
Mining	of	Massive	Datasets	
Jure	Leskovec,	Anand	Rajaraman,	Jeff	Ullman	
Stanford	University	

http://www.mmds.org		

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡ Much	of	the	course	will	be	devoted	to		
large	scale	compu-ng	for	data	mining	

¡  Challenges:	
§ How	to	distribute	computa6on?	
§ Distributed/parallel	programming	is	hard	

¡ Map-reduce	addresses	all	of	the	above	
§ Google’s	computa6onal/data	manipula6on	model	
§  Elegant	way	to	work	with	big	data	

2	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

Memory	

Disk	

CPU	

Machine	Learning,	Statistics	

“Classical”	Data	Mining	

3	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  20+	billion	web	pages	x	20KB	=	400+	TB	
¡  1	computer	reads	30-35	MB/sec	from	disk	
§  ~4	months	to	read	the	web	

¡  ~1,000	hard	drives	to	store	the	web	
¡  Takes	even	more	to	do	something	useful		
with	the	data!	

¡  Today,	a	standard	architecture	for	such	
problems	is	emerging:	
§  Cluster	of	commodity	Linux	nodes	
§  Commodity	network	(ethernet)	to	connect	them	

4	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

Mem	

Disk	

CPU	

Mem	

Disk	

CPU	

…	

Switch	

Each	rack	contains	16-64	nodes	

Mem	

Disk	

CPU	

Mem	

Disk	

CPU	

…	

Switch	

Switch	1	Gbps	between		
any	pair	of	nodes	
in	a	rack	

2-10	Gbps	backbone	between	racks	

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO
5	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce 6	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Large-scale	compu-ng	for	data	mining		
problems	on	commodity	hardware	

¡  Challenges:	
§ How	do	you	distribute	computa-on?	
§ How	can	we	make	it	easy	to	write	distributed	
programs?	

§ Machines	fail:	
§ One	server	may	stay	up	3	years	(1,000	days)	
§  If	you	have	1,000	servers,	expect	to	loose	1/day	
§ People	es6mated	Google	had	~1M	machines	in	2011	

§ 1,000	machines	fail	every	day!	
7	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Issue:	Copying	data	over	a	network	takes	-me	
¡  Idea:	
§  Bring	computa6on	close	to	the	data	
§  Store	files	mul6ple	6mes	for	reliability	

¡ Map-reduce	addresses	these	problems	
§ Google’s	computa6onal/data	manipula6on	model	
§  Elegant	way	to	work	with	big	data	
§  Storage	Infrastructure	–	File	system	

§ Google:	GFS.	Hadoop:	HDFS	
§  Programming	model	

§ Map-Reduce	 8	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Problem:	
§  If	nodes	fail,	how	to	store	data	persistently?		

¡  Answer:	
§ Distributed	File	System:	

§ Provides	global	file	namespace	
§ Google	GFS;	Hadoop	HDFS;	

¡  Typical	usage	paIern	
§ Huge	files	(100s	of	GB	to	TB)	
§ Data	is	rarely	updated	in	place	
§  Reads	and	appends	are	common	

	
9	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Chunk	servers	
§  File	is	split	into	con6guous	chunks	
§  Typically	each	chunk	is	16-64MB	
§  Each	chunk	replicated	(usually	2x	or	3x)	
§  Try	to	keep	replicas	in	different	racks	

¡ Master	node	
§  a.k.a.	Name	Node	in	Hadoop’s	HDFS	
§  Stores	metadata	about	where	files	are	stored	
§ Might	be	replicated	

¡  Client	library	for	file	access	
§  Talks	to	master	to	find	chunk	servers		
§  Connects	directly	to	chunk	servers	to	access	data	

10	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Reliable	distributed	file	system	
¡  Data	kept	in	“chunks”	spread	across	machines	
¡  Each	chunk	replicated	on	different	machines		
§  Seamless	recovery	from	disk	or	machine	failure	

C0 C1

C2 C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3 C5

Chunk server 2

…
C2 D0

D0

Bring	computation	directly	to	the	data!	

C0 C5

Chunk server N

C2 D0

11	

Chunk	servers	also	serve	as	compute	servers	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

Warm-up	task:	
¡ We	have	a	huge	text	document	

¡  Count	the	number	of	6mes	each		
dis6nct	word	appears	in	the	file	

¡  Sample	applica-on:		
§  Analyze	web	server	logs	to	find	popular	URLs	

12	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

Case	1:		
§  File	too	large	for	memory,	but	all	<word,	count>	
pairs	fit	in	memory	

Case	2:	
¡  Count	occurrences	of	words:	
§ words(doc.txt) | sort | uniq -c

§ where	words	takes	a	file	and	outputs	the	words	in	it,	
one	per	a	line	

¡  Case	2	captures	the	essence	of	MapReduce	
§ Great	thing	is	that	it	is	naturally	parallelizable	
	

13	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Sequen6ally	read	a	lot	of	data	
¡ Map:	
§  Extract	something	you	care	about	

¡  Group	by	key:	Sort	and	Shuffle	
¡  Reduce:	
§  Aggregate,	summarize,	filter	or	transform	

¡ Write	the	result	

Outline	stays	the	same,	Map	and	Reduce	
change	to	fit	the	problem	

14	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

v	k	

k	 v	

k	 v	

map	
v	k	

v	k	

…	

k	 v	
map	

Input
key-value pairs

Intermediate
key-value pairs

…	

k	 v	

15	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

k	 v	

…	

k	 v	

k	 v	

k	 v	

Intermediate
key-value pairs

Group	
by	key	

reduce	

reduce	

k	 v	

k	 v	

k	 v	

…	

k	 v	

…	

k	 v	

k	 v	 v	

v	 v	

Key-value groups
Output
key-value pairs

16	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Input:	a	set	of	key-value	pairs	
¡  Programmer	specifies	two	methods:	
§ Map(k, v) → <k’, v’>*

§  Takes	a	key-value	pair	and	outputs	a	set	of	key-value	pairs	
§ E.g.,	key	is	the	filename,	value	is	a	single	line	in	the	file	

§  There	is	one	Map	call	for	every	(k,v)	pair	

§ Reduce(k’, <v’>*) → <k’, v’’>*
§ All	values	v’	with	same	key	k’	are	reduced	together		
and	processed	in	v’	order	

§  There	is	one	Reduce	func6on	call	per	unique	key	k’	

17	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

The crew of the space
shuttle Endeavor recently
re turned to Ear th as
ambassadors, harbingers of
a new era o f space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing
-- is what we're going to
need ……………………..

Big document

(The,	1)	
(crew,	1)	
(of,	1)	
(the,	1)	

(space,	1)	
(shuttle,	1)	

(Endeavor,	1)	
(recently,	1)	

….	

(crew,	1)	
(crew,	1)	
(space,	1)	
(the,	1)	
(the,	1)	
(the,	1)	

(shuttle,	1)	
(recently,	1)	

…	

(crew,	2)	
(space,	1)	
(the,	3)	

(shuttle,	1)	
(recently,	1)	

…	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	
with	same	key	

Reduce:	
Collect	all	values	
belonging	to	the	
key	and	output	

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value) (key, value)

Se
qu

en
tia

lly
	re

ad
	th

e	
da

ta
	

O
nl
y	
			
se
qu

en
tia

l		
		r
ea

ds
	

18	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

map(key, value):
// key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

 result = 0
 for each count v in values:
 result += v
 emit(key, result)

19	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

Map-Reduce	environment	takes	care	of:	
¡  Par66oning	the	input	data	
¡  Scheduling	the	program’s	execu6on	across	a		
set	of	machines	

¡  Performing	the	group	by	key	step	
¡  Handling	machine	failures	
¡ Managing	required	inter-machine	
communica6on	

20	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce 21	

Big	document	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	with	

same	key	
(Hash	merge,	Shuffle,	

Sort,	Partition)	

Reduce:	
Collect	all	values	
belonging	to	the	
key	and	output	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce 22	

All	phases	are	distributed	with	many	tasks	doing	the	work	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Programmer	specifies:	
§  Map	and	Reduce	and	input	files	

¡  Workflow:	
§  Read	inputs	as	a	set	of	key-value-
pairs	

§  Map	transforms	input	kv-pairs	into	a	
new	set	of	k'v'-pairs	

§  Sorts	&	Shuffles	the	k'v'-pairs	to	
output	nodes	

§  All	k’v’-pairs	with	a	given	k’	are	sent	
to	the	same	reduce	

§  Reduce	processes	all	k'v'-pairs	
grouped	by	key	into	new	k''v''-pairs	

§  Write	the	resul6ng	pairs	to	files	

¡  All	phases	are	distributed	with	
many	tasks	doing	the	work	

Input	0	

Map	0	

Input	1	

Map	1	

Input	2	

Map	2	

Reduce	0	 Reduce	1	

Out	0	 Out	1	

Shuffle	

23	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Input	and	final	output	are	stored	on	a	
distributed	file	system	(FS):	
§  Scheduler	tries	to	schedule	map	tasks	“close”	to	
physical	storage	loca6on	of	input	data	

¡  Intermediate	results	are	stored	on	local	FS		
of	Map	and	Reduce	workers	

¡  Output	is	oTen	input	to	another		
MapReduce	task	

24	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡ Master	node	takes	care	of	coordina-on:	
§  Task	status:	(idle,	in-progress,	completed)	
§  Idle	tasks	get	scheduled	as	workers	become	
available	

§ When	a	map	task	completes,	it	sends	the	master	
the	loca6on	and	sizes	of	its	R	intermediate	files,	
one	for	each	reducer	

§ Master	pushes	this	info	to	reducers	

¡ Master	pings	workers	periodically	to	detect	
failures	

	 25	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡ Map	worker	failure	
§ Map	tasks	completed	or	in-progress	at		
worker	are	reset	to	idle	

§  Reduce	workers	are	no6fied	when	task	is	
rescheduled	on	another	worker	

¡  Reduce	worker	failure	
§ Only	in-progress	tasks	are	reset	to	idle		
§  Reduce	task	is	restarted	

¡ Master	failure	
§ MapReduce	task	is	aborted	and	client	is	no6fied	

26	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡ M	map	tasks,	R	reduce	tasks	
¡  Rule	of	a	thumb:	
§ Make	M	much	larger	than	the	number	of	nodes	
in	the	cluster	

§ One	DFS	chunk	per	map	is	common	
§  Improves	dynamic	load	balancing	and	speeds	up	
recovery	from	worker	failures	

¡  Usually	R	is	smaller	than	M	
§  Because	output	is	spread	across	R	files	

27	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Fine	granularity	tasks:		map	tasks	>>	machines	
§ Minimizes	6me	for	fault	recovery	
§  Can	do	pipeline	shuffling	with	map	execu6on	
§  Beqer	dynamic	load	balancing		

28	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Problem	
§  Slow	workers	significantly	lengthen	the	job	
comple6on	6me:	
§ Other	jobs	on	the	machine	
§ Bad	disks	
§ Weird	things	

¡  Solu-on	
§ Near	end	of	phase,	spawn	backup	copies	of	tasks	

§ Whichever	one	finishes	first	“wins”	
¡  Effect	
§ Drama6cally	shortens	job	comple6on	6me	

29	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Osen	a	Map	task	will	produce	many	pairs	of	
the	form	(k,v1),	(k,v2),	…	for	the	same	key	k	
§  E.g.,	popular	words	in	the	word	count	example	

¡  Can	save	network	-me	by		
pre-aggrega-ng	values	in		
the	mapper:	
§  combine(k, list(v1)) à v2
§  Combiner	is	usually	same		
as	the	reduce	func6on	

¡ Works	only	if	reduce		
func6on	is	commuta6ve	and	associa6ve	

30	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Back	to	our	word	coun-ng	example:	
§  Combiner	combines	the	values	of	all	keys	of	a	
single	mapper	(single	machine):	

§ Much	less	data	needs	to	be	copied	and	shuffled!	
31	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡ Want	to	control	how	keys	get	par--oned	
§  Inputs	to	map	tasks	are	created	by	con6guous	
splits	of	input	file	

§  Reduce	needs	to	ensure	that	records	with	the	
same	intermediate	key	end	up	at	the	same	worker	

¡  System	uses	a	default	par--on	func-on:	
§ hash(key) mod R

¡  Some-mes	useful	to	override	the	hash	
func-on:	
§  E.g.,	hash(hostname(URL)) mod R	ensures	URLs	
from	a	host	end	up	in	the	same	output	file	

32	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Suppose	we	have	a	large	web	corpus	
¡  Look	at	the	metadata	file	
§  Lines	of	the	form:	(URL,	size,	date,	…)	

¡  For	each	host,	find	the	total	number	of	bytes	
§  That	is,	the	sum	of	the	page	sizes	for	all	URLs	from	
that	par6cular	host	

¡  Other	examples:		
§  Link	analysis	and	graph	processing	
§ Machine	Learning	algorithms	

34	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Sta-s-cal	machine	transla-on:	
§ Need	to	count	number	of	6mes	every	5-word	
sequence	occurs	in	a	large	corpus	of	documents	

¡  Very	easy	with	MapReduce:	
§ Map:		

§  Extract	(5-word	sequence,	count)	from	document	

§  Reduce:		
§ Combine	the	counts	

35	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Compute	the	natural	join	R(A,B)	⋈	S(B,C)	
¡  R	and	S	are	each	stored	in	files	
¡  Tuples	are	pairs	(a,b)	or	(b,c)	

36	

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈	
A C
a3 c1

a3 c2

a4 c3

=	

R
S

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Use	a	hash	func-on	h	from	B-values	to	1...k	
¡  A	Map	process	turns:	
§  Each	input	tuple	R(a,b)	into	key-value	pair	(b,(a,R))	
§  Each	input	tuple	S(b,c)	into	(b,(c,S))	

¡ Map	processes	send	each	key-value	pair	with	
key	b	to	Reduce	process	h(b)	
§ Hadoop	does	this	automa6cally;	just	tell	it	what	k	is.	

¡  Each	Reduce	process	matches	all	the	pairs	(b,
(a,R))	with	all	(b,(c,S))	and	outputs	(a,b,c).	

37	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  In	MapReduce	we	quan-fy	the	cost	of	an	
algorithm	using		

1.  Communica9on	cost		=	total	I/O	of	all	
processes	

2.  Elapsed	communica9on	cost	=	max	of	I/O	
along	any	path	

3.  (Elapsed)	computa9on	cost	analogous,	but	
count	only	running	6me	of	processes	

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

38	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  For	a	map-reduce	algorithm:	
§  Communica-on	cost	=	input	file	size	+	2	×	(sum	of	
the	sizes	of	all	files	passed	from	Map	processes	to	
Reduce	processes)	+	the	sum	of	the	output	sizes	of	
the	Reduce	processes.	

§  Elapsed	communica-on	cost	is	the	sum	of	the	
largest	input	+	output	for	any	map	process,	plus	
the	same	for	any	reduce	process	

39	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Either	the	I/O	(communica6on)	or	processing	
(computa6on)	cost	dominates	
§  Ignore	one	or	the	other	

¡  Total	cost	tells	what	you	pay	in	rent	from		
your	friendly	neighborhood	cloud	

¡  Elapsed	cost	is	wall-clock	6me	using	
parallelism	

40	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Total	communica-on	cost		
=	O(|R|+|S|+|R	⋈	S|)	

¡  Elapsed	communica-on	cost	=	O(s)	
§ We’re	going	to	pick	k	and	the	number	of	Map	
processes	so	that	the	I/O	limit	s	is	respected	

§ We	put	a	limit	s	on	the	amount	of	input	or	output	
that	any	one	process	can	have.	s	could	be:	
§ What	fits	in	main	memory	
§ What	fits	on	local	disk	

¡ With	proper	indexes,	computa6on	cost	is	
linear	in	the	input	+	output	size	
§  So	computa6on	cost	is	like	comm.	cost	

41	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Google	
§ Not	available	outside	Google	

¡  Hadoop	
§  An	open-source	implementa6on	in	Java	
§ Uses	HDFS	for	stable	storage	
§ Download:	http://lucene.apache.org/hadoop/

¡  Aster	Data	
§  Cluster-op6mized	SQL	Database	that	also	
implements	MapReduce	

	
	
	

43	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Ability	to	rent	compu6ng	by	the	hour	
§  Addi6onal	services	e.g.,	persistent	storage	

¡  Amazon’s	“Elas6c	Compute	Cloud”	(EC2)	

¡  Aster	Data	and	Hadoop	can	both	be	run	on	
EC2	

¡  For	CS341	(offered	next	quarter)	Amazon	will	
provide	free	access	for	the	class	

44	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Jeffrey	Dean	and	Sanjay	Ghemawat:	
MapReduce:	Simplified	Data	Processing			on	
Large	Clusters	
§  hqp://labs.google.com/papers/mapreduce.html	

¡  Sanjay	Ghemawat,	Howard	Gobioff,	and	
Shun-Tak	Leung:	The	Google	File	System	
§  hqp://labs.google.com/papers/gfs.html		

45	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Hadoop	Wiki	
§  	Introduc6on	

§  	hqp://wiki.apache.org/lucene-hadoop/	
§  	Gexng	Started	

§  	hqp://wiki.apache.org/lucene-hadoop/
GexngStartedWithHadoop	

§  	Map/Reduce	Overview		
§  	hqp://wiki.apache.org/lucene-hadoop/HadoopMapReduce	
§  	hqp://wiki.apache.org/lucene-hadoop/
HadoopMapRedClasses	

§  	Eclipse	Environment	
§  hqp://wiki.apache.org/lucene-hadoop/EclipseEnvironment	

¡  	Javadoc	
§  	hqp://lucene.apache.org/hadoop/docs/api/ 		

46	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  	Releases	from	Apache	download	mirrors	
§  hqp://www.apache.org/dyn/closer.cgi/lucene/
hadoop/	

¡  	Nightly	builds	of	source	
§  hqp://people.apache.org/dist/lucene/hadoop/
nightly/	

¡  	Source	code	from	subversion	
§  hqp://lucene.apache.org/hadoop/
version_control.html	

47	

EECS-4415A: Big Data Systems | Fall 2017 | MapReduce

¡  Programming	model	inspired	by	func6onal	language	
primi6ves	

¡  Par66oning/shuffling	similar	to	many	large-scale	sor6ng	
systems		
§  NOW-Sort	['97]		

¡  Re-execu6on	for	fault	tolerance		
§  BAD-FS	['04]	and	TACC	['97]		

¡  Locality	op6miza6on	has	parallels	with	Ac6ve	Disks/
Diamond	work		
§  Ac6ve	Disks	['01],	Diamond	['04]		

¡  Backup	tasks	similar	to	Eager	Scheduling	in	Charloqe	
system		
§  Charloqe	['96]		

¡  Dynamic	load	balancing	solves	similar	problem	as	River's	
distributed	queues		
§  River	['99]	

48	

