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¡ Much	of	the	course	will	be	devoted	to		
large	scale	compu-ng	for	data	mining	

¡  Challenges:	
§ How	to	distribute	computa6on?	
§ Distributed/parallel	programming	is	hard	

¡ Map-reduce	addresses	all	of	the	above	
§ Google’s	computa6onal/data	manipula6on	model	
§  Elegant	way	to	work	with	big	data	
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¡  20+	billion	web	pages	x	20KB	=	400+	TB	
¡  1	computer	reads	30-35	MB/sec	from	disk	
§  ~4	months	to	read	the	web	

¡  ~1,000	hard	drives	to	store	the	web	
¡  Takes	even	more	to	do	something	useful		
with	the	data!	

¡  Today,	a	standard	architecture	for	such	
problems	is	emerging:	
§  Cluster	of	commodity	Linux	nodes	
§  Commodity	network	(ethernet)	to	connect	them	
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¡  Large-scale	compu-ng	for	data	mining		
problems	on	commodity	hardware	

¡  Challenges:	
§ How	do	you	distribute	computa-on?	
§ How	can	we	make	it	easy	to	write	distributed	
programs?	

§ Machines	fail:	
§ One	server	may	stay	up	3	years	(1,000	days)	
§  If	you	have	1,000	servers,	expect	to	loose	1/day	
§ People	es6mated	Google	had	~1M	machines	in	2011	

§ 1,000	machines	fail	every	day!	
7	



EECS-4415A: Big Data Systems | Fall 2017 | MapReduce 

¡  Issue:	Copying	data	over	a	network	takes	-me	
¡  Idea:	
§  Bring	computa6on	close	to	the	data	
§  Store	files	mul6ple	6mes	for	reliability	

¡ Map-reduce	addresses	these	problems	
§ Google’s	computa6onal/data	manipula6on	model	
§  Elegant	way	to	work	with	big	data	
§  Storage	Infrastructure	–	File	system	

§ Google:	GFS.	Hadoop:	HDFS	
§  Programming	model	

§ Map-Reduce	 8	
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¡  Problem:	
§  If	nodes	fail,	how	to	store	data	persistently?		

¡  Answer:	
§ Distributed	File	System:	

§ Provides	global	file	namespace	
§ Google	GFS;	Hadoop	HDFS;	

¡  Typical	usage	paIern	
§ Huge	files	(100s	of	GB	to	TB)	
§ Data	is	rarely	updated	in	place	
§  Reads	and	appends	are	common	
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¡  Chunk	servers	
§  File	is	split	into	con6guous	chunks	
§  Typically	each	chunk	is	16-64MB	
§  Each	chunk	replicated	(usually	2x	or	3x)	
§  Try	to	keep	replicas	in	different	racks	

¡ Master	node	
§  a.k.a.	Name	Node	in	Hadoop’s	HDFS	
§  Stores	metadata	about	where	files	are	stored	
§ Might	be	replicated	

¡  Client	library	for	file	access	
§  Talks	to	master	to	find	chunk	servers		
§  Connects	directly	to	chunk	servers	to	access	data	
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¡  Reliable	distributed	file	system	
¡  Data	kept	in	“chunks”	spread	across	machines	
¡  Each	chunk	replicated	on	different	machines		
§  Seamless	recovery	from	disk	or	machine	failure	
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D1 
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C1 
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Chunk server 2 

… 
C2 D0 

D0 

Bring	computation	directly	to	the	data!	
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C2 D0 
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Warm-up	task:	
¡ We	have	a	huge	text	document	

¡  Count	the	number	of	6mes	each		
dis6nct	word	appears	in	the	file	

¡  Sample	applica-on:		
§  Analyze	web	server	logs	to	find	popular	URLs	
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Case	1:		
§  File	too	large	for	memory,	but	all	<word,	count>	
pairs	fit	in	memory	

Case	2:	
¡  Count	occurrences	of	words:	
§ words(doc.txt) | sort | uniq -c 

§ where	words	takes	a	file	and	outputs	the	words	in	it,	
one	per	a	line	

¡  Case	2	captures	the	essence	of	MapReduce	
§ Great	thing	is	that	it	is	naturally	parallelizable	
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¡  Sequen6ally	read	a	lot	of	data	
¡ Map:	
§  Extract	something	you	care	about	

¡  Group	by	key:	Sort	and	Shuffle	
¡  Reduce:	
§  Aggregate,	summarize,	filter	or	transform	

¡ Write	the	result	

Outline	stays	the	same,	Map	and	Reduce	
change	to	fit	the	problem	
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¡  Input:	a	set	of	key-value	pairs	
¡  Programmer	specifies	two	methods:	
§ Map(k, v) → <k’, v’>* 

§  Takes	a	key-value	pair	and	outputs	a	set	of	key-value	pairs	
§ E.g.,	key	is	the	filename,	value	is	a	single	line	in	the	file	

§  There	is	one	Map	call	for	every	(k,v)	pair	

§ Reduce(k’, <v’>*) → <k’, v’’>* 
§ All	values	v’	with	same	key	k’	are	reduced	together		
and	processed	in	v’	order	

§  There	is	one	Reduce	func6on	call	per	unique	key	k’	
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The crew of the space 
shuttle Endeavor recently 
re turned to Ear th as 
ambassadors, harbingers of 
a new era o f space 
exploration. Scientists at 
NASA are saying that the 
recent assembly of the 
Dextre bot is the first step in 
a long-term space-based 
man/mache partnership. 
'"The work we're doing now 
-- the robotics we're doing 
-- is what we're going to 
need …………………….. 
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map(key, value): 
// key: document name; value: text of the document 
 for each word w in value: 
  emit(w, 1) 

 

reduce(key, values): 
// key: a word; value: an iterator over counts 

 result = 0 
 for each count v in values: 
  result += v 
 emit(key, result) 
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Map-Reduce	environment	takes	care	of:	
¡  Par66oning	the	input	data	
¡  Scheduling	the	program’s	execu6on	across	a		
set	of	machines	

¡  Performing	the	group	by	key	step	
¡  Handling	machine	failures	
¡ Managing	required	inter-machine	
communica6on	
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Big	document	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	with	

same	key	
(Hash	merge,	Shuffle,	

Sort,	Partition)	

Reduce:	
Collect	all	values	
belonging	to	the	
key	and	output	
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All	phases	are	distributed	with	many	tasks	doing	the	work	
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¡  Programmer	specifies:	
§  Map	and	Reduce	and	input	files	

¡  Workflow:	
§  Read	inputs	as	a	set	of	key-value-
pairs	

§  Map	transforms	input	kv-pairs	into	a	
new	set	of	k'v'-pairs	

§  Sorts	&	Shuffles	the	k'v'-pairs	to	
output	nodes	

§  All	k’v’-pairs	with	a	given	k’	are	sent	
to	the	same	reduce	

§  Reduce	processes	all	k'v'-pairs	
grouped	by	key	into	new	k''v''-pairs	

§  Write	the	resul6ng	pairs	to	files	

¡  All	phases	are	distributed	with	
many	tasks	doing	the	work	

Input	0	

Map	0	

Input	1	

Map	1	

Input	2	

Map	2	

Reduce	0	 Reduce	1	

Out	0	 Out	1	

Shuffle	
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¡  Input	and	final	output	are	stored	on	a	
distributed	file	system	(FS):	
§  Scheduler	tries	to	schedule	map	tasks	“close”	to	
physical	storage	loca6on	of	input	data	

¡  Intermediate	results	are	stored	on	local	FS		
of	Map	and	Reduce	workers	

¡  Output	is	oTen	input	to	another		
MapReduce	task	
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¡ Master	node	takes	care	of	coordina-on:	
§  Task	status:	(idle,	in-progress,	completed)	
§  Idle	tasks	get	scheduled	as	workers	become	
available	

§ When	a	map	task	completes,	it	sends	the	master	
the	loca6on	and	sizes	of	its	R	intermediate	files,	
one	for	each	reducer	

§ Master	pushes	this	info	to	reducers	

¡ Master	pings	workers	periodically	to	detect	
failures	
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¡ Map	worker	failure	
§ Map	tasks	completed	or	in-progress	at		
worker	are	reset	to	idle	

§  Reduce	workers	are	no6fied	when	task	is	
rescheduled	on	another	worker	

¡  Reduce	worker	failure	
§ Only	in-progress	tasks	are	reset	to	idle		
§  Reduce	task	is	restarted	

¡ Master	failure	
§ MapReduce	task	is	aborted	and	client	is	no6fied	
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¡ M	map	tasks,	R	reduce	tasks	
¡  Rule	of	a	thumb:	
§ Make	M	much	larger	than	the	number	of	nodes	
in	the	cluster	

§ One	DFS	chunk	per	map	is	common	
§  Improves	dynamic	load	balancing	and	speeds	up	
recovery	from	worker	failures	

¡  Usually	R	is	smaller	than	M	
§  Because	output	is	spread	across	R	files	
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¡  Fine	granularity	tasks:		map	tasks	>>	machines	
§ Minimizes	6me	for	fault	recovery	
§  Can	do	pipeline	shuffling	with	map	execu6on	
§  Beqer	dynamic	load	balancing		
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¡  Problem	
§  Slow	workers	significantly	lengthen	the	job	
comple6on	6me:	
§ Other	jobs	on	the	machine	
§ Bad	disks	
§ Weird	things	

¡  Solu-on	
§ Near	end	of	phase,	spawn	backup	copies	of	tasks	

§ Whichever	one	finishes	first	“wins”	
¡  Effect	
§ Drama6cally	shortens	job	comple6on	6me	
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¡  Osen	a	Map	task	will	produce	many	pairs	of	
the	form	(k,v1),	(k,v2),	…	for	the	same	key	k	
§  E.g.,	popular	words	in	the	word	count	example	

¡  Can	save	network	-me	by		
pre-aggrega-ng	values	in		
the	mapper:	
§  combine(k, list(v1)) à v2 
§  Combiner	is	usually	same		
as	the	reduce	func6on	

¡ Works	only	if	reduce		
func6on	is	commuta6ve	and	associa6ve	
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¡  Back	to	our	word	coun-ng	example:	
§  Combiner	combines	the	values	of	all	keys	of	a	
single	mapper	(single	machine):	

§ Much	less	data	needs	to	be	copied	and	shuffled!	
31	
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¡ Want	to	control	how	keys	get	par--oned	
§  Inputs	to	map	tasks	are	created	by	con6guous	
splits	of	input	file	

§  Reduce	needs	to	ensure	that	records	with	the	
same	intermediate	key	end	up	at	the	same	worker	

¡  System	uses	a	default	par--on	func-on:	
§ hash(key) mod R 

¡  Some-mes	useful	to	override	the	hash	
func-on:	
§  E.g.,	hash(hostname(URL)) mod R	ensures	URLs	
from	a	host	end	up	in	the	same	output	file	
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¡  Suppose	we	have	a	large	web	corpus	
¡  Look	at	the	metadata	file	
§  Lines	of	the	form:	(URL,	size,	date,	…)	

¡  For	each	host,	find	the	total	number	of	bytes	
§  That	is,	the	sum	of	the	page	sizes	for	all	URLs	from	
that	par6cular	host	

¡  Other	examples:		
§  Link	analysis	and	graph	processing	
§ Machine	Learning	algorithms	
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¡  Sta-s-cal	machine	transla-on:	
§ Need	to	count	number	of	6mes	every	5-word	
sequence	occurs	in	a	large	corpus	of	documents	

¡  Very	easy	with	MapReduce:	
§ Map:		

§  Extract	(5-word	sequence,	count)	from	document	

§  Reduce:		
§ Combine	the	counts	
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¡  Compute	the	natural	join	R(A,B)	⋈	S(B,C)	
¡  R	and	S	are	each	stored	in	files	
¡  Tuples	are	pairs	(a,b)	or	(b,c)	

36	
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¡  Use	a	hash	func-on	h	from	B-values	to	1...k	
¡  A	Map	process	turns:	
§  Each	input	tuple	R(a,b)	into	key-value	pair	(b,(a,R))	
§  Each	input	tuple	S(b,c)	into	(b,(c,S))	

¡ Map	processes	send	each	key-value	pair	with	
key	b	to	Reduce	process	h(b)	
§ Hadoop	does	this	automa6cally;	just	tell	it	what	k	is.	

¡  Each	Reduce	process	matches	all	the	pairs	(b,
(a,R))	with	all	(b,(c,S))	and	outputs	(a,b,c).	
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¡  In	MapReduce	we	quan-fy	the	cost	of	an	
algorithm	using		

1.  Communica9on	cost		=	total	I/O	of	all	
processes	

2.  Elapsed	communica9on	cost	=	max	of	I/O	
along	any	path	

3.  (Elapsed)	computa9on	cost	analogous,	but	
count	only	running	6me	of	processes	

Note that here the big-O notation is not the most useful  
(adding more machines is always an option) 
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¡  For	a	map-reduce	algorithm:	
§  Communica-on	cost	=	input	file	size	+	2	×	(sum	of	
the	sizes	of	all	files	passed	from	Map	processes	to	
Reduce	processes)	+	the	sum	of	the	output	sizes	of	
the	Reduce	processes.	

§  Elapsed	communica-on	cost	is	the	sum	of	the	
largest	input	+	output	for	any	map	process,	plus	
the	same	for	any	reduce	process	
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¡  Either	the	I/O	(communica6on)	or	processing	
(computa6on)	cost	dominates	
§  Ignore	one	or	the	other	

¡  Total	cost	tells	what	you	pay	in	rent	from		
your	friendly	neighborhood	cloud	

¡  Elapsed	cost	is	wall-clock	6me	using	
parallelism	
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¡  Total	communica-on	cost		
=	O(|R|+|S|+|R	⋈	S|)	

¡  Elapsed	communica-on	cost	=	O(s)	
§ We’re	going	to	pick	k	and	the	number	of	Map	
processes	so	that	the	I/O	limit	s	is	respected	

§ We	put	a	limit	s	on	the	amount	of	input	or	output	
that	any	one	process	can	have.	s	could	be:	
§ What	fits	in	main	memory	
§ What	fits	on	local	disk	

¡ With	proper	indexes,	computa6on	cost	is	
linear	in	the	input	+	output	size	
§  So	computa6on	cost	is	like	comm.	cost	
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¡  Google	
§ Not	available	outside	Google	

¡  Hadoop	
§  An	open-source	implementa6on	in	Java	
§ Uses	HDFS	for	stable	storage	
§ Download:	http://lucene.apache.org/hadoop/ 

¡  Aster	Data	
§  Cluster-op6mized	SQL	Database	that	also	
implements	MapReduce	
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¡  Ability	to	rent	compu6ng	by	the	hour	
§  Addi6onal	services	e.g.,	persistent	storage	

¡  Amazon’s	“Elas6c	Compute	Cloud”	(EC2)	

¡  Aster	Data	and	Hadoop	can	both	be	run	on	
EC2	

¡  For	CS341	(offered	next	quarter)	Amazon	will	
provide	free	access	for	the	class	
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¡  Jeffrey	Dean	and	Sanjay	Ghemawat:	
MapReduce:	Simplified	Data	Processing			on	
Large	Clusters	
§  hqp://labs.google.com/papers/mapreduce.html	

¡  Sanjay	Ghemawat,	Howard	Gobioff,	and	
Shun-Tak	Leung:	The	Google	File	System	
§  hqp://labs.google.com/papers/gfs.html		
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¡  Hadoop	Wiki	
§  	Introduc6on	

§  	hqp://wiki.apache.org/lucene-hadoop/	
§  	Gexng	Started	

§  	hqp://wiki.apache.org/lucene-hadoop/
GexngStartedWithHadoop	

§  	Map/Reduce	Overview		
§  	hqp://wiki.apache.org/lucene-hadoop/HadoopMapReduce	
§  	hqp://wiki.apache.org/lucene-hadoop/
HadoopMapRedClasses	

§  	Eclipse	Environment	
§  hqp://wiki.apache.org/lucene-hadoop/EclipseEnvironment	

¡  	Javadoc	
§  	hqp://lucene.apache.org/hadoop/docs/api/ 		
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¡  	Releases	from	Apache	download	mirrors	
§  hqp://www.apache.org/dyn/closer.cgi/lucene/
hadoop/	

¡  	Nightly	builds	of	source	
§  hqp://people.apache.org/dist/lucene/hadoop/
nightly/	

¡  	Source	code	from	subversion	
§  hqp://lucene.apache.org/hadoop/
version_control.html	
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¡  Programming	model	inspired	by	func6onal	language	
primi6ves	

¡  Par66oning/shuffling	similar	to	many	large-scale	sor6ng	
systems		
§  NOW-Sort	['97]		

¡  Re-execu6on	for	fault	tolerance		
§  BAD-FS	['04]	and	TACC	['97]		

¡  Locality	op6miza6on	has	parallels	with	Ac6ve	Disks/
Diamond	work		
§  Ac6ve	Disks	['01],	Diamond	['04]		

¡  Backup	tasks	similar	to	Eager	Scheduling	in	Charloqe	
system		
§  Charloqe	['96]		

¡  Dynamic	load	balancing	solves	similar	problem	as	River's	
distributed	queues		
§  River	['99]	
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