• Basis of derivation is that specular component is mirror-like.

Remarks
• Both the Lambertian and Phong models are essentially phenomenological models.
• Physical optics literature presents more detailed and rigorous models.
• Both phenomenological and physical models have been employed successfully in computer 

vision.

Light source

Surface

Optics

Sensor 
array

I

n

d

I

P

L(P,d)

p
E(p)h

]}).)(1().([,0max{ ehnaInarL 

54

Basic radiometry: Relating radiance and irradiance

Goal
• Derive the relationship between light reflected by surface and light registered by sensor.

• Assume thin lens optical model.
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Basic radiometry: Relating radiance and irradiance

Review: Solid angle
• The solid angle of a cone of directions is the area cut out by the cone on the unit sphere 

centered on the cone’s vertex.
• Consider a small planar patch and let

– be its area

– r be Its distance from the origin (sphere center)
– be the angle between its normal and the ray to the origin

• The solid angle is then given as

• Note that the cosine term accounts for foreshortening effects of the patch as seen from the 
origin.

Unit sphere

r



A

A





2

cos

r

A 


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Basic radiometry: Relating radiance and irradiance
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Basic radiometry: Relating radiance and irradiance

Review: Solid angle
• The solid angle of a cone of directions is the area cut out by the cone on the unit sphere 

centered on the cone’s vertex.
• Consider a small planar patch and let

– be its area

– r be Its distance from the origin (sphere center)
– be the angle between its normal and the ray to the origin

• The solid angle is then given as

• Note that the cosine term accounts for foreshortening effects of the patch as seen from the 
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Basic radiometry: Relating radiance and irradiance

Review: Solid angle
• The solid angle of a cone of directions is the area cut out by the cone on the unit sphere 

centered on the cone’s vertex.
• Consider a small planar patch and let

– be its area

– r be Its distance from the origin (sphere center)
– be the angle between its normal and the ray to the origin

• The solid angle is then given as

• Note that the cosine term accounts for foreshortening effects of the patch as seen from the 
origin.
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Basic radiometry: Relating radiance and irradiance

Review: Solid angle
• The solid angle of a cone of directions is the area cut out by the cone on the unit sphere 

centered on the cone’s vertex.
• Consider a small planar patch and let

– be its area

– r be Its distance from the origin (sphere center)
– be the angle between its normal and the ray to the origin

• The solid angle is then given as

• Note that the cosine term accounts for foreshortening effects of the patch as seen from the 
origin.
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation
• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 

small image patch,       , and the area of the small image patch,       , 

• Evaluate       , let 

– be the area of a small surface patch about P
– L be the scene radiance at P in direction of lens
– be the solid angle subtended by the lens

– be the angle between the normal at P and the principle ray (through lens center)
then 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation
• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 

small image patch,       , and the area of the small image patch,       , 

• Evaluate        , let 

– be the area of a small surface patch about P
– L be the scene radiance at P in direction of lens
– be the solid angle subtended by the lens

– be the angle between the normal at P and the principle ray (through lens center)
then 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate          via the solid angle formula, let 

– be the lens area

– be the angle between the principle ray and the optical axis

– be the distance of P from the lens center

then 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate          via the solid angle formula, let 

– be the lens area

– be the angle between the principle ray and the optical axis

– be the distance of P from the lens center

then 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate           via the solid angle formula, let 

– be the lens area

– be the angle between the principle ray and the optical axis

– be the distance of P from the lens center

then 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– For the solid angle           subtended by small image patch 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– For the solid angle           subtended by small image patch 
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation
• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 

small image patch,       , and the area of the small image patch,       , 

• Evaluate
– We have

– Looks like we should divide the left expression by the right expression.
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– Since  
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– Since  
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– Since  
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,

• Evaluate

– Since  
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation

• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 
small image patch,       , and the area of the small image patch,       ,
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Basic radiometry: Relating radiance and irradiance

Fundamental equation of radiometric image formation
• Image irradiance, E, at a point, p, is defined as the ratio between the power of light over a 

small image patch,       , and the area of the small image patch,       , 

• Conclusion: The image irradiance at p decreases as the fourth power of the cosine of the 
angle between the principle ray and the optical axis.

• For small angular aperture, this effect can be neglected  
Image irradiance can be regarded as uniformly proportional to the scene radiance over 
the entire image plane,
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Optics (focus & lens)

Radiometry

Geometry

Image acquisition
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Geometry of image formation: Overview

Goal
• Relate 3D positions of scene points to 

their 2D image positions.
• Requires consideration of 
1. Geometry of projection
2. Camera models

Fundamental projections
• Perspective
• Weak perspective
• Orthographic (parallel)

Camera models
• Extrinsic parameters
• Intrinsic parameters
• Projections reconsidered

Scene surface

Image plane
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Geometry of image formation: Projections

Perspective
• Define a Cartesian coordinate system at 

O, the center of projection.

• Let the optical axis align with the Z-axis
• Let the image plane

– be parallel to the XY-plane

– at a distance f, the focal length, 
along the optical axis

– piercing the optical axis at o, the 
principle point. 

• Consider the projection of a scene point 
P=(X,Y,Z) into the image point p=(x,y,f).

• Fundamental assumption: P and p are 
collinear (pinhole model).

• Let the ray Pp make and angle a with the 
optical axis
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Geometry of image formation: Projections

Perspective

• The length of P is

Scene surface

Image plane
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Geometry of image formation: Projections

Perspective

• The length of P is

• The length of p is

p = f sec a

Scene surface

Image plane
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Geometry of image formation: Projections

Perspective

• The length of P is

• The length of p is

p = f sec a
• So

• In component form

Or
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Geometry of image formation: Projections

Perspective

• The length of P is

• The length of p is

p = f sec a
• So

• In component form

Or

Scene surface

Image plane
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Geometry of image formation: History

Masaccio 1425
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Geometry of image formation: History

Albrecht Durer 1525
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Geometry of image formation: Projections

Perspective

• The length of P is

• The length of p is

p = f sec a
• So

• In component form

Or
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Geometry of image formation: Projections

Weak perspective
• Suppose that the variation of distance 

along the optical axis, dZ, is small 
compared to the average distance, 

• Then the perspective equations can be 
approximated as
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Geometry of image formation: Projections

Weak perspective
• Suppose that the variation of distance 

along the optical axis, dZ, is small 
compared to the average distance, 

• Then the perspective equations can be 
approximated as

Orthographic
• As a limiting case of perspective, let

• Correspondingly,                  so that 

and the projection equations become

x=X, y=Y
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Geometry of image formation: Projections

Weak perspective
• Suppose that the variation of distance 

along the optical axis, dZ, is small 
compared to the average distance, 

• Then the perspective equations can be 
approximated as

Orthographic
• As a limiting case of perspective, let

• Correspondingly,                  so that 

and the projection equations become

x=X, y=Y

Remark
• Regard weak perspective as an 

orthographic projection followed by 
isotropic scaling with 
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Geometry of image formation: Camera models

Observations
• Thus far we have developed the geometry of image formation in the coordinates of the 

camera reference frame.

• In many instances, it is desirable to make an explicit correspondence with an external, world 
reference frame.
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Geometry of image formation: Camera models

Observations
• Thus far we have developed the geometry of image formation in the coordinates of the 

camera reference frame.

• In many instances, it is desirable to make an explicit correspondence with an external, world 
reference frame.

Two basic assumptions
1. The camera reference frame can be located with respect to some other, known, reference 

frame – the world reference frame.

2. The coordinates of the points in the camera reference frame can be obtained from the image 
coordinates – the only ones directly available from the image.
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Geometry of image formation: Camera models

Observations
• Thus far we have developed the geometry of image formation in the coordinates of the 

camera reference frame.
• In many instances, it is desirable to make an explicit correspondence with an external, world 

reference frame.

Two basic assumptions
1. The camera reference frame can be located with respect to some other, known, reference 

frame – the world reference frame.
2. The coordinates of the points in the camera reference frame can be obtained from the image 

coordinates – the only ones directly available from the image.

Definitions
• The extrinsic camera parameters are those that define the location and orientation of the 

camera reference frame with respect to a known world reference frame.
– Photogrammetry speaks of exterior orientation.

• The intrinsic camera parameters are those that link the pixel coordinates of an image point 
with corresponding coordinates in the camera reference frame.

– Photogrammetry speaks of interior orientation.

94

Interlude: 3D rotation
• Given a point P= (X,Y,Z) in space

• Its transformation to P’ = (X’,Y’,Z’)
under rotation can be captured as a 
matrix operation

P’ = R( )P

with R( ) the rotation matrix that 
captures rotation about the three 
coordinate axes

Geometry of image formation: Camera models

X

Y

Z

P

P’

TΩ ),,( zyx 
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Geometry of image formation: Camera models

Rotation
• In 2D, counter clockwise rotation about the origin 

by an angle theta is given by the 2x2 matrix

X

Y








 


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Geometry of image formation: Camera models

Rotation
• In 2D, counter clockwise rotation about the origin 

by an angle theta is given by the 2x2 matrix

• For example
– Rotation by 90 deg. Of the unit vector (1,0) 

yields
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Geometry of image formation: Camera models

Rotation
• In 2D, counter clockwise rotation about the origin 

by an angle theta is given by the 2x2 matrix

• For example
– Rotation by 90 deg. Of the unit vector (1,0) 

yields
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Geometry of image formation: Camera models

Rotation
• In 2D, counter clockwise rotation about the origin 

by an angle theta is given by the 2x2 matrix

• For example
– Rotation by 90 deg. Of the unit vector (1,0) 

yields

– Rotation  by 90 deg. Of the unit vector (0,1) 
yields
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Geometry of image formation: Camera models

Rotation
• In 2D, counter clockwise rotation about the origin 

by an angle theta is given by the 2x2 matrix

• For example
– Rotation by 90 deg. Of the unit vector (1,0) 

yields

– Rotation  by 90 deg. Of the unit vector (0,1) 
yields
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Geometry of image formation: Camera models

Rotation
• In 3D, counterclockwise rotation about the Z-Axis 

is given via the matrix

• Rotation is in the XY-plane.
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Geometry of image formation: Camera models

Rotation
• In 3D, counterclockwise rotation about the Y-Axis 

is given via the matrix

• Rotation is in the XZ-plane.
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Geometry of image formation: Camera models

Rotation
• In 3D, counterclockwise rotation about the Y-Axis 

is given via the matrix

• Rotation is in the XZ-plane, e.g., for 90 deg,
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Geometry of image formation: Camera models

Rotation
• In 3D, counterclockwise rotation about the Y-Axis 

is given via the matrix

• Rotation is in the XZ-plane, e.g., for 90 deg,
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Geometry of image formation: Camera models

Rotation
• In 3D, counterclockwise rotation about the X-Axis 

is given via the matrix

• Rotation is in the YZ-plane
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Geometry of image formation: Camera models

Rotation
• An arbitrary rotation is then given as 
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Geometry of image formation: Camera models

Rotation
• An arbitrary rotation is then given as 

Remarks
• The order of rotations about the coordinate axes matters (rotations do not commute).

• We have                            , with I the 3 x 3 identity matrix.

• There are several alternative ways to represent 3D rotations.
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Geometry of image formation: Extrinsic parameters

Camera to world transformation
• Typically given via two sets of parameters

1. A 3D translation vector, T, describing the relative positions of the two reference frames.

2. A 3x3 rotation matrix, R, that brings the corresponding axes of the two frames into 
alignment. 

• Letting      and       be the camera and world coordinates of the same point, we write.

Remark

• By definition, R, is completely specified be 3 parameters (e.g., rotation about each of the 
coordinate axes); so, there are  6 extrinsic parameters in total (3 for T; 3 for R).

)( TPP  wc R
wPcP

R,T

wP cP

wY

wX

wZ

cY

cX
cZ
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Geometry of image formation: Extrinsic parameters

Camera to world transformation
• Typically given via two sets of parameters

1. A 3D translation vector, T, describing the relative positions of the two reference frames.

2. A 3x3 rotation matrix, R, that brings the corresponding axes of the two frames into 
alignment. 

• Letting      and       be the camera and world coordinates of the same point, we write.

Remark

• By definition, R, is completely specified be 3 parameters (e.g., rotation about each of the 
coordinate axes); so, there are  6 extrinsic parameters in total (3 for T; 3 for R).

)( TPP  wc R
wPcP
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Geometry of image formation: Intrinsic parameters

Camera to pixel transformation
• Typically given via two sets of parameters

1. The focal length, f, serving to capture the (perspective) projection.

2. The pixel coordinates of the principle point (image center),            , and the effective pixel 
horizontal and vertical dimensions,            , serving to capture the transformation between 
camera frame coordinates and pixel coordinates.

• We already have considered how to incorporate the focal length.

• Letting            be the pixel coordinates, we incorporate the second set of parameters via

Remarks
• For this simple analysis, there are 5 intrinisic parameters in total 

• More generally, additional parameters might come into play, e.g., lens distortion parameters.
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Geometry of image formation: World-image transformation

Component formulation
• Recall the camera frame expression of perspective projection
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Geometry of image formation: World-image transformation

Component formulation
• Recall the camera frame expression of perspective projection

• We substitute the intrinsic parameterization on the lhs and the extrinsic parameterization on 
the rhs to find that (with      the i-th row of R)
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Geometry of image formation: World-image transformation

Component formulation
• Recall the camera frame expression of perspective projection

• We substitute the intrinsic parameterization on the lhs and the extrinsic parameterization on 
the rhs to find that (with      the i-th row of R)
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Geometry of image formation: World-image transformation

Component formulation
• Recall the camera frame expression of perspective projection

• We substitute the intrinsic parameterization on the lhs and the extrinsic parameterization on 
the rhs to find that (with      the i-th row of R)

• Which relates the 3D coordinates of a point in the world frame to its corresponding image 
coordinates.
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Geometry of image formation: World-image transformation

Matrix formulation
• Starting with the component formulation
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Geometry of image formation: World-image transformation

Matrix formulation
• Starting with the component formulation

• Define matrices that encapsulate intrinsic,       , and extrinsic,       , parameters
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Geometry of image formation: World-image transformation

Matrix formulation
• Starting with the component formulation

• Define matices that encapsulate intrinsic,       , and extrinsic,       , parameters

)(

)(
)(

)(

)(
)(

3

2

3

1

TPR

TPR

TPR

TPR











w
T

w
T

yyi

w
T

w
T

xxi

fsoy

fsox
















































T

T

T

os
f

os
f

T

T

T

exty
y

x
x

3

2

1

int ,

100

0

0

R

R

R

RMM

intM extM
























































13

2

1

w

w

w

T

T

T

c

c

c

Z

Y

X

T

T

T

Z

Y

X

R

R

R

R

)( TPP 
















wc

c

c

c

Z

Y

X

R

Neglecting
camera to
image 
transformation



59

117

Geometry of image formation: World-image transformation

Matrix formulation
• Starting with the component formulation

• Define matices that encapsulate intrinsic,       , and extrinsic,       , parameters

• And concatenate them to write
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Geometry of image formation: World-image transformation
Matrix formulation
• Starting with the component formulation

• Define matices that encapsulate intrinsic,       , and extrinsic,       , parameters

• And concatenate them to write

• Remark:
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Geometry of image formation: Perspective camera

Model

• The perspective camera projection matrix, M, is formed by explicitly concatentating the 
interior and exterior parameter matrices.
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Geometry of image formation: Perspective camera

Model

• The perspective camera projection matrix, M, is formed by explicitly concatentating the 
interior and exterior parameter matrices.

• As an example, letting                           and)0,0(),( yx oo )1,1(),( yx ss
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Geometry of image formation: Perspective camera

Model

• The perspective camera projection matrix, M, is formed by explicitly concatentating the 
interior and exterior parameter matrices.

• As an example, letting                           and)0,0(),( yx oo )1,1(),( yx ss
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Geometry of image formation: Perspective camera

Model

• The perspective camera projection matrix, M, is formed by explicitly concatentating the 
interior and exterior parameter matrices.

• As an example, letting                           and

• Following through on the transformation, we find
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Geometry of image formation: Weak perspective camera

Model
• We note that the third component of the perspective projection,                     , gives the 

distance of the point       from the center of projection along the optical axis.
• The weak perspective condition is (with      the centrode of the points under consideration)

• Which suggests that

• So that the corresponding projection matrix has the form
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Geometry of image formation: Affine camera

Model
• A generalization of the weak perspective camera model.

• Defined from M by 

– setting the first three entries of its last row to 0

– leaving all remaining entries be unconstrained.

• Does not appear to correspond to any standard physical camera

• But often used in the computer vision research for its simplicity
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Optics (focus & lens)

Radiometry

Geometry 

Image acquisition 
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Digital image acquisition: Basics

Typical image acquisition system 
• Three major hardware components

1. A viewing camera

2. A frame grabber

3. A host computer 
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Digital image acquisition: Basics

Typical image acquisition system
• Three major hardware components
1. A viewing camera
2. A frame grabber
3. A host computer 

Digital camera
• Optics, radiometry, geometry as before.
• Sensor typically CCD (Charge Coupled 

Device) technology

– An nxm rectangular grid of 
photosensors

– Each photosensor converts light 
energy to a voltage

• Output is a continuous electrical signal, 
the video signal, 

– generated by scanning the CCD 
array (e.g., line by line)

– and reading the voltages.
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Digital image acquisition: Basics

Typical image acquisition system
• Three major hardware components
1. A viewing camera
2. A frame grabber
3. A host computer 

Frame grabber
• Digitizes the video signal into a 2D rectangular 

array of NxM integer values, typically [0,255].
• Stores the digitized result into a memory 

buffer.

• Refer to the array as the digitized image E(i,j),
• with (i,j) indexing individual picture elements, 

called pixels

Remark:
• The number of elements in the CCD (nxm)

may be different from those of the frame 
grabber (NxM)

• The pixel             and CCD coordinates        
are related by
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Digital image acquisition: Basics

Typical image acquisition system 
• Three major hardware components

1. A viewing camera

2. A framegrabber

3. A host computer 

Host computer 
• Recipient of the digitzed image.

• Computational platfom on which 
processing takes place.
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Digital image acquisition: Colour

Wavelength dependence of sensing
• The sensitivity of a sensing device varies 

with the wavelength of the incident light.

• Photons with very little energy tend to go 
right through the material.

• Very energetic photons may be stopped 
before they reach the sensitive layer.

• Quantum efficiency is the ratio of electron 
flux generated by the sensor for an 
incident photon flux, denoted as         , 
with     wavelength.

• Each sensing material has its 
characteristic variation in quantum 
efficiency with wavelength.

)(q


visible light

infrared
(up to ~10^6nm)

ultraviolet
(down to ~5nm)

~400

~700

Electromagnetic spectrum
(Wavelength in nanometers;
not to scale)

x-rays
(< ~5nm)

radio waves
(>~10^6)
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Digital image acquisition: Colour

Wavelength dependence of image
• Consider a small wavelength interval
• Let the flux of photons with energy >=    

but <               be 
• The number of electrons liberated during 

sensing is then

• If different photosensitive materials are 
used in sensors, then the obtained images 
differ because their spectral sensitivities 
differ.

• Another way to achieve the same effect  
– Use the same sensing material, but
– Place differentially absorbing filters in 

front of the camera
– If the transmission of the i-th filter is 

, then the effective quantum 
efficiency of the combined filter and 
sensor is                  .
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Digital image acquisition: Colour

How many filters should we use?
• The ability to distinguish among materials 

grows as more images are taken through 
more filters.

• The measurements are correlated, as 
most surfaces have a smooth variation of 
reflectance with wavelength.

• Typically, little is gained by using many 
filters.

• Remark: Sensing systems that use a 
small number of sensor types having 
different spectral sensitivities

– will provide the same output for 
many different impinging spectral 
distributions.

– The spectral distributions 
themselves are not being measured,

– rather integrals of their product with 
spectral sensitivity of particular 
sensor types.
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Digital image acquisition: Colour

How many filters should we use?
• As an example, the human visual system

– Uses three types of photoreceptors 
called cones.

– They cover the range of roughly 
[400,700] nanometers (visible light).

– There is considerable overlap in 
their spectral sensitivity.

• Since they often have been designed with 
human viewing in mind, standard video 
cameras have sensitivities similar to that 
of humans.

• However, an emerging area of computer 
vision research is in “vision beyond the 
visible spectrum”.
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Digital image acquisition: Noise

It is difficult to make accurate measurements of image irradiance.
• Measurements are affected by fluctuations in the signal being measured.

• If the measurements are repeated, somewhat different results might be obtained.

• Typically, measurements will cluster around the correct value.

• It can be useful to consider the probability that a measurement will fall within a certain 
interval, roughly

– This is the limit of the ratio of the number of measurements that fall in that interval

– to the total number of trials, 

– as the total number or trials tends to infinity.
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Digital image acquisition: Noise

Probability density distribution
• The probability that a random variable will 

be equal to or greater that x, but less than 
or equal to              tends to                as 
tends to zero.

• Define p(x) as a probability density 
distribution.

• A probability distribution can be estimated 
from a histogram, h(i), obtained from a 
finite number of trials.

• Two important properties of any 
probability distribution p(x)

1.

2.    
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Digital image acquisition: Noise

Mean
• Often the probability distribution has a strong peak near the correct or expected value.
• Define the mean as the center of area,      , of this peak, according to

• Since the integral of p(x) from minus to plus infinity is 1, we have

• We call the integral on the rhs the first moment of p(x).
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Digital image acquisition: Noise

Mean
• Often the probability distribution has a strong peak near the correct or expected value.
• Define the mean as the center of area,      , of this peak, according to

• Since the integral of p(x) from minus to plus infinity is 1, we have

• We call the integral on the rhs the first moment of p(x)
Variance
• To estimate the spread of the peak of p(x), we compute the second moment about the 

mean, called the variance

• Define the standard deviation as the square root of the variance of a distribution,
– Conventionally, this is a typical characterization of the width of a distribution.
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Digital image acquisition: Noise

Signal to noise ratio (SNR)
• We often want to speak of the relative strength of the signal and noise for a given situation.
• For this purpose, we introduce the signal to noise ratio

where        and        are the standard deviations of the signal and noise, respectively.

• Signal to noise ratio is often given in decibel units (dB)

• For example, assuming a signal to noise ratio of 100 we have
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Digital image acquisition: Quantization

Spatial quantization as a requirement
• Because we can only transmit a finite number of measurements to a digital computer, 

spatial quantization of the image is necessary.

• It is common to make measurements at nodes of a rectangular array of integers.

• For example, the photoreceptors of a CCD sensor are organized in a rectangular array of 
closely packed sensing elements.

How does the quantization rate influence the image formation process?
• Let d be the distance between adjacent samples 

– for simplicity assume equal sampling in the vertical and horizontal dimensions

• The sampling theorem tells us that d determines the highest spatial frequency,      , that can 
be captured by the system, according to

dc 2

1


c
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Digital image acquisition: Quantization

Spatial quantization as a requirement
• Because we can only transmit a finite number of measurements to a digital computer, 

spatial quantization of the image is necessary.

• It is common to make measurements at nodes of a rectangular array of integers.

• For example, the photoreceptors of a CCD sensor are organized in a rectangular array of 
closely packed sensing elements.

How does the quantization rate influence the image formation process?
• Let d be the distance between adjacent samples 

– for simplicity assume equal sampling in the vertical and horizontal dimensions

• The sampling theorem tells us that d determines the highest spatial frequency,      , that can 
be captured by the system.

• We will consider the sampling theorem in detail during the next unit of our course.

c
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Digital image acquisition: Quantization

How does the highest spatial frequency captured by quantization compare 
with the spatial frequency content of images?

• The optical component (lens, aperture, etc.) of typical camera systems  are capable of 
imaging spatial frequencies approximately an order of magnitude higher than what could be 
properly sampled by the sensor array.

– We are to expect undersampled images with corresponding artifacts

– In particular, aliasing – the masquerading of high frequencies as spurious low 
frequencies (jaggies).

• However,

– The amplitude of such components as derived from common image sources contain 
little energy in such regions of the spectrum.

– We do not sample at points; rather each sampling element reports the average 
irradiance over a finite area and thereby eliminates the highest frequency components 
before they can be aliased.
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(Digital) image acquisition

• Basics

• Colour

• Noise

• Quantization
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Our visual world: Final thoughts on image formation

Why is vision possible?
• At first consideration, it might seems that there is little hope of recovering information about 

a 3D world from one (or more) 2D images.

• However, as we have started to understand, the relationship between the image and the 
impinging world is highly constrained.

– We are immersed in a homogeneous, transparent medium.

– Light rays are (mostly) not refracted or absorbed in the medium.

– Surfaces are (mostly) opaque.

– We can follow a ray from an image point through the lens until we intersect a surface.

– The irradiance at an image point depends (mostly) on the radiance of the surface 
patch.

– Surfaces are 2D manifolds; their shape can be represented, e.g., by giving the distance 
to the surface as a function of image coordinates.

• A principled approach to computer vision must be based in understanding and exploiting 
these constraints.
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Our visual world: Final thoughts on image formation

Why is vision possible? 
• At first consideration, it might seems that there is little hope of recovering information about 

a 3D world from one (or more) 2D images.
• However, as we have started to understand, the relationship between the image and the 

impinging world is highly constrained.
– We are immersed in a homogeneous, transparent medium.
– Light rays are (mostly) not refracted or absorbed in the medium.
– Surfaces are (mostly) opaque.
– We can follow a ray from an image point through the lens until we intersect a surface.
– The irradiance at an image point depends (mostly) on the radiance of the surface 

patch.
– Surfaces are 2D manifolds; their shape can be represented, e.g., by giving the distance 

to the surface as a function of image coordinates.
• A principled approach to computer vision must be based in understanding and exploiting 

these constraints.

Would it be possible if? 
• Imagine being immersed instead in a world with varying concentrations of pigments 

dispersed within a gelatinous substance.
• What could be seen then?
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Summary

• Introduction

• Basic optics

• Basic radiometry

• Geometric image formation

• Image acquisition

• Our visual world


