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CSE 3401: Intro to Artificial Intelligence  
Uninformed Search 

● Required Readings: R & N Chapter 3, Sec. 1-4. 
● Lecture slides adapted from those of Fahiem 

Bacchus. 
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Why Search 
● Successful 
■  Success in game playing programs based on search. 
■  Many other AI problems can be successfully solved by 

search. 
● Practical 
■  Many problems don’t have a simple algorithmic solution. 

Casting these problems as search problems is often the 
easiest way of solving them. Search can also be useful in 
approximation (e.g., local search in optimization problems). 

■  Often specialized algorithms cannot be easily modified to 
take advantage of extra knowledge. Heuristics in search 
provide a natural way of utilizing extra knowledge.  

● Some critical aspects of intelligent behaviour, e.g., 
planning, can be naturally cast as search. 

3 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

Example, a holiday in Jamaica  
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Things to consider  

• Prefer to avoid hurricane season. 
• Rules of the road, larger vehicle has right of way 

(especially trucks). 
• Want to climb up to the top of Dunns river falls. 
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But you want to 
start your climb 
at 8:00 am 
before the 
crowds arrive! 
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• Want to swim in the Blue Lagoon 
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• Want to hike the Cockpit Country 

• No roads, need local 
guide and supplies. 
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• Easier goal, climb to the top of Blue Mountain 

• Near Kingston.  
• Organized hikes available. 
• Need to arrive on the peak 

at dawn, before the fog 
sets in. 

• Can get some Blue 
Mountain coffee! 
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How do we plan our holiday? 

● We must take into account various preferences 
and constraints to develop a schedule. 

● An important technique in developing such a 
schedule is “hypothetical” reasoning. 
■ e.g., if I fly into Kingston and drive a car to Port 

Antonio, I’ll have to drive on the roads at night. How 
desirable is this? 

■  If I’m in Port Antonio and leave at 6:30am, I can 
arrive a Dunns river falls by 8:00am. 
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How do we plan our holiday? 

● This kind of hypothetical reasoning involves 
asking 
■ “what state will I be in after the following sequence 

of events?” 
● From this we can reason about what sequence 

of events one should try to bring about to 
achieve a desirable state. 

● Search is a computational method for 
capturing a particular version of this kind of 
reasoning. 

12 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

Search 

● There are many difficult questions that are not 
resolved by search. In particular, the whole 
question of how does an intelligent system 
formulate its problem as a search problem is 
not addressed by search. 

● Search only shows how to solve the problem 
once we have it correctly formulated.  
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The formalism. 
● To formulate a problem as a search problem 

we need the following components:  
■ Formulate a state space over which to search. The 

state space necessarily involves abstracting the real 
problem.  

■ Formulate actions that allow one to move between 
different states. The actions are abstractions of 
actions you could actually perform. 

■  Identify the initial state that best represents your 
current state and the desired condition one wants to 
achieve. 

■ Formulate various heuristics to help guide the 
search process. 
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The formalism. 

● Once the problem has been formulated as a 
state space search, various algorithms can be 
utilized to solve the problem. 
■ A solution to the problem will be a sequence of 

actions/moves that can transform your current state 
into state where your desired condition holds. 

15 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

Example 1: Romania Travel. 
Currently in Arad, need to get to Bucharest by 
tomorrow to catch a flight. 
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Example 1. 
● State space. 
■ States: the various cities you could be located in. 
● Note we are ignoring the low level details of 

driving, states where you are on the road between 
cities, etc. 

■ Actions: drive between neighboring cities. 
■  Initial state: in Arad 
■ Desired condition (Goal): be in a state where you are 

in Bucharest. (How many states satisfy this 
condition?) 

● Solution will be the route, the sequence of 
cities to travel through to get to Bucharest. 
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Example 2. The 8-Puzzle 

• Can slide a tile into the blank spot. 
(Equivalently, can think of it as moving the 
blank around). 
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Example 2. The 8-Puzzle 
● State space. 
■ States: The different configurations of the tiles. 

How many different states?  
■ Actions: Moving the blank up, down, left, right. 

Can every action be performed in every state? 
■  Initial state: as shown on previous slide. 
■ Desired condition (Goal): be in a state where the 

tiles are all in the positions shown on the 
previous slide. 

● Solution will be a sequence of moves of the 
blank that transform the initial state to a 
goal state. 
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Example 2. The 8-Puzzle 
● Although there are 9! different 

configurations of the tiles (362,880), in fact 
the state space is divided into two disjoint 
parts.  

● Only when the blank is in the middle are all 
four actions possible. 

● Our goal condition is satisfied by only a 
single state. But one could easily have a 
goal condition like 
■ The 8 is in the upper left hand corner.  
● How many different states satisfy this goal?  
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Example 3. Vacuum World. 
● In the previous two examples, a state in the 

search space corresponded to a unique 
state of the world (modulo details we have 
abstracted away). 

● However, states need not map directly to 
world configurations. Instead, a state could 
map to the agent’s mental conception of 
how the world is configured: the agent’s 
knowledge state. 



6 

21 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

Example 3. Vacuum World. 

● We have a vacuum 
cleaner and two rooms. 

● Each room may or may 
not be dirty. 

● The vacuum cleaner can 
move left or right (the 
action has no effect if 
there is no room to the 
right/left). 

● The vacuum cleaner can 
suck; this cleans the 
room (even if the room 
was already clean). Physical states 
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Example 3. Vacuum World. 

● The state space can 
consist of a set of 
states. The agent 
knows that it is in one 
of these states, but 
doesn’t know which.  

Goal is to have all 
rooms clean. 

Knowledge level State Space 
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Example 3. Vacuum World. 

● Complete knowledge of 
the world: agent knows 
exactly which state it is 
in. State space states 
consist of single 
physical states: 

● Start in {5}:  
 <right, suck>   

Goal is to have all 
rooms clean. 

Knowledge level State Space 
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Example 3. Vacuum World. 

● No knowledge of the 
world. States consist of 
sets of physical states. 

● Start in {1,2,3,4,5,6,7,8}, 
agent doesn’t have any 
knowledge of where it is. 

● Nevertheless, the actions 
<right, suck, left, suck> 
achieves the goal.  

 
 

Goal is to have all 
rooms clean. 

Knowledge level State Space 
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Example 3. Vacuum World. 

Initial state. 
{1,2,3,4,5,6,7,8} 

Right 

✖ 

✖

✖ 

✖ 
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Example 3. Vacuum World. 

Suck 

✖ 

✖ 

✖ 

✖

✖ 

✖ 

✖ 

✖ 

✖ 

✖ 
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Example 3. Vacuum World. 

Left 

✖ 

✖ 

✖ 

✖ 

✖ 

✖ 

✖ ✖ 

✖ 

✖ 

✖ 

✖ 
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Example 3. Vacuum World. 

Suck 

✖ ✖ 

✖ 

✖ 

✖ 

✖ 

✖ ✖ 

✖ ✖ 

✖ 

✖ 

✖ 



8 

29 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

More complex situations. 
● The agent might be able to perform some 

sensing actions. These actions change the 
agent’s mental state, not the world 
configuration. 

● With sensing can search for a contingent 
solution: a solution that is contingent on 
the outcome of the sensing actions 
■ <right, if dirt then suck> 

● Now the issue of interleaving execution and 
search comes into play. 
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More complex situations. 
● Instead of complete lack of knowledge, the 

agent might think that some states of the 
world are more likely than others. 

● This leads to probabilistic models of the 
search space and different algorithms for 
solving the problem. 

● Later we will see some techniques for 
reasoning and making decisions under 
uncertainty. 
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Algorithms for Search. 
● Inputs: 

■ a specified initial state (a specific world state or 
a set of world states representing the agent’s 
knowledge, etc.) 

■ a successor function S(x) = {set of states that 
can be reached from state x via a single action}.  

■ a goal test a function that can be applied to a 
state and returns true if the state is satisfies the 
goal condition.  

■ A step cost function C(x,a,y) which determines 
the cost of moving from state x to state y using 
action a. (C(x,a,y) = ∞ if a does not yield y from 
x)  
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Algorithms for Search. 
● Output: 

■ a sequence of states leading from the initial 
state to a state satisfying the goal test.  

■ The sequence might be 
● annotated by the name of the action used. 
● optimal in cost for some algorithms. 
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Algorithms for Search 

● Obtaining the action sequence. 
■  The set of successors of a state x might arise from different 

actions, e.g., 
●  x → a → y 
●  x → b → z 
●  Successor function S(x) yields a set of states that can be 

reached from x via a (any) single action.  
■  Rather than just return a set of states, we might annotate 

these states by the action used to obtain them: 
●  S(x) = {<y,a>, <z,b>}  

y via action a, z via action b. 
●  S(x) = {<y,a>, <y,b>}  

y via action a, also y via alternative action b. 

34 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

Tree search 
● Assuming search space is a tree, not a graph. 
● We use the successor state function to simulate an 

exploration of the state space. 
●  Initial call has Frontier = initial state. 

■ Frontier/fringe is the set of states we haven’t yet 
explored/expanded. 

TreeSearch(Frontier, Successors, Goal? ) 
 If Frontier is empty return failure  
 
Curr = select state from Frontier  
 
If(Goal?(Curr)) return Curr.  
 
Frontier’ = (Frontier – {Curr}) U Successors(Curr)  
 
return TreeSearch(Frontier’, Successors, Goal?) 
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Tree search in Prolog 
treeS([[State|Path]|_],Soln) :- 

Goal?(State), reverse([State|Path], Soln). 

treeS([[State|Path]|Frontier],Soln) :- 
GenSuccessors(State,Path,NewPaths), 
merge(NewPaths,Frontier,NewFrontier), 
treeS(NewFrontier,Soln). 

EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 

36 

 {Arad},  

 {Zerind, Timisoara, Sibiu},  
  {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea },  
  {Zerind, Timisoara, Arad, Oradea, Sibiu, Bucharest, RimnicuVilcea },  

 Solution: Arad -> Sibiu -> Fagaras -> Bucharest  
 Cost: 140+99+211 = 450 
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 {Arad}, 

 {Zerind, Timisoara, Sibiu},  
  {Zerind, Timisoara, Arad, Oradea, Fagaras, RimnicuVilcea},  
  {Zerind, Timisoara, Arad, Oradea, Sibiu, Pitesi, Craiova<via 

RimnicuVilcea>},  
  {Zerind, Timisoara, Arad, Oradea, Sibiu, Craiova<via Pitesi>, Bucharest, 

Craiova<via RimnicuVilcea>},  

§  Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->  
         Bucharest  

 Cost: 140+80+97+101 = 418 EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 
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{Arad<>}, 
{Zerind<Arad>, Timisoara<Arad>, Sibiu<Arad>},  
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>, 

Fagaras<Sibiu;Arad>, Arad<Sibiu;Arad>, RimnicuVilcea<Sibiu;Arad>},  
{Zerind <Arad>, Timisoara <Arad>, Oradea <Sibiu;Arad>, 

Fagaras<Sibiu;Arad>, Zerind<Arad;Sibiu;Arad>, 
Timisoara<Arad;Sibiu;Arad>, Sibiu<Arad;Sibiu;Arad>,  
RimnicuVilcea<Sibiu;Arad>},  

No solution found, search does not terminate because of cycles! 
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Selection Rule. 

● The example shows that order states are 
selected from the frontier has a critical effect 
on the operation of the search. 
■ Whether or not a solution is found 
■ The cost of the solution found. 
■ The time and space required by the search. 
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Critical Properties of Search. 

● Completeness: will the search always find a 
solution of a solution exists? 

● Optimality: will the search always find the least 
cost solution? (when actions have costs) 

● Time complexity: what is the maximum 
number of nodes than can be expanded or 
generated? 

● Space complexity: what is the maximum 
number of nodes that have to be stored in 
memory? 
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Uninformed Search Strategies 

● These are strategies that adopt a fixed rule for 
selecting the next state to be expanded. 

● The rule is always the same whatever the 
search problem being solved. 

● These strategies do not take into account any 
domain specific information about the 
particular search problem. 

● Popular uninformed search techniques: 
■ Breadth-First, Uniform-Cost, Depth-First, Depth-

Limited, and Iterative-Deepening search. 
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Selecting vs. Sorting 
● A simple equivalence we will exploit: 
■ Order the elements on the frontier. 
■ Always select the first element. 

● Any selection rule can be achieved by 
employing an appropriate ordering of the 
frontier set. 
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Breadth First. 

● Place the successors of the current state at the 
end of the frontier, which then behaves as a 
FIFO queue. 

● Example:  
■  let the states be the positive integers {0,1,2,…} 
■  let each state n have as successors n+1 and n+2 
● E.g. S(1) = {2, 3}; S(10) = {11, 12} 

■ Start state 0 
■ Goal state 5 
■  [Draw search space graph] 
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Breadth First Example. 
{0} 
{1,2} 
{2,2,3} 
{2,3,3,4} 
{3,3,4,3,4} 
{3,4,3,4,4,5} 
… 

§ [Draw search tree] 
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Breadth First Properties 

● Measuring time and space complexity. 
■ let b be the maximum number of successors 

of any state. 
■ let d be the number of actions in the 

shortest solution. 
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Breadth First Properties 

● Completeness? 
■ The length of the path from the initial state to the 

expanded state must increase monotonically. 
● we replace each expanded state with states on 

longer paths. 
● All shorter paths are expanded prior before any 

longer path. 
■ Hence, eventually we must examine all paths of 

length d, and thus find the shortest solution. 
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Breadth First Properties 

● Time Complexity? 
■ # nodes generated at… 
■ Level 0 (root): 1 
■ Level 1: 1* b  [each node has at most b successors] 
■ Level 2: b* b = b2 

■ Level 3: b * b2 = b3 .... 
■ Level d: bd 

■ Level d + 1: bd+1 – b = b(bd – 1) [when last node is 
successful] 

■ Total: 1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) = 
O(bd+1) 

■ Exponential, so can only solve small instances 
EECS 3401 Fall 2017 Yves Lesperance & Fahiem Bacchus 
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Breadth First Properties 

● Space Complexity? 
■ O(bd+1): If goal node is last node at level d, all of the 

successors of the other nodes will be on the frontier 
when the goal node is expanded, i.e. b(bd – 1)  
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Breadth First Properties 

● Optimality? 
■ Will find shortest path length solution 
■ Least cost solution? 
● In general no! 
● Only if all step costs are equal 
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Breadth First Properties 

● Space complexity is a real problem.  
■ E.g., let b = 10, and say 1000 nodes can be 

expanded per second and each node requires 100 
bytes of storage: 
Depth Nodes Time Memory 

1 1 1 millisec. 100 bytes 

6 106 18 mins. 111 MB 

8 108 31 hrs. 11 GB 

● Run out of space long before we run out of 
time in most applications. 
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Uniform Cost Search. 

● Keep the frontier sorted in increasing cost of 
the path to a node; behaves like priority queue. 

● Always expand the least cost node. 
● Identical to Breadth First if each transition has 

the same cost. 

● Example:  
■  let the states be the positive integers {0,1,2,…} 
■  let each state n have as successors n+1 and n+2 
■ Say that the n+1 action has cost 2, while the n+2 

action has cost 3.  
■  [Draw search space graph] 
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Uniform Cost Search. 
{0[0]} 
{1[2],2[3]} 
{2[3],2[4],3[5]} 
{2[4],3[5],3[5],4[6]} 
{3[5],3[5],4[6],3[6],4[7]} 
… 
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Uniform-Cost Search 

● Completeness? 
■ Assume each transition has costs ≥ ε > 0 (otherwise 

can have in finite path with finite cost) 
■ The previous argument used for breadth first search 

holds: the cost of the expanded state must increase 
monotonically. 

■ The algorithm expands nodes in order of increasing 
path cost. 
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Uniform-Cost Search 

● Time and Space Complexity? 
■ O(bC*/ε) where C* is the cost of the optimal solution. 

● Difficulty is that there may be many long paths 
with cost ≤ C*; Uniform-cost search must explore 
them all. 
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Uniform-Cost Search 

● Optimality? 
■ Finds optimal solution if each transition has cost ≥ ε 

> 0. 
● Explores paths in the search space in increasing 

order of cost. So must find minimum cost path to a 
goal before finding any higher costs paths. 
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Uniform-Cost Search. Proof of 
Optimality. 

1.  Let c(n) be the cost of the path to node n. If 
n2 is expanded after n1 then  
c(n1) ≤ c(n2). 

Proof:  
■  If n2 was on the frontier when n1 was expanded, in which case 

c(n2) ≥ c(n1) else n1 would not have been selected for 
expansion. 

■  If n2 was added to the frontier when n1 was expanded, in which 
case c(n2) ≥ c(n1) since the path to n2 extends the path to n1. 

■  If n2 is a successor of a node n3 that was on the frontier or 
added when n1 was expanded, then c(n2) > c(n3) and c(n3) ≥ 
c(n1) by the above arguments. 
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Uniform-Cost Search. Proof of 
Optimality. 

2.  When n is expanded every path with cost strictly less 
than c(n) has already been expanded (i.e., every node 
on it has been expanded). 

Proof:  
■  Let <Start, n0, n1, …, nk> be a path with cost less than c(n). Let 

ni be the last node on this path that has been expanded. <Start, 
n0, n1, ni-1, ni, ni+1, …, nk>. 

■  ni+1 must be on the frontier, also c(ni+1) < c(n) since the cost 
of the entire path to nk is < c(n). 

■  But then uniform-cost would have expanded ni+1 not n! 
■  So every node on this path must already be expanded, i.e. this 

path has already been expanded. QED 
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Uniform-Cost Search. Proof of 
Optimality. 

3.  The first time uniform-cost expands a state, 
it has found the minimal cost path to it (it 
might later find other paths to the same 
state). 

Proof:  
■ No cheaper path exists, else that path would have 

been expanded before. 
■ No cheaper path will be discovered later, as all those 

paths must be at least as expensive. 
■ So, when a goal state is expanded, the path to it 

must be optimal. 
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Depth First Search 

● Place the successors of the current state at 
the front of the frontier. 

● Frontier behaves like a stack. 
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Depth First Search Example 
(applied to the example of Breadth First 
search) 
{0} 
{1,2} 
{2,3,2} 
{3,4,3,2} 
{4,5,4,3,2} 
{5,6,5,4,3,2} 
… 

§ [draw search tree] 
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Depth First Properties 

● Completeness?  No! 
■  Infinite paths cause incompleteness!  Typically 

come from cycles in search space. 
 
■  If we prune paths with duplicate states, get 

completeness provided the search space is finite. 

● Optimality? No! 
■ Can find success along a longer branch! 
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Depth First Properties 

● Time Complexity? 
■ O(bm) where m is the length of the longest path in 

the state space. 
■ Why? In worst case, expands 
1 + b + b2 + … + bm-1 + bm = bm+1 – 1/b - 1= O(bm) 
nodes 
■ Assumes no cycles. 
 
■ Very bad if m is much larger than d, but if there are 

many solution paths it can be much faster than 
breadth first. 
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Depth First Backtrack Points 
§ At each step, all nodes in the frontier 
(except the head) are backtrack points (see 
example and draw the tree for state-space). 
§ These are all siblings of nodes on the 
current branch. 
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Depth First Properties 

●  Space Complexity? 
■ O(bm), linear space! 

● Only explore a single path at a time. 
● The frontier only contains the deepest states on 
the current path along with the backtrack points. 

■ Can reduce to O(m) if we generate siblings one at a 
time. 
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Depth Limited Search 

● Breadth first has computational, especially, space 
problems. Depth first can run off down a very long (or 
infinite) path. 

● Depth limited search.  
■  Perform depth first search but only to a pre-specified depth 

limit L. 
■  No node on a path that is more than L steps from the initial 

state is placed on the Frontier.  
■  We “truncate” the search by looking only at paths of length L or 

less. 
● Now infinite length paths are not a problem. 
● But will only find a solution if a solution of length ≤ L 

exists. 
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Depth Limited Search 

DLS(Frontier, Sucessors, Goal?) 
 If Frontier is empty return failure 
 
Curr = select state from Frontier 
 
If(Goal?(Curr)) return Curr. 
 
If Depth(Curr) < L 

 Frontier’ = (Frontier – {Curr}) U Successors(Curr) 
 
Else 

 Frontier’ = Frontier – {Curr} 
 CutOffOccured = TRUE. 

 
return DLS(Frontier’, Successors, Goal?) 
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Iterative Deepening Search. 

● Take the idea of depth limited search one step 
further. 

● Starting at depth limit L = 0, we iteratively 
increase the depth limit, performing a depth 
limited search for each depth limit. 

● Stop if no solution is found, or if the depth 
limited search failed without cutting off any 
nodes because of the depth limit. 

Iterative Deepening Search Example 

{0}  [DL = 0] 
 
{0}  [DL = 1] 
{1,2} 
{2} 
 
{0}  [DL = 2] 
{1,2} 
{2,3,2}, {3,2}, {2} 
{3, 4}, {4} 
 

{0}  [DL = 3] 
{1,2} 
{2,3,2} 
{3,4,3,2}, {4,3,2}, {3,2} 
{4,5,2}, {5, 2} 
Success! 
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Iterative Deepening Search Properties 

● Completeness? 
■ Yes, if solution of length d exists, will the search will 

find it when L = d. 
● Time Complexity? 
■ At first glance, seems bad because nodes are 

expanded many times. 
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Iterative Deepening Search Properties 

● Time Complexity 
■ (d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd) 

 [root expanded d+1 times, level 1 nodes 
 expanded d times, …] 

■ E.g. b=4, d=10 
● (11)*40 + 10*41 + 9*42 + … + 2*49 = 815,555 
● 410 = 1,048,576 
● Most nodes lie on bottom layer. 
● In fact IDS can be more efficient than breadth 
first search: nodes at limit are not expanded. BFS 
must expand all nodes until it expands a goal 
node. 
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Iterative Deepening Search Properties 

● Space Complexity  
■  O(bd) Still linear! 

● Optimal? 
■  Will find shortest length solution which is optimal if costs are 

uniform. 
■  If costs are not uniform, we can use a “cost” bound instead. 
●  Only expand paths of cost less than the cost bound. 
●  Keep track of the minimum cost unexpanded path in each 

depth first iteration, increase the cost bound to this on the 
next iteration. 

●  This can be very expensive. Need as many iterations of the 
search as there are distinct path costs.  
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Iterative Deepening Search Properties 
● Consider space with three paths of length 3, 

but each action having a distinct cost.  
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Cycle Checking 

● Path checking 
■ Paths are stored on the frontier (this allows us to 

output the solution path). 
● If <S,n1,…,nk> is a path to node nk, and we expand 

nk to obtain child c, we have 
■ <S,n1,…,nk,c>  

● As the path to “c”. 
■ Path checking:  
● Ensure that the state c is not equal to the state 

reached by any ancestor of c along this path.  
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Path Checking Example 

§ Arad § Lugoj 

§ Zerind 

§ Oradea 

§ Timisoara 

§ Arad 

§ Timisoara § Mehadia 

§ Arad 

§ Zerind § Sibiu 

§ Arad § Fagaras § R. Vilcea 
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Path Checking Example 

§ 2 

§ 3 § 4 

§ 3 

§ 4 § 5 

§ 3 

§ 4 § 5 

§ 4 

§ 5 § 6 

§ 1 § 2 

§ 0 
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Cycle Checking 

● Cycle Checking. 
■ Keep track of all states previously expanded during 

the search. 
■ When we expand nk to obtain child c 
● ensure that c is not equal to any previously 

expanded state.  
■ This is called cycle checking, or multiple path 

checking.  
■ Why can’t we utilize this technique with depth-first 

search?  
● If we use cycle checking in depth-first search what 

happens to space complexity. 
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Cycle Checking Example 

§ 2 

§ 3 § 4 

§ 3 

§ 4 § 5 

§ 3 

§ 4 § 5 

§ 4 

§ 5 § 6 

§ 1 § 2 

§ 0 
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Cycle Checking 
● High space complexity, only useful with 

breadth first search. 
● There is an additional issue when we are 

looking for an optimal solution 
■ With uniform-cost search, we still find an optimal 

solution 
● The first time uniform-cost expands a state it 

has found the minimal cost path to it. 
■ This means that the nodes rejected by cycle 

checking can’t have better paths. 
■ We will see later that we don’t always have this 

property when we do heuristic search. 


