A design paradigm

Divide and conquer:

(When) does decomposing a problem into smaller parts help?
INPUT: Two pairs of integers, (a,b), (c,d) representing complex numbers, a+ib, c+id, respectively.
OUTPUT: The pair [(ac-bd),(ad+bc)] representing the product (ac-bd) + i(ad+bc)

Naïve approach: 4 multiplications, 2 additions. Suppose a multiplication costs $1 and an addition cost a penny. The naïve algorithm costs $4.02.

Q: Can you do better?
Gauss’ idea

- \(m_1 = ac \)
- \(m_2 = bd \)
- \(A_1 = m_1 - m_2 = ac-bd \)
- \(m_3 = (a+b)(c+d) = ac + ad + bc + bd \)
- \(A_2 = m_3 - m_1 - m_2 = ad+bc \)
- **Saves 1 multiplication! Uses more additions. The cost now is $3.03.**
- This is good (saves 25% multiplications), but it leads to more dramatic asymptotic improvement elsewhere!

(aside: look for connections to known algorithms)

Q: How fast can you multiply two n-bit numbers?
How to multiply two n-bit numbers.

Elementary School algorithm

\(\times \)

\[
\begin{array}{c}
\ldots \\
\end{array}
\]

\(n^2 \)

\[
\begin{array}{c}
\ldots \\
\end{array}
\]

EECS 3101
Elementary School algorithm

\[\begin{array}{c}
\times \\
\end{array} \]

Q: Is there a faster algorithm?

A: YES! Use divide-and-conquer.
Divide and Conquer

Intuition:

• **DIVIDE** my instance to the problem into smaller instances to the same problem.
• Recursively solve them.
• **GLUE** the answers together so as to obtain the answer to your larger instance.
• Sometimes the last step may be trivial.
Multiplication of two n-bit numbers

\[
\begin{aligned}
X &= a 2^{n/2} + b \\
Y &= c 2^{n/2} + d \\
XY &= ac 2^n + (ad+bc) 2^{n/2} + bd
\end{aligned}
\]

MULT(X,Y):
If \(|X| = |Y| = 1\) then RETURN XY
Break X into a;b and Y into c;d
RETURN
\[
MULT(a,c) 2^n + (MULT(a,d) + MULT(b,c)) 2^{n/2} + MULT(b,d)
\]
Time complexity of MULT

• T(n) = time taken by MULT on two n-bit numbers
• What is T(n)? Is it \(\theta(n^2) \)?
• Hard to compute directly
• Easier to express as a recurrence relation!
• T(1) = k for some constant k
• T(n) = 4 T(n/2) + c_1 n + c_2 for some constants c_1 and c_2
• How can we get a \(\theta() \) expression for T(n)?

MULT(X,Y):

If \(|X| = |Y| = 1\) then RETURN XY

Break X into a;b and Y into c;d

RETURN

\[
\text{MULT}(a,c) 2^n + (\text{MULT}(a,d) + \text{MULT}(b,c)) 2^{n/2} + \text{MULT}(b,d)
\]
Time complexity of MULT

Make it concrete

- $T(1) = 1$
- $T(n) = 4 \cdot T(n/2) + n$

Technique 1: Guess and verify

$T(n) = 2n^2 - n$

Holds for $n=1$

$T(n) = 4 \cdot (2(n/2)^2 - n/2 + n)$

$= 2n^2 - n$
Time complexity of MULT

- \(T(1) = 1 \) \& \(T(n) = 4 \ T(n/2) + n \)

Technique 2: Expand recursion

\[
T(n) = 4 \ T(n/2) + n \\
= 4 (4T(n/4) + n/2) + n = 4^2T(n/4) + n + 2n \\
= 4^2(4T(n/8) + n/4) + n + 2n \\
= 4^3T(n/8) + n + 2n + 4n \\
= \ldots \\
= 4^kT(1) + n + 2n + 4n + \ldots + 2^{k-1}n \text{ where } 2^k = n
\]

GUESS

\[
= n^2 + n \ (1 + 2 + 4 + \ldots + 2^{k-1}) \\
= n^2 + n \ (2^k-1) \\
= 2 \ n^2 - n \ [\text{NOT FASTER THAN BEFORE}]
\]
Gaussified MULT (Karatsuba 1962)

MULT(X,Y):

If |X| = |Y| = 1 then RETURN XY

Break X into a;b and Y into c;d

e = MULT(a,c) and f = MULT(b,d)

RETURN e2^n + (MULT(a+b, c+d) - e - f) 2^{n/2} + f

• T(n) = 3 T(n/2) + n
 • Actually: T(n) = 2 T(n/2) + T(n/2 + 1) + kn
Time complexity of Gaussified MULT

- \(T(1) = 1 \) & \(T(n) = 3 \, T(n/2) + n \)

Technique 2: Expand recursion

\[
T(n) = 3 \, T(n/2) + n
\]

\[
= 3 \left(3T(n/4) + n/2 \right) + n = 3^2T(n/4) + n + 3/2n
\]

\[
= 3^2(3T(n/8) + n/4) + n + 3/2n
\]

\[
= 3^3T(n/8) + n + 3/2n + (3/2)^2n
\]

\[
= \ldots \ldots
\]

\[
= 3^kT(1) + n + 3/2n + (3/2)^2n + \ldots + (3/2)^{k-1}n \text{ where } 2^k = n
\]

\[
= 3 \log_2 n + n(1 + 3/2 + (3/2)^2 + \ldots + (3/2)^{k-1})
\]

\[
= n \log_2 3 + 2n \left((3/2)^k - 1 \right)
\]

\[
= n \log_2 3 + 2n \left(n \log_2 3 / n - 1 \right)
\]

\[
= 3n \log_2 3 - 2n
\]

Not just 25% savings!
\[\Theta(n^2) \text{ vs } \Theta(n^{1.58..}) \]
Multiplication Algorithms

<table>
<thead>
<tr>
<th>Kindergarten ?</th>
<th>n(2^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3*4=3+3+3+3</td>
<td></td>
</tr>
<tr>
<td>Grade School</td>
<td>n(^2)</td>
</tr>
<tr>
<td>Karatsuba</td>
<td>n(^{1.58...})</td>
</tr>
<tr>
<td>Fastest Known</td>
<td>n \log n \log \log n</td>
</tr>
</tbody>
</table>
Next...

1. Covered basics of a simple design technique (Divide-and-conquer) – Ch. 2 of the text.
2. Next, Strassen’s algorithm for matrix multiplication
Matrix multiplication

• Fundamental operation in Linear Algebra
• Used for numerical differentiation, integration, optimization etc
Naïve matrix multiplication

SimpleMatrixMultiply (A,B)

1. n ← A.rows
2. C ← CreateMatrix(n,n)
3. for i ← 1 to n
4. for j ← 1 to n
5. C[i,j] ← 0
6. for k ← 1 to n
8. return C

- Argue that the running time is $\theta(n^3)$
Faster Algorithm?

- Idea: Similar to multiplication in \mathbb{N}, \mathbb{C}
- Divide and conquer approach provides unexpected improvements
First attempt and Divide & Conquer

Divide A, B into 4 \(\frac{n}{2} \times \frac{n}{2} \) matrices

- \(C_{11} = A_{11}B_{11} + A_{12}B_{21} \)
- \(C_{12} = A_{11}B_{12} + A_{12}B_{22} \)
- \(C_{21} = A_{21}B_{11} + A_{22}B_{21} \)
- \(C_{22} = A_{21}B_{12} + A_{22}B_{22} \)

Simple Recursive implementation. Running time is given by the following recurrence.

- \(T(1) = C \), and for \(n > 1 \)
- \(T(n) = 8T(\frac{n}{2}) + \theta(n^2) \)
- \(\theta(n^3) \) time-complexity
Strassen’s algorithm

Avoid one multiplication (details on page 80) (but uses more additions)

Recurrence:
• $T(1) = C$, and for $n > 1$
• $T(n) = 7T(n/2) + \theta(n^2)$

• How can we solve this?
• Will see that $T(n) = \theta(n^{\lg 7})$, $\lg 7 = 2.8073\ldots$
The maximum-subarray problem

• Given an array of integers, find a contiguous subarray with the maximum sum.
• Very naïve algorithm:

• Brute force algorithm:

• At best, \(\theta(n^2) \) time complexity
Can we do divide and conquer?

• Want to use answers from left and right half subarrays.
• Problem: The answer may not lie in either!

• Key question: What information do we need from (smaller) subproblems to solve the big problem?

• Related question: how do we get this information?
A divide and conquer algorithm

Algorithm in Ch 4.1:

Recurrence:
• \(T(1) = C \), and for \(n > 1 \)
• \(T(n) = 2T(n/2) + \theta(n) \)
• \(T(n) = \theta(n \log n) \)
More divide and conquer: Merge Sort

- **Divide**: If S has at least two elements (nothing needs to be done if S has zero or one elements), remove all the elements from S and put them into two sequences, S_1 and S_2, each containing about half of the elements of S. (i.e. S_1 contains the first $\left\lfloor n/2 \right\rfloor$ elements and S_2 contains the remaining $\left\lceil n/2 \right\rceil$ elements).

- **Conquer**: Sort sequences S_1 and S_2 using Merge Sort.

- **Combine**: Put back the elements into S by merging the sorted sequences S_1 and S_2 into one sorted sequence.
Merge Sort: Algorithm

```
Merge-Sort(A, p, r)
    if p < r then
        q ← (p+r)/2
        Merge-Sort(A, p, q)
        Merge-Sort(A, q+1, r)
        Merge(A, p, q, r)
```

```
Merge(A, p, q, r)
    Take the smallest of the two topmost elements of sequences A[p..q] and A[q+1..r] and put into the resulting sequence. Repeat this, until both sequences are empty. Copy the resulting sequence into A[p..r].
```
Merge Sort: example
Merge Sort: example
Merge Sort: example
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example
Merge Sort: example
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example

24 45 64 85 17 31 96 50
Merge Sort: example

24 45 64 85

17 31 96 50

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example

EECS 3101
Merge Sort: example
Merge Sort: summary

- To sort n numbers
 - if $n=1$ done!
 - recursively sort 2 lists of numbers $\lceil n/2 \rceil$ and $\lfloor n/2 \rfloor$ elements
 - merge 2 sorted lists in $\Theta(n)$ time

- Strategy
 - break problem into similar (smaller) subproblems
 - recursively solve subproblems
 - combine solutions to answer
Recurrences

• Running times of algorithms with Recursive calls can be described using recurrences

• A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs

Example: Merge Sort

\[
T(n) = \begin{cases}
\text{solving_trivial_problem} & \text{if } n = 1 \\
\text{num_pieces } T(n / \text{subproblem_size_factor}) + \text{dividing} + \text{combining} & \text{if } n > 1
\end{cases}
\]

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{if } n > 1
\end{cases}
\]
Solving recurrences

• Repeated substitution method
 – Expanding the recurrence by substitution and noticing patterns

• Substitution method
 – guessing the solutions
 – verifying the solution by the mathematical induction

• Recursion-trees

• Master method
 – templates for different classes of recurrences
Repeated Substitution Method

• Let’s find the running time of merge sort (let’s assume that \(n=2^b \), for some \(b \)).

\[
T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T(n/2) + n & \text{if } n > 1
\end{cases}
\]

\[
T(n) = 2T(n/2) + n \quad \text{substitute}
\]

\[
= 2\left(2T(n/4) + n/2\right) + n \quad \text{expand}
\]

\[
= 2^2T(n/4) + 2n \quad \text{substitute}
\]

\[
= 2^2\left(2T(n/8) + n/4\right) + 2n \quad \text{expand}
\]

\[
= 2^3T(n/8) + 3n \quad \text{observe the pattern}
\]

\[
T(n) = 2^i T(n/2^i) + in
\]

\[
= 2^{\lg n}T(n/n) + n\lg n = n + n\lg n
\]
Repeated Substitution Method

• The procedure is straightforward:
 – Substitute
 – Expand
 – Substitute
 – Expand
 – ...
 – Observe a pattern and write how your expression looks after the i-th substitution
 – Find out what the value of i (e.g., $\lg n$) should be to get the base case of the recurrence (say $T(1)$)
 – Insert the value of $T(1)$ and the expression of i into your expression
Substitution method

Solve $T(n) = 4T(n/2) + n$

1) Guess that $T(n) = O(n^3)$, i.e., that T of the form cn^3

2) Assume $T(k) \leq ck^3$ for $k \leq n/2$ and

3) Prove $T(n) \leq cn^3$ by induction

$$T(n) = 4T(n/2) + n \text{ (recurrence)}$$

$$\leq 4c(n/2)^3 + n \text{ (ind. hypoth.)}$$

$$= \frac{c}{2} n^3 + n \text{ (simplify)}$$

$$= cn^3 - \left(\frac{c}{2} n^3 - n \right) \text{ (rearrange)}$$

$$\leq cn^3 \text{ if } c \geq 2 \text{ and } n \geq 1 \text{ (satisfy)}$$

Thus $T(n) = O(n^3)$!

Subtlety: Must choose c big enough to handle $T(n) = \Theta(1)$ for $n < n_0$ for some n_0
Substitution method

- Achieving tighter bounds

Try to show $T(n) = O(n^2)$

Assume $T(k) \leq ck^2$

$$T(n) = 4T(n/2) + n$$
$$\leq 4c(n/2)^2 + n$$
$$= cn^2 + n$$
$$\leq cn^2 \text{ for no choice of } c > 0.$$
Substitution method

The problem: We could not rewrite the equality

\[T(n) = cn^2 + \text{(something positive)} \]

as:

\[T(n) \leq cn^2 \]

in order to show the inequality we wanted

- Sometimes to prove inductive step, try to strengthen your hypothesis
 - \(T(n) \leq (\text{answer you want}) - (\text{something} > 0) \)
Substitution method

• Corrected proof: the idea is to strengthen the inductive hypothesis by subtracting lower-order terms!

Assume \(T(k) \leq c_1k^2 - c_2k \) for \(k < n \)

\[
T(n) = 4T(n/2) + n \\
\leq 4(c_1(n/2)^2 - c_2(n/2)) + n \\
= c_1n^2 - 2c_2n + n \\
= c_1n^2 - c_2n - (c_2n - n) \\
\leq c_1n^2 - c_2n \text{ if } c_2 \geq 1
\]
A recursion tree is a convenient way to visualize what happens when a recurrence is iterated. Construction of a recursion tree

\[T(n) = T(n/4) + T(n/2) + n^2 \]
Recursion Tree

\[
\begin{align*}
&n^2 \\
&\quad \frac{1}{4}n^2 \\
&\quad \quad \frac{1}{16}n^2 \\
&\quad \frac{1}{8}n^2 \\
&\quad \frac{1}{16}n^2 \\
&\quad \frac{1}{8}n^2 \\
&\quad \frac{1}{4}n^2 \\
&\quad \frac{5}{16}n^2 \\
&\quad \frac{25}{256}n^2 \\
&\quad \vdots \\
&\Theta(n^2)
\end{align*}
\]
Recursion Tree

\[T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n \]

Total: \(O(n \log n) \)
Master Method

• The idea is to solve a class of recurrences that have the form

\[T(n) = aT(n/b) + f(n) \]

• \(a \geq 1 \) and \(b > 1 \), and \(f \) is asymptotically positive!

• Abstractly speaking, \(T(n) \) is the runtime for an algorithm and we know that

 – a subproblems of size \(n/b \) are solved recursively, each in time \(T(n/b) \)

 – \(f(n) \) is the cost of dividing the problem and combining the results. In merge-sort

\[T(n) = 2T(n/2) + \Theta(n) \]
Master method

Split problem into a parts at $\log_b n$ levels. There are $a^{\log_b n} = n^{\log_b a}$ leaves.

Total: $\Theta\left(n^{\log_b a}\right) + \sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$
Master method

- Number of leaves:
- Iterating the recurrence, expanding the tree yields

\[a^{\log_b n} = n^{\log_b a} \]

\[T(n) = f(n) + aT(n/b) \]
\[= f(n) + af(n/b) + a^2T(n/b^2) \]
\[= f(n) + af(n/b) + a^2T(n/b^2) + ... \]
\[+ a^{\log_b n-1} f(n/b^{\log_b n-1}) + a^{\log_b n} T(1) \]

Thus,

\[T(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) + \Theta(n^{\log_b a}) \]

- The first term is a division/recombination cost (totaled across all levels of the tree)
- The second term is the cost of doing all \(n^{\log_b a} \) subproblems of size 1 (total of all work pushed to leaves)
Master method intuition

• Three common cases:
 – Running time dominated by cost at leaves
 – Running time evenly distributed throughout the tree
 – Running time dominated by cost at root
• Consequently, to solve the recurrence, we need only to characterize the dominant term
• In each case compare $f(n)$ with $O(n^{\log_b a})$
Master method Case 1

• $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$
 – $f(n)$ grows polynomially (by factor n^ε) slower than $n^{\log_b a}$

• The work at the leaf level dominates
 – Summation of recursion-tree levels $O(n^{\log_b a})$
 – Cost of all the leaves $\Theta(n^{\log_b a})$
 – Thus, the overall cost $\Theta(n^{\log_b a})$
Master method Case 2

• \(f(n) = \Theta(n^{\log_b a} \lg n) \)
 \(-f(n)\) and \(n^{\log_b a} \) are asymptotically the same

• The work is distributed equally throughout the tree \(T(n) = \Theta(n^{\log_b a} \lg n) \)
 \(-\) (level cost) \(\times\) (number of levels)
Master method Case 3

• \(f(n) = \Omega(n^{\log_b a + \varepsilon}) \) for some constant \(\varepsilon > 0 \)
 – Inverse of Case 1
 – \(f(n) \) grows polynomially faster than \(n^{\log_b a} \)
 – Also need a regularity condition
 \(\exists c < 1 \) and \(n_0 > 0 \) such that \(af(n/b) \leq cf(n) \ \forall n > n_0 \)

• The work at the root dominates

\[T(n) = \Theta(f(n)) \]
Master Theorem Summarized

- Given a recurrence of the form \(T(n) = aT(n/b) + f(n) \)
 1. \(f(n) = O\left(n^{\log_b a - \varepsilon}\right) \)
 \[\Rightarrow T(n) = \Theta\left(n^{\log_b a}\right) \]
 2. \(f(n) = \Theta\left(n^{\log_b a}\right) \)
 \[\Rightarrow T(n) = \Theta\left(n^{\log_b a} \lg n\right) \]
 3. \(f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right) \) and \(af(n/b) \leq cf(n) \), for some \(c < 1, n > n_0 \)
 \[\Rightarrow T(n) = \Theta\left(f(n)\right) \]

- The master method cannot solve every recurrence of this form; there is a gap between cases 1 and 2, as well as cases 2 and 3
Using the Master Theorem

• Extract \(a, b, \) and \(f(n) \) from a given recurrence
• Determine \(n^{\log_b a} \)
• Compare \(f(n) \) and \(n^{\log_b a} \) asymptotically
• Determine appropriate MT case, and apply
• Example merge sort

\[
T(n) = 2T(n/2) + \Theta(n)
\]

\(a = 2, \ b = 2; \ n^{\log_b a} = n^{\log_2 2} = n = \Theta(n) \)

Also \(f(n) = \Theta(n) \)

\[
\Rightarrow \text{Case 2: } T(n) = \Theta\left(n^{\log_b a} \log n\right) = \Theta(n \log n)
\]
Examples

\(T(n) = T(n/2) + 1 \)

\(a = 1, b = 2; \ n^{\log_2 1} = 1 \)

also \(f(n) = 1, f(n) = \Theta(1) \)

\(\Rightarrow \text{Case 2: } T(n) = \Theta(\log n) \)

\(T(n) = 9T(n/3) + n \)

\(a = 9, b = 3; \)

\(f(n) = n, f(n) = O(n^{\log_3 9 - \varepsilon}) \text{ with } \varepsilon = 1 \)

\(\Rightarrow \text{Case 1: } T(n) = \Theta(n^2) \)

\[\text{Binary-search}(A, p, r, s) : \]
\[q \leftarrow (p+r)/2\]
\[
\text{if } A[q] = s \text{ then return } q
\]
\[
\text{else if } A[q] > s \text{ then }
\quad \text{Binary-search}(A, p, q-1, s)
\]
\[
\text{else Binary-search}(A, q+1, r, s)
\]
Examples

\[T(n) = 3T(n/4) + n \log n \]
\[a = 3, b = 4; \quad n^{\log_4 3} = n^{0.793} \]
\[f(n) = n \log n, \quad f(n) = \Omega(n^{\log_4 3 + \varepsilon}) \text{ with } \varepsilon \approx 0.2 \]
\[\Rightarrow \text{Case 3:} \]

Regularity condition
\[af(n/b) = 3(n/4) \log(n/4) \leq (3/4)n \log n = cf(n) \text{ for } c = 3/4 \]
\[T(n) = \Theta(n \log n) \]

\[T(n) = 2T(n/2) + n \log n \]
\[a = 2, b = 2; \quad n^{\log_2 2} = n^1 \]
\[f(n) = n \log n, \quad f(n) = \Omega(n^{1 + \varepsilon}) \text{ with } \varepsilon? \]
also \(n \log n / n^1 = \log n \)
\[\Rightarrow \text{neither Case 3 nor Case 2!} \]
Examples

\[T(n) = 4T(n/2) + n^3 \]
\[a = 4, b = 2; \quad n^{\log_2 4} = n^2 \]
\[f(n) = n^3; \quad f(n) = \Omega(n^2) \]

⇒ Case 3: \[T(n) = \Theta(n^3) \]

Checking the regularity condition
\[4f(n/2) \leq cf(n) \]
\[4n^3 / 8 \leq cn^3 \]
\[n^3 / 2 \leq cn^3 \]
\[c = 3 / 4 < 1 \]
1. Covered basics of a simple design technique (Divide-and-conquer) – Ch. 4 of the text.
2. Next, more sorting algorithms.