4422/5323 Computer Vision

Unit 0: Introduction

Outline

- Motivation
- Definition
- Allied areas
- Varied aspects of computer vision
- What this course will emphasize

Motivation: Vision as an information source

A source of information about the surrounding world

- Object identity
- Object location
- Object dynamics

Supports intelligent interaction with the environment

- Navigation
- Manipulation
- Decision making

Information derived without physical contact

- Optical data is acquired at a distance.
- Enables unobtrusive sensing.

Motivation: Benefits of artificial vision systems

Theoretical

- Provides a rigorous paradigm for the study of visual processing.
- Provides a concrete example of a complex information processing task.

Practical

- Ameliorates need for people to perform tedious and/or dangerous tasks.
- Supports enhanced human performance.

Motivation: Challenges of computer vision

Desired information is not explicit in the sensed data

- Image data is a complex function of
 - scene geometry
 - scene surface microstructure
 - scene illumination
- Biological systems provide an existence
 proof
 - but appear to be complex
 - are only partially understood, even after great research effort

Status

- Significant progress has been made for circumscribed scenarios.
- Much work to be done to support flexible, real-world operation.

128	123	123	131	124	68	68	70	
122	124	138	139	89	72	68	70	
121	126	135	136	75	69	69	69	
125	127	130	131	80	79	75	70	
125	126	255	132	75	78	75	75	
126	125	130	80	75	72	75	74	
125	126	127	80	79	77	76	75	
126	127	127	79	78	78	77	76	

Definition: What is computer vision?

Problems of computer vision

- Computing properties of the world from one or more images
- Properties of interest:
 - geometric (shape, position),
 - photometric (surface reflectance)
 - dynamic (velocity)

Tools of computer vision

- Computers to interpret images
- Specific hardware and software to acquire, store, process and communicate (transmit) images.
- Algorithms for computing the desired information from available input.

Definition: What is computer vision?

Vision

- to know what is where by looking
- Aristotle's definition

Definition: What is computer vision?

Vision

- to know what is where by looking
- Aristotle's definition

Computer vision

- the study of recovering useful properties of the world (what, where)
- from one or more images (by looking)
- with an algorithmic level of specification

Allied areas of investigation: Interrelationships

- Image processing
- Photogrammetry
- Pattern recognition
- Computer graphics

Allied areas: Image processing

Subject

- Generation of new images from existing images.
- Images altered in some desired fashion.

Examples

- noise suppression
- feature enhancement
- video stabilization

- Often serves to provide components to computer vision.
- Preprocessing of sensed data.

Allied areas: Photogrammetry

Subject

- reliably accurate measurements
- from noncontact imaging

Examples

- aerial cartography
- surveying

- Typically seeks higher levels of precision than computer vision.
- Not all computer vision is concerned with quantitative measurements.

Allied areas: Pattern recognition

Subject

- Classification of patterns
- Pattern represented by a set of numbers representing characteristics of an object (e.g., height, weight)

Examples

- Classification of chemical composition from spectral measurements.
- Classification of disease from symptoms.
- Classification of targets from visual features.

- Techniques of pattern recognition can usefully be applied to the output of a computer vision system.
- Capable of assigning imaged objects to classes based on vision processing.

Allied areas: Computer graphics

Subject

• Generation of images from models or other computational specification.

Examples

- Photorealistic rendering
- Computer animation
- Abstract design

- Akin to an inverse
- Potential to combine forces, e.g., image based rendering (IBR)

Allied areas: Computer graphics

Subject

• Generation of images from models or other computational specification.

Examples

- Photorealistic rendering
- Computer animation
- Abstract design

- Akin to an inverse
- Potential to combine forces, e.g., image based rendering (IBR)

Allied areas of investigation: Interrelationships

- Image processing
- Photogrammetry
- Pattern recognition
- Computer graphics

Varied aspects of computer vision

Research areas

- topics addressed by a significant number of publications
- a visible indicator of research

Application areas

- domains where computer vision is used to solve real-world problems
- possibly in conjunction with other technologies

Varied aspects: Research

- Image feature detection
- Colour analysis
- Texture analysis
- Camera calibration
- Shape representation
- Shape recovery from single image cues (shape-from-X)
- Stereopsis
- Motion analysis
- Object recognition and localization
- Active vision
- High-performance and real-time architectures

Research areas: Feature detection

Goal

- Detect presence and position of specific structures in images
- Examples: edge detection, corner detection, shape detection (lines, circles)

Challenges

- Operation with clutter and other high noise situations
- Trade-offs in specificity vs.
 generality
- Trade-offs in sensitivity in identification vs. precision in localization

Approaches

- Template matching
- Tuned filtering

Source image

Edges detected

Research areas: Stereopsis

Goal

- given 2 (or more) images of a scene
- recover 3D scene geometry

Challenges

- attaining accurate camera calibration (or developing methods that due without)
- establishing correspondence
 between disparate views
- unambiguous interpretation of estimated correspondences

Approaches

- analysis based on extraction of discrete image features (e.g., edges)
- analysis based on continuous image regions

Stereo pair

Research areas: Motion analysis

Goals

- from a temporal sequence of images
- recover (dynamic) properties of the scene

Challenges

- establishing relationship between
 image locations across time
- unambiguous interpretation of established relationships
- robustness to appearance change, large displacements and occlusion effects

Approaches

- correlational analysis of image templates
- analysis of spatial and temporal gradients
- spatiotemporal filtering
- regression-based model fitting

Source video

Change images

Detected coherently moving object

Research areas: Object recognition and localization

Goals

- identification of objects in scene
- and their positions

Challenges

- reliable extraction of object features
- grouping features of a common object (prior to recognition)
- indexing into large databases
- accurate verification of hypotheses

Approaches

- alignment of image features to stored models
- extraction of geometric and photometric invariants as indexing keys

Recognized model projected on source image

Varied aspects: Applications

- Industrial inspection
- Surveillance and monitoring
- Person recognition (automated fingerprint, face, iris,...)
- Human computer interface
- Autonomous vehicles
- Hand-eye robotics
- Medical image analysis
- Image databases
- Virtual and augmented reality

Application areas: Aerial surveillance

- acquisition of information about ground activities
- from well positioned mobile platform

State of the art example

- video geolocation
- alignment of video to calibrated reference imagery to attain geodetic coordinates

Application areas: Personal identification

Real-world needs

- secure access control to sensitive areas and materials
- reliable personal verification and identification

State of the art example

- biometric-based identification
- automated iris recognition

Application areas: Human computer interface

Real-world needs

- More natural interfaces between humans and computers (and other artifacts)
- Increased speed and ease of interaction

State of the art example

- Automated hand gesture recognition.
- Vision-based detection, localization and tracking

Application areas: Medical

Real-world needs

- aides to physicians in diagnosis of disease
- tools for increasing accuracy and throughput

State of the art examples

- shape-based lesion detection
- alignment of real-time retinal imagery with
 previous reference
- change detection for cancer detection

Emphasis of this course

Concentrate on

- Fundamental analyses of visual information processing
- Algorithms that exploit these analyses

• Topics

- Overview of computer vision
- Image formation
- Image representation
- Feature detection
- Stereopsis
- Motion analysis
- Example applications

Summary

- Motivation
- Definition
- Allied areas
- Varied aspects of computer vision
- What this course will emphasize