Back to asymptotics......

We will now look more formally at the process of simplifying running times and other measures of complexity.
Asymptotic analysis

• Goal: to simplify analysis of running time by getting rid of ”details”, which may be affected by specific implementation and hardware
 – like “rounding”: $1,000,001 \approx 1,000,000$
 – $3n^2 \approx n^2$
• Capturing the essence: how the running time of an algorithm increases with the size of the input *in the limit*.
 – Asymptotically more efficient algorithms are best for all but small inputs
Asymptotic notation

- The “big-Oh” O-Notation
 - asymptotic upper bound
 - \(f(n) \in O(g(n)) \), if there exists constants \(c \) and \(n_0 \), s.t. \(f(n) \leq c g(n) \) for \(n \geq n_0 \)
 - \(f(n) \) and \(g(n) \) are functions over non-negative integers
- Used for *worst-case* analysis
Asymptotic notation – contd.

• The “big-Omega” Ω–Notation
 – asymptotic lower bound
 – $f(n) \in \Omega(g(n))$ if there exists constants c and n_0, s.t. $c \cdot g(n) \leq f(n)$ for $n \geq n_0$

• Used to describe best-case running times or lower bounds of algorithmic problems
 – E.g., lower-bound of searching in an unsorted array is $\Omega(n)$.
Asymptotic notation – contd.

• Simple Rule: Drop lower order terms and constant factors.
 – $50 \ n \ \log \ n \in O(n \ \log \ n)$
 – $7n - 3 \in O(n)$
 – $8n^2 \ \log \ n + 5n^2 + n \in O(n^2 \ \log \ n)$

• Note: Even though $50 \ n \ \log \ n \in O(n^5)$, we usually try to express a $O()$ expression using as small an order as possible
• The “big-Theta” \(\Theta \)–Notation
 – asymptotically tight bound
 \(- f(n) \in \Theta(g(n)) \) if there exists constants \(c_1, c_2, \) and \(n_0 \), s.t. \(c_1 g(n) \leq f(n) \leq c_2 g(n) \) for \(n \geq n_0 \)

• \(f(n) \in \Theta(g(n)) \) if and only if \(f(n) \in O(g(n)) \) and \(f(n) \in \Omega(g(n)) \)

• \(O(f(n)) \) is often misused instead of \(\Theta(f(n)) \)
Asymptotic notation – contd.

• Two more asymptotic notations
 – "Little-Oh" notation $f(n) = o(g(n))$
 non-tight analogue of Big-Oh
 • For every c, there should exist n_0, s.t. $f(n) \leq c \cdot g(n)$
 for $n \geq n_0$
 • Used for comparisons of running times.
 If $f(n) \in o(g(n))$, it is said that $g(n)$ dominates $f(n)$.
 • More useful defn:
 \[
 \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0
 \]

• "Little-omega" notation $f(n) \in \omega(g(n))$
 non-tight analogue of Big-Omega
Asymptotic notation – contd.

• (VERY CRUDE) Analogy with real numbers
 \[f(n) = O(g(n)) \implies f \leq g \]
 \[f(n) = \Omega(g(n)) \implies f \geq g \]
 \[f(n) = \Theta(g(n)) \implies f = g \]
 \[f(n) = o(g(n)) \implies f < g \]
 \[f(n) = \omega(g(n)) \implies f > g \]

• Abuse of notation: \(f(n) = O(g(n)) \) actually means \(f(n) \in O(g(n)) \).
Points to ponder and lessons

Common “colloquial” uses:

\[\Theta(1) \] – constant.

\[n^{\Theta(1)} \] – polynomial

\[2^{\Theta(n)} \] – exponential

- When is asymptotic analysis useful?
- When is it NOT useful?

Many, many abuses of asymptotic notation in Computer Science literature.

Lesson: Always remember the implicit assumptions…

Be careful!

\[n^{\Theta(1)} \neq \Theta(n^1) \]

\[2^{\Theta(n)} \neq \Theta(2^n) \]
Comparison of Running Times

<table>
<thead>
<tr>
<th>Running Time</th>
<th>Maximum problem size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 second</td>
</tr>
<tr>
<td>$400n$</td>
<td>2500</td>
</tr>
<tr>
<td>$20n \log n$</td>
<td>4096</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>707</td>
</tr>
<tr>
<td>n^4</td>
<td>31</td>
</tr>
<tr>
<td>2^n</td>
<td>19</td>
</tr>
</tbody>
</table>
Classifying functions

<table>
<thead>
<tr>
<th></th>
<th>$T(n)$</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>$n^{1/2}$</td>
<td>3</td>
<td>10</td>
<td>31</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>100</td>
<td>1,000</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>$n \log n$</td>
<td>30</td>
<td>600</td>
<td>9,000</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>100</td>
<td>10,000</td>
<td>10^6</td>
<td>10^8</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>1,000</td>
<td>10^6</td>
<td>10^9</td>
<td>10^{12}</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>1,024</td>
<td>10^{30}</td>
<td>10^{300}</td>
<td>10^{3000}</td>
<td></td>
</tr>
</tbody>
</table>
Hierarchy of functions

- Constant
- Poly Logarithmic: \((\log n)^5 \)
- Polynomial: \(n^5 \)
- Exponential: \(2^n, 2^{n^5}, 2^{2^n} \)
- Double Exp

- Others: \(2^{n \log(n)} \)

\[09/09/17 \]
Classifying Polynomials

Dominant term is of the form n^c

Polynomial
- Linear: $5n$
- Quadratic: $5n^2$
- Cubic: $5n^3$
- Others: $5n^3 \log^7(n)$, $5n^4$

EECS 3101
Logarithmic functions

- \(\log_{10} n \) = \# digits to write \(n \)
- \(\log_2 n \) = \# bits to write \(n \) = 3.32 \(\log_{10} n \)
- \(\log(n^{1000}) = 1000 \log(n) \)

Differ only by a multiplicative constant.

Poly Logarithmic (a.k.a. polylog)

\((\log n)^5 = \log^5 n\)
Crucial asymptotic facts

Logarithmic \ll Polynomial

$\log_{1000} n \ll n^{0.001}$ For sufficiently large n

Linear \ll Quadratic

$10000 n \ll 0.0001 n^2$ For sufficiently large n

Polynomial \ll Exponential

$n^{1000} \ll 2^{0.001 n}$ For sufficiently large n
Are constant functions constant?

The running time of the algorithm is a “constant”
It does not depend significantly on the size of the input.

Yes • 5
Yes • 1,000,000,000,000
Yes • 0.0000000000001
No • -5
No • 0
Yes • $8 + \sin(n)$

Write $\Theta(1)$.
Polynomial Functions

Quadratic
• n^2
• $0.001 \ n^2$
• $1000 \ n^2$
• $5n^2 + 3000n + 2\log n$

Polynomial
• n^c
• $n^{0.0001}$
• n^{10000}
• $5n^2 + 8n + 2\log n$
• $5n^2 \log n$
• $5n^{2.5}$
Exponential functions

- 2^n
- $2^{0.0001 \ n}$
- $2^{10000 \ n}$
- $8^n = 2^{3n}$
- $2^n / n^{100} > 2^{0.5n}$
- $2^n \cdot n^{100} < 2^{2n}$

$$2^n = 2^{0.5n} \cdot 2^{0.5n} > n^{100} \cdot 2^{0.5n}$$

$$2^n / n^{100} > 2^{0.5n}$$
Proving asymptotic expressions

Use definitions!

\[f(n) = 3n^2 + 7n + 8 = \theta(n^2) \]
\[f(n) \in \Theta(g(n)) \text{ if there exists constants } c_1, \, c_2, \text{ and } n_0, \text{ s.t.} \]
\[c_1 \, g(n) \leq f(n) \leq c_2 \, g(n) \text{ for } n \geq n_0 \]

Here \(g(n) = n^2 \)

One direction (\(f(n) = \Omega(g(n)) \)) is easy

\[c_1 \, g(n) \leq f(n) \text{ holds for } c_1 = 3 \text{ and } n \geq 0 \]

The other direction (\(f(n) = O(g(n)) \)) needs more care

\[f(n) \leq c_2 \, g(n) \text{ holds for } c_2 = 18 \text{ and } n \geq 1 (\text{CHECK}) \]

So \(n_0 = 1 \)
Proving asymptotic expressions – contd.

Caveats!
1. constants c_1, c_2 MUST BE POSITIVE.
2. Could have chosen $c_2 = 3 + \varepsilon$ for any $\varepsilon > 0$. WHY?
 -- because $7n + 8 \leq \varepsilon n^2$ for $n \geq n_0$ for some sufficiently large n_0. Usually, the smaller the ε you choose, the harder it is to find n_0. So choosing a large ε is easier.

3. Order of quantifiers
 $\exists c_1, c_2 \exists n_0 \forall n \geq n_0, c_1g(n) \leq f(n) \leq c_2g(n)$
 vs
 $\exists n_0 \forall n \geq n_0 \exists c_1, c_2, c_1g(n) \leq f(n) \leq c_2g(n)$
 -- allows a different c_1 and c_2 for each n. Can choose $c_2 = 1/n!!$ So we can “prove” $n^3 = \Theta(n^2)$.

EECS 3101
Why polynomial vs exponential?

Philosophical/Mathematical reason – polynomials have different properties, grow much slower; mathematically natural distinction.

Practical reasons

1. almost every algorithm ever designed and every algorithm considered practical are very low degree polynomials with reasonable constants.
2. a large class of natural, practical problems seem to allow only exponential time algorithms. Most experts believe that there do not exist any polynomial time algorithms for any of these; i.e. $P \neq NP$.