
1

1 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

CSE 3401: Intro to Artificial Intelligence  
Uninformed Search

● Required Readings: R & N Chapter 3, Sec. 1-4.
● Lecture slides adapted from those of Fahiem

Bacchus.

2 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Why Search
● Successful
■  Success in game playing programs based on search.
■  Many other AI problems can be successfully solved by

search.
● Practical
■  Many problems don’t have a simple algorithmic solution.

Casting these problems as search problems is often the
easiest way of solving them. Search can also be useful in
approximation (e.g., local search in optimization problems).

■  Often specialized algorithms cannot be easily modified to
take advantage of extra knowledge. Heuristics in search
provide a natural way of utilizing extra knowledge.

● Some critical aspects of intelligent behaviour, e.g.,
planning, can be naturally cast as search.

3 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example, a holiday in Jamaica

4 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Things to consider

• Prefer to avoid hurricane season.
• Rules of the road, larger vehicle has right of way

(especially trucks).
• Want to climb up to the top of Dunns river falls.

2

5 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 6 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

But you want to
start your climb
at 8:00 am
before the
crowds arrive!

7 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

• Want to swim in the Blue Lagoon

8 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

• Want to hike the Cockpit Country

• No roads, need local
guide and supplies.

3

9 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

• Easier goal, climb to the top of Blue Mountain

• Near Kingston.
• Organized hikes available.
• Need to arrive on the peak

at dawn, before the fog
sets in.

• Can get some Blue
Mountain coffee!

10 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

How do we plan our holiday?

● We must take into account various preferences
and constraints to develop a schedule.

● An important technique in developing such a
schedule is “hypothetical” reasoning.
■ e.g., if I fly into Kingston and drive a car to Port

Antonio, I’ll have to drive on the roads at night. How
desirable is this?

■  If I’m in Port Antonio and leave at 6:30am, I can
arrive a Dunns river falls by 8:00am.

11 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

How do we plan our holiday?

● This kind of hypothetical reasoning involves
asking
■ “what state will I be in after the following sequence

of events?”
● From this we can reason about what sequence

of events one should try to bring about to
achieve a desirable state.

● Search is a computational method for
capturing a particular version of this kind of
reasoning.

12 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Search

● There are many difficult questions that are not
resolved by search. In particular, the whole
question of how does an intelligent system
formulate its problem as a search problem is
not addressed by search.

● Search only shows how to solve the problem
once we have it correctly formulated.

4

13 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

The formalism.
● To formulate a problem as a search problem

we need the following components:
■ Formulate a state space over which to search. The

state space necessarily involves abstracting the real
problem.

■ Formulate actions that allow one to move between
different states. The actions are abstractions of
actions you could actually perform.

■  Identify the initial state that best represents your
current state and the desired condition one wants to
achieve.

■ Formulate various heuristics to help guide the
search process.

14 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

The formalism.

● Once the problem has been formulated as a
state space search, various algorithms can be
utilized to solve the problem.
■ A solution to the problem will be a sequence of

actions/moves that can transform your current state
into state where your desired condition holds.

15 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 1: Romania Travel.
Currently in Arad, need to get to Bucharest by
tomorrow to catch a flight.

16 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 1.
● State space.
■ States: the various cities you could be located in.
● Note we are ignoring the low level details of

driving, states where you are on the road between
cities, etc.

■ Actions: drive between neighboring cities.
■  Initial state: in Arad
■ Desired condition (Goal): be in a state where you are

in Bucharest. (How many states satisfy this
condition?)

● Solution will be the route, the sequence of
cities to travel through to get to Bucharest.

5

17 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 2. The 8-Puzzle

• Can slide a tile into the blank spot.
(Equivalently, can think of it as moving the
blank around).

18 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 2. The 8-Puzzle
● State space.
■ States: The different configurations of the tiles.

How many different states?
■ Actions: Moving the blank up, down, left, right.

Can every action be performed in every state?
■  Initial state: as shown on previous slide.
■ Desired condition (Goal): be in a state where the

tiles are all in the positions shown on the
previous slide.

● Solution will be a sequence of moves of the
blank that transform the initial state to a
goal state.

19 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 2. The 8-Puzzle
● Although there are 9! different

configurations of the tiles (362,880), in fact
the state space is divided into two disjoint
parts.

● Only when the blank is in the middle are all
four actions possible.

● Our goal condition is satisfied by only a
single state. But one could easily have a
goal condition like
■ The 8 is in the upper left hand corner.
● How many different states satisfy this goal?

20 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.
● In the previous two examples, a state in the

search space corresponded to a unique
state of the world (modulo details we have
abstracted away).

● However, states need not map directly to
world configurations. Instead, a state could
map to the agent’s mental conception of
how the world is configured: the agent’s
knowledge state.

6

21 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

● We have a vacuum
cleaner and two rooms.

● Each room may or may
not be dirty.

● The vacuum cleaner can
move left or right (the
action has no effect if
there is no room to the
right/left).

● The vacuum cleaner can
suck; this cleans the
room (even if the room
was already clean). Physical states

22 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

● The state space can
consist of a set of
states. The agent
knows that it is in one
of these states, but
doesn’t know which.

Goal is to have all
rooms clean.

Knowledge level State Space

23 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

● Complete knowledge of
the world: agent knows
exactly which state it is
in. State space states
consist of single
physical states:

● Start in {5}:  
 <right, suck>

Goal is to have all
rooms clean.

Knowledge level State Space

24 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

● No knowledge of the
world. States consist of
sets of physical states.

● Start in {1,2,3,4,5,6,7,8},
agent doesn’t have any
knowledge of where it is.

● Nevertheless, the actions
<right, suck, left, suck>
achieves the goal.

Goal is to have all
rooms clean.

Knowledge level State Space

7

25 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

Initial state.
{1,2,3,4,5,6,7,8}

Right

✖

✖

✖

✖

26 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

Suck

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

27 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

Left

✖

✖

✖

✖

✖

✖

✖ ✖

✖

✖

✖

✖

28 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Example 3. Vacuum World.

Suck

✖ ✖

✖

✖

✖

✖

✖ ✖

✖ ✖

✖

✖

✖

8

29 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

More complex situations.
● The agent might be able to perform some

sensing actions. These actions change the
agent’s mental state, not the world
configuration.

● With sensing can search for a contingent
solution: a solution that is contingent on
the outcome of the sensing actions
■ <right, if dirt then suck>

● Now the issue of interleaving execution and
search comes into play.

30 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

More complex situations.
● Instead of complete lack of knowledge, the

agent might think that some states of the
world are more likely than others.

● This leads to probabilistic models of the
search space and different algorithms for
solving the problem.

● Later we will see some techniques for
reasoning and making decisions under
uncertainty.

31 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Algorithms for Search.
● Inputs:

■ a specified initial state (a specific world state or
a set of world states representing the agent’s
knowledge, etc.)

■ a successor function S(x) = {set of states that
can be reached from state x via a single action}.

■ a goal test a function that can be applied to a
state and returns true if the state is satisfies the
goal condition.

■ A step cost function C(x,a,y) which determines
the cost of moving from state x to state y using
action a. (C(x,a,y) = ∞ if a does not yield y from
x)

32 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Algorithms for Search.
● Output:

■ a sequence of states leading from the initial
state to a state satisfying the goal test.

■ The sequence might be
● annotated by the name of the action used.
● optimal in cost for some algorithms.

9

33 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Algorithms for Search

● Obtaining the action sequence.
■  The set of successors of a state x might arise from different

actions, e.g.,
●  x → a → y
●  x → b → z
●  Successor function S(x) yields a set of states that can be

reached from x via a (any) single action.
■  Rather than just return a set of states, we might annotate

these states by the action used to obtain them:
●  S(x) = {<y,a>, <z,b>}  

y via action a, z via action b.
●  S(x) = {<y,a>, <y,b>}  

y via action a, also y via alternative action b.

34 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Tree search
● Assuming search space is a tree, not a graph.
● We use the successor state function to simulate an

exploration of the state space.
●  Initial call has Frontier = initial state.

■ Frontier/fringe is the set of states we haven’t yet
explored/expanded.

TreeSearch(Frontier, Successors, Goal?)
 If Frontier is empty return failure  
 
Curr = select state from Frontier  
 
If(Goal?(Curr)) return Curr.  
 
Frontier’ = (Frontier – {Curr}) U Successors(Curr)  
 
return TreeSearch(Frontier’, Successors, Goal?)

35 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

Tree search in Prolog
treeS([[State|Path]|_],Soln) :-

Goal?(State), reverse([State|Path], Soln).

treeS([[State|Path]|Frontier],Soln) :-
GenSuccessors(State,Path,NewPaths),
merge(NewPaths,Frontier,NewFrontier),
treeS(NewFrontier,Soln).

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

36

 {Arad},

 {Zerind, Timisoara, Sibiu},
 {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea },
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, RimnicuVilcea },

 Solution: Arad -> Sibiu -> Fagaras -> Bucharest
 Cost: 140+99+211 = 450

10

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

37

 {Arad},

 {Zerind, Timisoara, Sibiu},
 {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea},
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Pitesi, Craiova<via

RimnicuVilcea>},
 {Zerind, Timisoara, Arad, Oradea, Sibiu, Craiova<via Pitesi>, Bucharest,

Craiova<via RimnicuVilcea>},

§  Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->
 Bucharest

 Cost: 140+80+97+101 = 418 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

38

{Arad<>},
{Zerind<Arad>, Timisoara<Arad>, Sibiu<Arad>},
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

Fagaras<Sibiu;Arad>, Arad<Sibiu;Arad>, RimnicuVilcea<Sibiu;Arad>},
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>,

Fagaras<Sibiu;Arad>, Zerind<Arad;Sibiu;Arad>,
Timisoara<Arad;Sibiu;Arad>, Sibiu<Arad;Sibiu;Arad>,
RimnicuVilcea<Sibiu;Arad>},

No solution found, search does not terminate because of cycles!

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

39

Selection Rule.

● The example shows that order states are
selected from the frontier has a critical effect
on the operation of the search.
■ Whether or not a solution is found
■ The cost of the solution found.
■ The time and space required by the search.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

40

Critical Properties of Search.

● Completeness: will the search always find a
solution of a solution exists?

● Optimality: will the search always find the least
cost solution? (when actions have costs)

● Time complexity: what is the maximum
number of nodes than can be expanded or
generated?

● Space complexity: what is the maximum
number of nodes that have to be stored in
memory?

11

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

41

Uninformed Search Strategies

● These are strategies that adopt a fixed rule for
selecting the next state to be expanded.

● The rule is always the same whatever the
search problem being solved.

● These strategies do not take into account any
domain specific information about the
particular search problem.

● Popular uninformed search techniques:
■ Breadth-First, Uniform-Cost, Depth-First, Depth-

Limited, and Iterative-Deepening search.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

42

Selecting vs. Sorting
● A simple equivalence we will exploit:
■ Order the elements on the frontier.
■ Always select the first element.

● Any selection rule can be achieved by
employing an appropriate ordering of the
frontier set.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

43

Breadth First.

● Place the successors of the current state at the
end of the frontier, which then behaves as a
FIFO queue.

● Example:
■  let the states be the positive integers {0,1,2,…}
■  let each state n have as successors n+1 and n+2
● E.g. S(1) = {2, 3}; S(10) = {11, 12}

■ Start state 0
■ Goal state 5
■  [Draw search space graph]

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

44

Breadth First Example.
{0}
{1,2}
{2,2,3}
{2,3,3,4}
{3,3,4,3,4}
{3,4,3,4,4,5}
…

§ [Draw search tree]

12

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

45

Breadth First Properties

● Measuring time and space complexity.
■ let b be the maximum number of successors

of any state.
■ let d be the number of actions in the

shortest solution.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

46

Breadth First Properties

● Completeness?
■ The length of the path from the initial state to the

expanded state must increase monotonically.
● we replace each expanded state with states on

longer paths.
● All shorter paths are expanded prior before any

longer path.
■ Hence, eventually we must examine all paths of

length d, and thus find the shortest solution.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

47

Breadth First Properties

● Time Complexity?
■ # nodes generated at…
■ Level 0 (root): 1
■ Level 1: 1* b [each node has at most b successors]
■ Level 2: b* b = b2

■ Level 3: b * b2 = b3
■ Level d: bd

■ Level d + 1: bd+1 – b = b(bd – 1) [when last node is
successful]

■ Total: 1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) =
O(bd+1)

■ Exponential, so can only solve small instances
EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

48

Breadth First Properties

● Space Complexity?
■ O(bd+1): If goal node is last node at level d, all of the

successors of the other nodes will be on the frontier
when the goal node is expanded, i.e. b(bd – 1)

13

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

49

Breadth First Properties

● Optimality?
■ Will find shortest path length solution
■ Least cost solution?
● In general no!
● Only if all step costs are equal

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

50

Breadth First Properties

● Space complexity is a real problem.
■ E.g., let b = 10, and say 1000 nodes can be

expanded per second and each node requires 100
bytes of storage:
Depth Nodes Time Memory

1 1 1 millisec. 100 bytes

6 106 18 mins. 111 MB

8 108 31 hrs. 11 GB

● Run out of space long before we run out of
time in most applications.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

51

Uniform Cost Search.

● Keep the frontier sorted in increasing cost of
the path to a node; behaves like priority queue.

● Always expand the least cost node.
● Identical to Breadth First if each transition has

the same cost.

● Example:
■  let the states be the positive integers {0,1,2,…}
■  let each state n have as successors n+1 and n+2
■ Say that the n+1 action has cost 2, while the n+2

action has cost 3.
■  [Draw search space graph]

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

52

Uniform Cost Search.
{0[0]}
{1[2],2[3]}
{2[3],2[4],3[5]}
{2[4],3[5],3[5],4[6]}
{3[5],3[5],4[6],3[6],4[7]}
…

14

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

53

Uniform-Cost Search

● Completeness?
■ Assume each transition has costs ≥ ε > 0 (otherwise

can have in finite path with finite cost)
■ The previous argument used for breadth first search

holds: the cost of the expanded state must increase
monotonically.

■ The algorithm expands nodes in order of increasing
path cost.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

54

Uniform-Cost Search

● Time and Space Complexity?
■ O(bC*/ε) where C* is the cost of the optimal solution.

● Difficulty is that there may be many long paths
with cost ≤ C*; Uniform-cost search must explore
them all.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

55

Uniform-Cost Search

● Optimality?
■ Finds optimal solution if each transition has cost ≥ ε

> 0.
● Explores paths in the search space in increasing

order of cost. So must find minimum cost path to a
goal before finding any higher costs paths.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

56

Uniform-Cost Search. Proof of
Optimality.

1.  Let c(n) be the cost of the path to node n. If
n2 is expanded after n1 then  
c(n1) ≤ c(n2).

Proof:
■  If n2 was on the frontier when n1 was expanded, in which case

c(n2) ≥ c(n1) else n1 would not have been selected for
expansion.

■  If n2 was added to the frontier when n1 was expanded, in which
case c(n2) ≥ c(n1) since the path to n2 extends the path to n1.

■  If n2 is a successor of a node n3 that was on the frontier or
added when n1 was expanded, then c(n2) > c(n3) and c(n3) ≥
c(n1) by the above arguments.

15

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

57

Uniform-Cost Search. Proof of
Optimality.

2.  When n is expanded every path with cost strictly less
than c(n) has already been expanded (i.e., every node
on it has been expanded).

Proof:
■  Let <Start, n0, n1, …, nk> be a path with cost less than c(n). Let

ni be the last node on this path that has been expanded. <Start,
n0, n1, ni-1, ni, ni+1, …, nk>.

■  ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost
of the entire path to nk is < c(n).

■  But then uniform-cost would have expanded ni+1 not n!
■  So every node on this path must already be expanded, i.e. this

path has already been expanded. QED

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

58

Uniform-Cost Search. Proof of
Optimality.

3.  The first time uniform-cost expands a state,
it has found the minimal cost path to it (it
might later find other paths to the same
state).

Proof:
■ No cheaper path exists, else that path would have

been expanded before.
■ No cheaper path will be discovered later, as all those

paths must be at least as expensive.
■ So, when a goal state is expanded, the path to it

must be optimal.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

59

Depth First Search

● Place the successors of the current state at
the front of the frontier.

● Frontier behaves like a stack.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

60

Depth First Search Example
(applied to the example of Breadth First
search)
{0}
{1,2}
{2,3,2}
{3,4,3,2}
{4,5,4,3,2}
{5,6,5,4,3,2}
…

§ [draw search tree]

16

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

61

Depth First Properties

● Completeness? No!
■  Infinite paths cause incompleteness! Typically

come from cycles in search space.

■  If we prune paths with duplicate states, get

completeness provided the search space is finite.

● Optimality? No!
■ Can find success along a longer branch!

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

62

Depth First Properties

● Time Complexity?
■ O(bm) where m is the length of the longest path in

the state space.
■ Why? In worst case, expands
1 + b + b2 + … + bm-1 + bm = bm+1 – 1/b - 1= O(bm)
nodes
■ Assumes no cycles.

■ Very bad if m is much larger than d, but if there are

many solution paths it can be much faster than
breadth first.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

63

Depth First Backtrack Points
§ At each step, all nodes in the frontier
(except the head) are backtrack points (see
example and draw the tree for state-space).
§ These are all siblings of nodes on the
current branch.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

64

Depth First Properties

●  Space Complexity?
■ O(bm), linear space!

● Only explore a single path at a time.
● The frontier only contains the deepest states on
the current path along with the backtrack points.

■ Can reduce to O(m) if we generate siblings one at a
time.

17

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

65

Depth Limited Search

● Breadth first has computational, especially, space
problems. Depth first can run off down a very long (or
infinite) path.

● Depth limited search.
■  Perform depth first search but only to a pre-specified depth

limit L.
■  No node on a path that is more than L steps from the initial

state is placed on the Frontier.
■  We “truncate” the search by looking only at paths of length L or

less.
● Now infinite length paths are not a problem.
● But will only find a solution if a solution of length ≤ L

exists.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

66

Depth Limited Search

DLS(Frontier, Sucessors, Goal?)
 If Frontier is empty return failure

Curr = select state from Frontier

If(Goal?(Curr)) return Curr.

If Depth(Curr) < L

 Frontier’ = (Frontier – {Curr}) U Successors(Curr)

Else

 Frontier’ = Frontier – {Curr}
 CutOffOccured = TRUE.

return DLS(Frontier’, Successors, Goal?)

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

67

Iterative Deepening Search.

● Take the idea of depth limited search one step
further.

● Starting at depth limit L = 0, we iteratively
increase the depth limit, performing a depth
limited search for each depth limit.

● Stop if no solution is found, or if the depth
limited search failed without cutting off any
nodes because of the depth limit.

Iterative Deepening Search Example

{0} [DL = 0]

{0} [DL = 1]
{1,2}
{2}

{0} [DL = 2]
{1,2}
{2,3,2}, {3,2}, {2}
{3, 4}, {4}

{0} [DL = 3]
{1,2}
{2,3,2}
{3,4,3,2}, {4,3,2}, {3,2}
{4,5,2}, {5, 2}
Success!

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

68

18

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

69

Iterative Deepening Search Properties

● Completeness?
■ Yes, if solution of length d exists, will the search will

find it when L = d.
● Time Complexity?
■ At first glance, seems bad because nodes are

expanded many times.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

70

Iterative Deepening Search Properties

● Time Complexity
■ (d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)

 [root expanded d+1 times, level 1 nodes
 expanded d times, …]

■ E.g. b=4, d=10
● (11)*40 + 10*41 + 9*42 + … + 2*49 = 815,555
● 410 = 1,048,576
● Most nodes lie on bottom layer.
● In fact IDS can be more efficient than breadth
first search: nodes at limit are not expanded. BFS
must expand all nodes until it expands a goal
node.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

71

Iterative Deepening Search Properties

● Space Complexity
■  O(bd) Still linear!

● Optimal?
■  Will find shortest length solution which is optimal if costs are

uniform.
■  If costs are not uniform, we can use a “cost” bound instead.
●  Only expand paths of cost less than the cost bound.
●  Keep track of the minimum cost unexpanded path in each

depth first iteration, increase the cost bound to this on the
next iteration.

●  This can be very expensive. Need as many iterations of the
search as there are distinct path costs.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

72

Iterative Deepening Search Properties
● Consider space with three paths of length 3,

but each action having a distinct cost.

19

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

73

Cycle Checking

● Path checking
■ Paths are stored on the frontier (this allows us to

output the solution path).
● If <S,n1,…,nk> is a path to node nk, and we expand

nk to obtain child c, we have
■ <S,n1,…,nk,c>

● As the path to “c”.
■ Path checking:
● Ensure that the state c is not equal to the state

reached by any ancestor of c along this path.

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

74

Path Checking Example

§ Arad § Lugoj

§ Zerind

§ Oradea

§ Timisoara

§ Arad

§ Timisoara § Mehadia

§ Arad

§ Zerind § Sibiu

§ Arad § Fagaras § R. Vilcea

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

75

Path Checking Example

§ 2

§ 3 § 4

§ 3

§ 4 § 5

§ 3

§ 4 § 5

§ 4

§ 5 § 6

§ 1 § 2

§ 0

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

76

Cycle Checking

● Cycle Checking.
■ Keep track of all states previously expanded during

the search.
■ When we expand nk to obtain child c
● ensure that c is not equal to any previously

expanded state.
■ This is called cycle checking, or multiple path

checking.
■ Why can’t we utilize this technique with depth-first

search?
● If we use cycle checking in depth-first search what

happens to space complexity.

20

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

77

Cycle Checking Example

§ 2

§ 3 § 4

§ 3

§ 4 § 5

§ 3

§ 4 § 5

§ 4

§ 5 § 6

§ 1 § 2

§ 0

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus

78

Cycle Checking
● High space complexity, only useful with

breadth first search.
● There is an additional issue when we are

looking for an optimal solution
■ With uniform-cost search, we still find an optimal

solution
● The first time uniform-cost expands a state it

has found the minimal cost path to it.
■ This means that the nodes rejected by cycle

checking can’t have better paths.
■ We will see later that we don’t always have this

property when we do heuristic search.

