EECS 4422/5323: Computer Vision **Camera Processing Pipeline**

Hakki Can Karaimer

Lab session #1: September 2017

DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE

1

Camera = light measuring device

Simple models assume an image is a "quantitative measurement" of scene radiance.

Camera = light measuring device

Source image

Edges detected

Light-measuring device?

Light-measuring device?

Samsung S6

HTC One M9

Google Camera App All setting are the same

5

6

Digital cameras

- Digital cameras are far from being light measuring devices
- They are designed to produce visually pleasing photographs
- There is a great deal of processing (photofinishing) happening on the camera

The goal of this lab session is to discuss common processing steps that take place onboard consumer cameras

Reading raw image

10

Black light subtraction linearization

12

Lens correction (vignetting)

Lens correction (vignetting) – before

Lens correction (vignetting) – after

16

Demosaicing

18

White balancing & color space conversion

Colour cast correction

• If we can observe the colour of the illumination, we can correct it with a simple diagonal matrix.

$$\begin{bmatrix} R'\\G'\\B' \end{bmatrix} = \begin{bmatrix} R_{white}/R & 0 & 0\\ 0 & G_{white}/G & 0\\ 0 & 0 & B_{white}/B \end{bmatrix} \begin{bmatrix} R\\G\\B \end{bmatrix}$$

 This is known as "white-balance" since it ensures white is corrected

After the illuminant is divided out, we are sure about white is correct.

21

22

Hue/Sat map application

Sensor

24

Exposure curve application

EV+1

26

Colour manipulation application

Tone curve application

30

Final color space conversion

Gamma curve application

34