

UP-Growth: An Efficient Algorithm
for High Utility Itemset Mining

Vincent S. Tseng1, Cheng-Wei Wu1, Bai-En Shie1, and Philip S. Yu2
1 Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan, ROC

2 Department of Computer Science, University of Illinois at Chicago, Chicago, Illinois, USA
tsengsm@mail.ncku.edu.tw, {silvemoonfox, brian0326}@idb.csie.ncku.edu.tw, psyu@cs.uic.edu

ABSTRACT
Mining high utility itemsets from a transactional database refers to
the discovery of itemsets with high utility like profits. Although a
number of relevant approaches have been proposed in recent years,
they incur the problem of producing a large number of candidate
itemsets for high utility itemsets. Such a large number of
candidate itemsets degrades the mining performance in terms of
execution time and space requirement. The situation may become
worse when the database contains lots of long transactions or long
high utility itemsets. In this paper, we propose an efficient
algorithm, namely UP-Growth (Utility Pattern Growth), for
mining high utility itemsets with a set of techniques for pruning
candidate itemsets. The information of high utility itemsets is
maintained in a special data structure named UP-Tree (Utility
Pattern Tree) such that the candidate itemsets can be generated
efficiently with only two scans of the database. The performance
of UP-Growth was evaluated in comparison with the
state-of-the-art algorithms on different types of datasets. The
experimental results show that UP-Growth not only reduces the
number of candidates effectively but also outperforms other
algorithms substantially in terms of execution time, especially
when the database contains lots of long transactions.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications — Data
Mining.

General Terms
Algorithms, Performance.

Keywords
Utility mining, frequent itemset, high utility itemset, candidate
pruning.

1. INTRODUCTION
Frequent itemset mining is a fundamental research topic with wide
data mining applications. Extensive studies [1, 5] have been
proposed for mining frequent itemsets from the databases and
successfully adopted in various application domains. In market
analysis, mining frequent itemsets from a transaction database
refers to the discovery of the itemsets which frequently appear

together in the transactions. However, the unit profits and
purchased quantities of items are not considered in the framework
of frequent itemset mining. Hence, it cannot satisfy the
requirement of the user who is interested in discovering the
itemsets with high sales profits. In view of this, utility mining [2,
3, 4, 6, 7, 8, 9, 10] emerges as an important topic in data mining
for discovering the itemsets with high utility like profits.

Mining high utility itemsets from the databases refers to finding
the itemsets with high utilities. The basic meaning of utility is the
interestedness/importance/profitability of items to the users. The
utility of items in a transaction database consists of two aspects: (1)
the importance of distinct items, which is called external utility,
and (2) the importance of the items in the transaction, which is
called internal utility. The utility of an itemset is defined as the
external utility multiplied by the internal utility. An itemset is
called a high utility itemset if its utility is no less than a user-
specified threshold; otherwise, the itemset is called a low utility
itemset. Mining high utility itemsets from databases is an
important task which is essential to a wide range of applications
such as website click streaming analysis, cross-marketing in retail
stores, business promotion in chain hypermarkets and even
biomedical applications.

However, mining high utility itemsets from the databases is not an
easy task since the downward closure property [1] used in
frequent itemset mining cannot be applied here. In other words,
pruning search space for high utility itemset mining is difficult
because a superset of a low utility itemset may be a high utility
itemset. A naïve approach for this problem is to enumerate all
itemsets from the databases by the principle of exhaustion.
Obviously, this approach will encounter the large search space
problem, especially when databases contain lots of long
transactions or a low threshold is set. Hence, how to effectively
prune the search space and efficiently capture all high utility
itemsets with no miss is a big challenge in utility mining.

Existing studies [2, 4, 6, 7, 9] applied overestimated methods to
facilitate the mining performance of utility mining. In these
methods, potential high utility itemsets are found first, and then an
additional database scan is performed for identifying their utilities.
However, the existing methods often generate a huge set of
potential high utility itemsets and the mining performance is
degraded consequently. The situation may become worse when
the database contains many long transactions or low threshold is
set. The huge number of potential high utility itemsets forms a
challenging problem to the mining performance since the higher
processing cost is incurred with more potential high utility
itemsets are generated.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07...$10.00.

253

To address this issue, we propose in this paper a novel algorithm
with a compact data structure for efficiently discovering high
utility itemsets from transactional databases. The major
contributions of this work are summarized as follows:

1. A novel algorithm, called UP-Growth (Utility Pattern Growth),
is proposed for discovering high utility itemsets. Correspondingly,
a compact tree structure, called UP-Tree (Utility Pattern Tree), is
proposed to maintain the important information of the transaction
database related to the utility patterns. High utility itemsets are
then generated from the UP-Tree efficiently with only two scans
of the database.

2. Four strategies are proposed for efficient construction of
UP-Tree and the processing in UP-Growth. By these strategies,
the estimated utilities of candidates can be well reduced by
discarding the utilities of the items which are impossible to be
high utility or not involved in the search space. The proposed
strategies can not only efficiently decrease the estimated utilities
of the potential high utility itemsets but also effectively reduce the
number of candidates.

3. Both of synthetic and real datasets are used in experimental
evaluations to compare the performance of UP-Growth with the
state-of-the-art utility mining algorithms. The experimental results
show that UP-Growth outperforms other algorithms substantially
in terms of execution time, especially when the database contains
lots of long transactions.

The rest of this paper is organized as follows. In section 2, we
introduce the background and related work for high utility itemset
mining. In section 3, the proposed algorithm and data structure are
described in details. Experiment results are shown in section 4 and
the conclusions are given in section 5.

2. BACKGROUND
In this section, we first define the problem of utility mining and
then describe the previous works of utility mining.

2.1 Problem Definition
Given a finite set of items I = {i1, i2, …, im}. Each item ip (1 ≤ p ≤
m) has a unit profit p(ip). An itemset X is a set of k distinct items
{i1, i2, …, ik}, where ij I, 1≤ j ≤ k, and k is the length of X. An
itemset with length k is called k-itemset. A transaction database D
= {T1, T2, …, Tn} contains a set of transactions, and each
transaction Td (1 ≤ d ≤ n) has an unique identifier d, called TID.
Each item ip in the transaction Td is associated with a quantity
q(ip, Td), that is, the purchased number of ip in Td.

Definition 1. The utility of an item ip in the transaction Td is
denoted as u(ip, Td) and defined as p(ip) × q(ip, Td). For example,
in Table 1, u({A}, T1) = 5 × 1 = 5.

Definition 2. The utility of an itemset X in Td is denoted as u(X, Td)
and defined as   dp TXXi dp Tiu),(. For example, u({AC}, T1) =

u({A}, T1) + u({C}, T1) = 5 + 1 = 6.
Definition 3. The utility of an itemset X in D is denoted as u(X)
and defined as   DTTX d

dd
TXu),(. For example, u({AD}) =

u({AD}, T1) + u({AD}, T3) = 7 + 17 = 24.

Definition 4. An itemset is called a high utility itemset if its utility
is no less than a user-specified minimum utility threshold which is
denoted as min_util. Otherwise, it is called a low utility itemset.

Table 1. An example database
TID Transaction TU
T1 (A,1) (C,1) (D,1) 8
T2 (A,2) (C,6) (E,2) (G,5) 27
T3 (A,1) (B,2) (C,1) (D,6) (E,1) (F,5) 30
T4 (B,4) (C,3) (D,3) (E,1) 20
T5 (B,2) (C,2) (E,1) (G,2) 11

Table 2. Profit table
Item A B C D E F G
Profit 5 2 1 2 3 1 1

Problem Statement. Given a transaction database D and a
user-specified minimum utility threshold min_util, mining high
utility itemsets from the transaction database is equivalent to
discover from D all itemsets whose utilities are no less than
min_util.

After addressing the problem definition of utility mining, we
introduce the transaction-weighted downward closure which is
proposed in [7].

Definition 5. The transaction utility of a transaction Td is denoted
as TU(Td) and defined as u(Td, Td). For example, TU(T1) =
u({ACD}, T1) = 8.

Definition 6. The transaction-weighted utilization of an itemset X
is the sum of the transaction utilities of all the transactions
containing X, which is denoted as TWU(X) and defined as

  DTTX d
dd

TTU)(. For example, TWU({AD}) = TU(T1) +

TU(T3) = 8 + 30 = 38. If TWU(X) is no less than the minimum
utility threshold, X is called a high transaction-weighted
utilization itemset (abbreviated as HTWUI).

Definition 7. The transaction-weighted downward closure, which
is abbreviated as TWDC, is stated as follows. For any itemset X, if
X is not a HTWUI, any superset of X is a low utility itemset. By
this definition, the downward closure property can be maintained
by using transaction-weighted utilization. For example, in Table 1,
any superset of {AD} is a low utility itemset since TWU({AD}) <
min_util.

2.2 Related Work
Extensive studies have been proposed for mining frequent
itemsets. One of the well-known algorithms is Apriori algorithm
[1], which is the pioneer for efficiently mining association rules
from large databases. The tree-based approaches such as
FP-Growth [5] were afterward proposed. It’s widely recognized
that FP-Growth achieves a better performance than Apriori-based
approaches since it finds frequent itemsets without generating any
candidate itemset and it scans database just twice.

However, in the framework of frequent itemset mining [1, 5], the
importance of items to users is not considered. The unit profits
and purchased quantities of the items are not taken into
considerations. Thus, some methods were proposed for mining
high utility itemsets from the databases, such as UMining [9],
Two-Phase [7], IIDS [6] and IHUP [2]. UMining algorithm [9]
proposed by Yao et al. used an estimation method to prune search
space. Although it is shown to have good performance, it cannot
capture the complete set of high utility itemsets since some high
utility patterns may be pruned during the process.

254

Two-Phase algorithm [7] proposed by Liu et al. consists of two
phases. In phase I, Two-Phase algorithm employs a breadth first
search strategy to enumerate HTWUIs. It generates candidate
itemsets of length k from HTWUIs of length (k-1) and prunes
candidate itemsets by TWDC property. In each pass, HTWUIs
and their estimated utility values i.e., TWUs, are computed by
scanning database. After that, the complete set of HTWUIs is
collected in phase I. In phase II, high utility itemsets and their
utilities are identified from the HTWUIs by scanning original
database once.

Although Two-Phase algorithm effectively reduces the search
space by TWDC property and captures the complete set of high
utility itemsets, it still generates too many candidates for HTWUIs
and requires multiple database scans. To overcome this problem,
Li et al. [6] proposed an isolated items discarding strategy,
abbreviated as IIDS, to reduce the number of candidates. By
pruning isolated items during the level-wise search, the number of
candidate itemsets for HTWUIs in phase I can be reduced
effectively. However, this approach still scans database multiple
times and uses a candidate generation-and-test scheme to find
high utility itemsets.

To efficiently generate HTWUIs in phase I and avoid scanning
database multiple times, Ahmed et al. [2] proposed a tree-based
algorithm, called IHUP, for mining high utility itemsets. They use
an IHUP-Tree to maintain the information of high utility itemsets
and transactions. Every node in IHUP-Tree consists of an item
name, a support count, and a TWU value. The framework of the
algorithm consists of three steps: (1) The construction of
IHUP-Tree, (2) the generation of HTWUIs and (3) identification
of high utility itemsets. The phase I of IHUP In step 1, items in
the transaction are rearranged in a fixed order such as
lexicographic order, support descending order or TWU
descending order. Then, the rearranged transactions are inserted
into the IHUP-Tree. Figure 1 shows a global IHUP-Tree for the
database in Table 1, in which items are arranged in the descending
order of TWU. In step 2, HTWUIs are generated from the
IHUP-Tree by applying the FP-Growth algorithm [5]. Thus,
HTWUIs in phase I can be found more efficiently without
generating candidates for HTWUIs. In step 3, high utility itemsets
and their utilities are identified from the set of HTWUIs by
scanning the original database once.

Although IHUP finds HTWUIs without generating any candidates
for HTWUIs and achieves a better performance than IIDS and
Two-Phase, it still produces too many HTWUIs in phase I. Note
that IHUP and Two-Phase produce the same number of HTWUIs
in phase I since they use transaction-weighted utilization mining
model [7] to overestimate the utilities of the itemsets. However,
this model may overestimate too many low utility itemsets as
HTWUIs and produce too many candidate itemsets in phase I.
Such a large number of HTWUIs degrades the mining
performance in phase I in terms of execution time and memory
consumption. Besides, the number of HTWUIs in phase I also
affects the performance of the algorithms in phase II since the
more HTWUIs are generated in phase I, the more execution time
is required for identifying high utility itemsets in phase II.

As stated above, the number of HTWUIs generated in phase I
forms a crucial problem to the performance of algorithms. In view
of this, we propose four strategies to reduce the estimated utility
values of the itemsets. By applying the proposed strategies, the
number of candidates generated in phase I can be reduced

{R}

{C}: 5, 96

{E}: 4, 88

{A}: 2, 57

{B}: 1, 30

{D}: 1, 30

{B}: 2, 31

{D}: 1, 20

{A}: 1, 8

{D}: 1, 8
61B

65A

58D

88E

96C

LinkTWUItem

61B

65A

58D

88E

96C

LinkTWUItem

Figure 1: An IHUP-Tree when min_util = 40.

effectively and the high utility itemsets can be identified more
efficiently since the number of itemsets needed to be checked in
phase II is highly reduced in phase I.

3. PROPOSED METHOD
In this section, we first introduce the proposed data structure,
named UP-Tree, and then describe the proposed algorithm, called
UP-Growth, in details. The framework of the proposed method
consists of three parts: (1) construction of UP-Tree, (2) generation
of potential high utility itemsets from the UP-Tree by UP-Growth,
and (3) identification of high utility itemsets from the set of
potential high utility itemsets. Note that we use a new term
potential high utility itemsets (PHUIs) to distinguish the
discovered patterns found by our approach from the HTWUIs
since our approach is not based on the traditional framework of
transaction-weighted utilization mining model. In our proposed
model, the set of PHUIs is much smaller than the set of HTWUIs
in phase I.

3.1 The Proposed Data Structure: UP-Tree
To facilitate the mining performance and avoid scanning original
database repeatedly, we use a compact tree structure, called
UP-Tree to maintain the information of transactions and high
utility itemsets.

3.1.1 The elements in UP-Tree
In UP-Tree, each node N includes N.name, N.count, N.nu,
N.parent, N.hlink and a set of child nodes. The details are
introduced as follows. N.name is the item name of the node.
N.count is the support count of the node [5]. N.nu is called node
utility which is an estimate utility value of the node. N.parent
records the parent node of the node. N.hlink is a node link which
points to a node whose item name is the same as N.name.

Header table is employed to facilitate the traversal of UP-Tree. In
the header table, each entry is composed of an item name, an
estimate utility value, and a link. The link points to the last
occurrence of the node which has the same item as the entry in the
UP-Tree. By following the link in the header table and the nodes
in UP-Tree, the nodes whose item names are the same can be
traversed efficiently.

3.1.2 Discarding global unpromising items during
the construction of a global UP-Tree
The construction of UP-Tree can be performed with two scans of
the original database. In the first scan of database, the transaction
utility of each transaction is computed. At the same time, TWU of
each single item is also accumulated. After scanning database

255

Table 3. Items and their TWUs
Item A B C D E F G
TWU 65 61 96 58 88 30 38

Table 4. Reorganized transactions and their RTUs
TID Reorganized transaction RTU
T1’ (C,1) (A,1) (D,1) 8
T2’ (C,6) (E,2) (A,2) 22
T3’ (C,1) (E,1) (A,1) (B,2) (D,6) 25
T4’ (C,3) (E,1) (B,4) (D,3) 20
T5’ (C,2) (E,1) (B,2) 9

once, items and their TWUs are obtained. By TWDC property, if
the TWU of an item is less than minimum utility threshold, its
supersets are unpromising to be high utility itemsets. The item is
called unpromising items. Definition 8 gives a formal definition
for unpromising items and promising items.

Definition 8. (Promising item and unpromising item) An item
ip is called a promising item if TWU(ip)min_util. Otherwise, the
item is called an unpromising item.

After the first scan of database, promising items are organized in
the header table in the descending order of TWU values. Note that
other orders can be used. In this paper, we suggest the TWU
descending order since [2] indicates that this order facilitates the
mining performance. During the second scan of database,
transactions are inserted into UP-Tree. Initially, the tree is created
with a root R. When a transaction is retrieved, unpromising items
are removed from the transaction and their utilities are eliminated
from the TU of the transaction since only the supersets of
promising items are possible to be the high utility itemsets. The
remaining promising items in the transaction are sorted in the
descending order of TWU. The transaction after the above
reorganization is called reorganized transaction and its TU is
called RTU (reorganized transaction utility). The RTU of a
reorganized transaction Td is denoted as RTU(Td).

Example 1. Consider the transaction database in Table 1 and the
profit table in Table 2. Suppose the minimum utility threshold
min_util is 40. In the first scan of database, TUs of the
transactions and the TWUs of the items are computed. They are
shown in the last column of Table 1 and in Table 3, respectively.
As shown in Table 3, {F} and {G} are unpromising items since
their TWUs are less than min_util. The promising items are
reorganized in the header table in the descending order of TWU.
Table 4 shows the reorganized transactions and their RTUs for the
database in Table 1. As shown in Table 4, unpromising items {F}
and {G} are removed from the transactions T2, T3 and T5,
respectively. Besides, the utilities of {F} and {G} are eliminated
from the TUs of T2, T3 and T5, respectively. The remaining
promising items {A}, {B}, {C}, {D} and {E} in the transaction
are sorted in the descending order of TWU. Then, we insert
reorganized transactions into the UP-Tree by the same processes
as IHUP-Tree [2]. We use the following example to describe the
operation of insertion.

Example 2. Consider the reorganized transactions in Table 4. The
first reorganized transaction T1’ = {C, A, D} leads to create a
branch in UP-Tree. The first node {C} is created under the root
with {C}.count = 1 and {C}.nu = 8. The second node {A} is
created under node {A} with {A}.count = 1 and {A}.nu = 8. The
third node {C} is created as a child of node {A} with {C}.count =

{R}

{C}: 5, 84

{E}: 4, 76

{A}: 2, 47

{B}: 1, 25

{D}: 1, 25

{B}: 2, 29

{D}: 1, 20

{A}: 1, 8

{D}: 1, 8
61B

65A

58D

88E

96C

LinkTWUItem

61B

65A

58D

88E

96C

LinkTWUItem

Figure 2. A UP-Tree by applying strategy DGU.

1 and {C}.nu = 8. When the next reorganized transaction T2’ = {C,
E, A} is retrieved, the node utility of the node {C} is increased by
22 and {C}.count is increased by 1. Then, a new node {E} is
created under {C} with {E}.count=1 and {E}.nu = 22. Similarly,
a new node {A} is created under the node {E} with {A}.count=1
and {A}.nu = 22. The reorganized transactions T3’, T4’ and T5’ are
inserted in the same way. After inserting all reorganized
transactions, the construction of a global UP-Tree with strategy
DGU is complete. The global UP-Tree is shown in Figure 2.

Strategy 1. Discarding global unpromising items (DGU). The
unpromising items and their utilities are eliminated from the
transaction utilities during the construction of a global UP-Tree.

Rationale: The principle of DGU strategy is to discard the
information of unpromising items from the database since an
unpromising item plays no role in high utility itemsets and only
the supersets of promising items are likely to be high utility.

3.1.3 Generating PHUIs from the global UP-Tree
by FP-Growth
In Figure 2, each node in the UP-Tree is associated with two
numbers: the first one is support count and the second one is node
utility. Besides, the nodes which have the same item names are
linked in a sequence by their node links. Comparing with the
IHUP-Tree in Figure 1, the node utilities of the nodes in UP-Tree
are less than the node utilities of the nodes in IHUP-Tree since
reorganized transactions are inserted with RTUs instead of TWUs.
In the UP-Tree, each node {ai} to the root forms a path ({ai}
{ai+1}...{an}). Each path represents a common prefix that
shared by multiple reorganized transactions. Besides, {ai}.count is
the number of reorganized transactions that share the path and
{ai}.nu is an estimate utility value for the path. Similar to [2],
PHUIs can be generated from the UP-Tree by applying
FP-Growth [5].

Example 3. Consider the UP-Tree in Figure 2. Suppose min_util
is 40. The algorithm starts from the bottom of the header table and
considers the item {D} first. By applying FP-Growth, a PHUI
{D}:58 is generated since its estimate utility value, i.e., 58, is
above than min_util. By following {D}.hlink, the nodes with the
same item names are found. By tracing the nodes to root, three
paths (DAC: 1, 8), (DBAEC: 1, 25) and
(DBEC: 1, 20) are found. For each path, the first number
beside the path is the support count and the second number is the
path utility, which is equal to {D}.nu. These paths are collected
into {D}’s conditional pattern base [5] which is denoted as
{D}-CPB and shown in Table 5. In this table, the collected paths
are shown in the first column; the support counts and the path

256

Table 5. {D}’s conditional pattern base

Path Reorganized
path

Support
count

Path utility by
strategies DGU, DGN

{AC} {C} 1 8
{BAEC} {CBE} 1 25
{BEC} {CBE} 1 20

Table 6. Local items and their path utilities in {D}-CPB
Item A B C E

Path utility 33 45 53 45

utilities of the paths are shown in the third and the forth columns,
respectively. For convenience, the path ({ai}{ai+1}...{an})
in the conditional pattern base is denoted as {ai, ai+1,..., an} and
the item ai is discarded from the path in {ai}’s conditional pattern
base since every path in {ai}-CPB must contain ai.

Definition 9. (Path utility of a path in a conditional pattern
base) The path utility of a path pj = ({ai}{ai+1}...{an}) in
{ai}-CPB is equal to {ai}.nu and is denoted as pu(pj, {ai}-CPB).
For example, in Table 5, the path utility of the path {AC} in
{D}-CPB is 8.

Definition 10. (Path utility of an item in a path in a conditional
pattern base) For each item ip in the path pj in {ai}-CPB, the path
utility of an item ip in a path pj in {ai}-CPB is equal to pu(pj,
{ai}-CPB)and denoted as pu(ip, pj). For example, the path utility
of {A} in the path {AC} is 8.

Definition 11. (Path utility of an item in a conditional pattern
base) The path utility of an item ip in {ai}-CPB is defined as

  CPBappi jp
ijjp

pipu
}{

),(, which is denoted as pu(ip, {ai}-CPB).

For example, the path utility of item {A} in {D}-CPB is equal to
(pu({A}, {AC}) + pu({A}, {BAEC})) = (8 + 25) = 33.

Definition 12. (Local promising item in a conditional pattern
base) An item ip is called a local promising item in {ai}-CPB if
pu(ip, {ai}-CPB)  min_util; otherwise, ip is called a local
unpromising item.

Property 1. Let iu be a local unpromising item in {ai}-CPB, any
superset of iu is not a high utility itemset.

Example 5. By scanning {D}-CPB once, items and their path
utilities are obtained, which is shown in Table 6. In Table 6, item
{A} is a local unpromising item since its path utility is less than
min_util, i.e., 33<40. Then, local promising items {B}, {C} and
{E} are arranged in the local header table. Scan {D}-CPB again to
construct {D}’s conditional UP-Tree [5], which is denoted as
{D}-Tree. When a path in the conditional pattern base is retrieved,
unpromising items are removed from the path and the remaining
items are rearranged in the descending order according to their
local path utilities. The reorganized paths are shown in the second
column of Table 5. After inserting all reorganized paths, {D}-Tree
is constructed completely and shown in Figure 4(a). Generating
PHUIs from {D}-Tree by applying FP-Growth, a set of PHUIs
which are involved with item {D} are obtained, that is, {{D}:58,
{DE}:45, {DEB}:45, {DEC}:45, {DEBC}:45, {DB}:45,
{DBC}:45, {DC}:53}. Consider the next item, i.e., {B}, in the
global header table in the same manner, it derives a set of PHUIs
which includes item {B}, that is, {{B}:61 {BE}:54, {BEC}:54,
{BC}:54}. Consider the remaining items in the header table and
we can obtain the rest PHUIs, i.e., {{A}:65, {AC}:55, {ACE}:47,
{AE}:47, {E}:88, {EC}:76, {C}:96}. After finding all PHUIs,

high utility itemsets and their utilities are identified from the set of
PHUIs by scanning original database once.

As stated above, we have shown a basic framework of our
approach for mining high utility itemsets. In the above examples,
the strategy DGU is also presented to decrease the estimated
utilities of the itemsets. DGU strategy uses RTU to estimate the
utilities of the itemsets instead of using TWU. By applying DGU,
unpromising items and their utilities are excluded from the
UP-Tree such that the node utilities of the nodes are less than the
TWUs of the nodes in IHUP-Tree. As a result, the number of
PHUIs generated by the proposed approach is less than the
HTWUIs generated by IHUP and Two-Phase in phase I. Although
DGU seems simple, it is quite effective especially when the
transactions contain lots of unpromising items. Besides, DGU can
be easily integrated into other TWU-based approaches [2, 7].
Moreover, before the construction of UP-Tree, DGU can be used
repeatedly till all reorganized transactions contain no unpromising
items. Due to the page limit, we do not discuss it in this paper and
leave it in the future work. After addressing DGU, we propose
DGN (Decreasing Global Node utilities) strategy to further reduce
the number of PHUIs.

3.1.4 Decreasing node utilities in construction of a
global UP-Tree
As shown in example 5, the search space of high utility itemsets
can be divided into five smaller search spaces: (1) {D}-CPB, (2)
{B}-CPB without containing item {D}, (3) {A}-CPB without
containing items {B} and {D}, (4) {E}-CPB without containing
items {A}, {B} and {D}, and (5) {C}-CPB without containing
items {E}, {A}, {B} and {D}.

When DGU strategy is applied, there are two paths {AEC}: 25
and {EC}: 29 in {B}-CPB, where the numbers beside the paths
are their path utilities. Although {D} doesn’t appear in {B}’s
conditional pattern base, the utility of {D} is involved in the path
utilities of the paths in {B}-CPB. The path utility of the path
{AEC} is 25, which is equal to the RTU of the reorganized
transaction T3’. This estimated utility value is actually the sum of
u({B}, T3’), u({D}, T3’), u({A}, T3’), u({E}, T3’) and u({C}, T3’).
However, all paths in {B}-CPB are not related with {D} since {D}
is below {B} in the UP-Tree as shown in Figure 2. Besides, only
the item which is an ancestor of the node {B} will appear in
{B}-CPB. Any item which is a descendant of the node {B} will
not appear in {B}-CPB. Therefore, the utilities of {B}’s
descendants can be removed from the path utility of each path in
{B}-CPB. The process can be done during the construction of
global UP-Tree since the paths in the conditional pattern bases are
directly derived from the global UP-Tree.

When a reorganized transaction tj’ = {i1, i2, …, in} (ik I, 1 ≤ k ≤ n)
is inserted into a global UP-Tree, the function
Insert_Reorganized_Transaction(R, i1) is called. The function
Insert_Reorganized_Transaction(N, ix) takes a node N in the
UP-Tree and an item ix (ix tj’, 1 ≤ x ≤ n) in the reorganized
transaction tj’ as inputs. The function is performed as follows:

Line 1: If N has a child S such that S.item = ix, then increment
S.count by 1; otherwise, created a new child node S with
S.item = ix, S.count = 1, S.parent = N and S.nu = 0.

Line 2: Increase S.nu by (RTU(tj’) –)),(
)1( 

n

xp jp tiu , where

ip tj’ and 1≤ p ≤ n.

Line 3: Call Insert_Reorganized_Transaction(S, ix+1) if p n.

257

Example 6. Consider the reorganized transactions in Table 4.
When T1’ = {(C,1) (A,1) (D,1)} is inserted to a global UP-Tree,
the first node {C} is created. {C}.nu is increased by the RTU of
T1’ minus the utilities of the rest items which are behind the item
{C} in T1’, i.e., {C}.nu = RTU(T1’) – (u({A}, T1’) + u({D}, T1’))
= 8 – (5+2) = 1. For convenience, it can also be considered as the
sum of the utilities of the items which are before the item {D} in
T1’, i.e., {C}.nu = p({C}) × q({C}, T1’) = 1×1 = 1, where p({C})
is the unit profit of the item {C} and q({C}, T1’) is the purchased
number of {C} in T1’. The second node {A} is crated with
{A}.count = 1 and {A}.nu = (p({C}) × q({C}, T1’) + p({A}) ×
q({A}, T1’)) = (1×1 + 5×1) = 6. The third node {D} is created with
{D}.count = 1 and {D}.nu = (p({C}) × q({C}, T1’) + p({A}) ×
q({A}, T1’) + p({D}) × q({D}, T1’)) = (1×1 + 5×1 + 1×2) = 8.
When T2’ = {(C, 6) (E, 2) (A, 2)} is inserted into the tree, {C}.nu
is increased by p({C}) × q({C}, T2’) = 6 and {C}.count is
increased by 1. Then, a new node {E} is created under the node
{C} with {E}.count = 1 and {E}.nu = 12. Similarly, a new node
{A} is created under the node {E} with {A}.count = 1 and {A}.nu
= 22. After inserting all reorganized transactions, the global
UP-Tree is constructed completely. Figure 3 shows the global
UP-Tree. By Figure 3, we can know that the node utility of each
node is significantly reduced. Generating PHUIs from the
UP-Tree by applying FP-Growth, and we obtain a set of PHUIs,
that is, {{D}:58, {DE}:45, {DEB}:45, {DEBC}:45, {DEC}:45,
{DB}:45, {DBC}:45, {DC}:53, {B}:61, {A}:65, {E}:88, {C}:96}.

Strategy 2. Discarding global node utilities (DGN). For any
node in a global UP-Tree, the utilities of its descendants are
discarded from the utility of the node during the construction of a
global UP-Tree.

Rationale: Let <i1, i2, …, in> be a list of promising items which
are arranged by the descending order of TWU values in a global
header table. Since the items ik+1, ik+2, ..., in are not involved in
ik-CPB and ik-Tree, they won’t be contained in any PHUI of
ik-Tree. Thus, their utilities can be discarded from the node ik in
the global UP-Tree.

By applying strategy DGN, the utilities of the nodes which are
closer to the root of the global UP-Tree are effectively reduced.
DGN strategy is especially suitable for the database which
contains lots of long transactions since the more items are in the
transactions and the more utilities can be discarded by DGN. On
the contrary, traditional transaction-weighted utilization mining
model may be unsuitable for the long transactions since the more
items in the transaction, the higher TWU is.

3.2 The Proposed Mining Method: UP-Growth
In this section, we describe the details of UP-Growth for
efficiently generating PHUIs from the global UP-Tree with two
strategies, namely DLU (Discarding local unpromising items) and
DLN (Decreasing local node utilities). Although strategies DGU
and DGN described in previous section can effectively reduce the
number of candidates in phase I, they are applied during the
construction of the global UP-Tree and cannot be applied during
the construction of the local UP-Tree. The reason is that the
individual items and their utilities are not maintained in the
conditional pattern base. We cannot know the utility values of the
unpromising items in the conditional pattern base. To overcome
this problem, a naïve approach is to maintain the utilities of the
items in the conditional pattern base. However, this approach may

{R}

{C}: 5, 13

{E}: 4, 27

{A}: 2, 31

{B}: 1, 13

{D}: 1, 25

{B}: 2, 23

{D}: 1, 20

{A}: 1, 6

{D}: 1, 8
61B

65A

58D

88E

96C

LinkTWUItem

61B

65A

58D

88E

96C

LinkTWUItem

Figure 3. A UP-Tree by applying strategies DGU and DGN.

Table 7. Minimum item utility table
Item A B C D E

Minimum item utility 5 4 1 2 3

be impractical since it consumes lots of memory usages. Instead
of maintaining exact utility values of the items in the conditional
pattern base, we maintain a minimum item utility table,
abbreviated as MIUT, to maintain the minimum item utility for all
global promising items.

Definition 13. (Minimum item utility of an item) The utility of
item ip in transaction Td is called the minimum item utility of ip if
there doesn’t exist a transaction Td’ such that u(ip, Td’) < u(ip, Td).
The minimum item utility of ip is denoted as miu(ip).

Definition 14. (Minimum item utility of an item in a path) The
minimum item utility of item iu in path pj is defined as miu(iu) ×
pj.count, where pj.count is the support count of the path pj in the
conditional pattern base.

Note that the MIUT can be constructed during the first scan of
database. Table 7 shows the MIUT for all global promising items
in Table 1.

Strategy 3. Discarding local unpromising items (DLU). The
minimum item utilities of unpromising items are discarded from
path utilities of the paths during the construction of a local
UP-Tree.

Rationale: By the rationale of DGU strategy, in a conditional
pattern tree, local unpromising items and their utilities can be
discarded. Since the minimum item utility of a local unpromising
item in a path is always equal to or less than its real utility in the
path, we can also discard its minimum item utility from the paths
of the conditional pattern tree without losing any PHUI.

The purpose of DLU strategy is similar to DGU strategy, while
DLU is applied during the second scan of the conditional pattern
base. First, we scan conditional pattern base once to identify local
promising items and unpromising items. Then, we scan
conditional pattern base again to construct a local UP-Tree. When
a path is retrieved, each unpromising item is removed from the
path and its minimum item utility in this path is eliminated from
the path utilities.

Example 7. Consider {D}’s conditional pattern base shown in
Table 5. Table 6 shows the local items in {D}-CPB and their path

258

Table 8. {D}-CPB by applying DGU, DGN and DLU

Path Reorganized
path

Support
count

Path utility by
strategies DGU,

DGN, DLU
{AC} {C} 1 3

{BAEC} {CBE} 1 20
{BEC} {CBE} 1 20

{R}

{C}: 3, 53

{B}: 2, 45

{E}: 2, 45
45E

45B

53C

LinkPUItem

45E

45B

53C

LinkPUItem

{R}

{C}: 3, 33

{B}: 2, 34

{E}: 2, 40
45E

45B

53C

LinkPUItem

45E

45B

53C

LinkPUItem

(a) Strategy DGU (b) Four strategies

Figure 4. {D}’s conditional UP-Tree.

utilities. In Table 6, a local unpromising item {A} is identified.
During the second scan of {D}-CPB, local unpromising item {A}
is removed from the path {AC} and {BAEC}, respectively. The
minimum item utilities of {A} in the above paths, that is,
miu({A})× {AC}.count = 5×1 = 5 and miu({A}) × {BAEC}.count
= 5×1, are eliminated from the path utilities of {AC} and {BAEC},
respectively. After that, the reorganized paths and the reduced
path utilities are shown in Table 8. Here, the path utilities of the
paths in {D}-CPB are shown to be further reduced after applying
strategy DLU.

Strategy 4. Decreasing local node utilities (DLN). The
minimum item utilities of descendant nodes for the node are
decreased during the construction of a local UP-Tree.

Rationale: Assume that there is a list of promising items <i1’,
i2’, …, in’> ordered by the descending order of local path utility
values in a local header table. By the rationale of DGN strategy,
the items ik+1’, ik+2’, ..., in’ and their utilities can be discarded from
ik’-Tree. Since the minimum item utility of an item im’ (k+1 ≤ m ≤
n) in a path is always equal to or less than its real utility in the
path, we can also discard the minimum item utility of im’ from the
paths of ik’-Tree without losing any PHUI.

The purpose of DLN strategy is similar to DGN strategy, while
DLN strategy eliminates the minimum item utility values of
descendants for a node in a local UP-Tree. It is applied during the
insertion of the reorganized paths. When a reorganized path pj’ =
{i1, i2, …, in} (ik I, 1 ≤ k ≤ n) is inserted into the conditional
UP-Tree, the function Insert_Reorgnized_Path (R’, i1) is called,
where R’ is the root for the conditional UP-Tree.

The function Insert_Reorgnized_Path (N, ix) takes a node N and
an item ix (1 ≤ x ≤ n) as the inputs, which is performed as follows:

Line 1: If N has a child node S such that S.item = ix, then increase
S.count by pj.count; otherwise, a new child node S is
created with S.item = ix, S.count = pj’.count S.parent = N
and S.nu = 0.

Line 2: Increase S.nu by (pu(pj’, {ai}-CPB) – pj’.count ×

 

n

xp pimiu
1

))(, where ippj’ and 1≤ p ≤ n.

Line 3: Call Insert_Reorgnized_Path (S, i(p+1)) if p n.

Example 8. Consider {D}’s conditional pattern base shown in
Table 8, the reorganized transactions are shown in the second
column, and their path utilities which are reduced by strategies
DGU, DGN and DLU are shown in the last column. When the
first reorganized path {C} is inserted into the {D}-Tree, the first
node {C} is created under the root R’ with {C}.count = 1 and
{C}.nu = 3. When the second path {C, B, E} is inserted into the
tree, {C}.count is increased by 1, and {C}.nu is increased by (20 –
(miu({B}) × 1 + miu({E}) × 1)) = 20 – (4+3) = 13. After that,
{C}.nu is equal to 16. The second node {B} is crated under the
node {C} with {B}.count = 1 and {B}.nu = (20 – miu({E}) × 1) =
20 – 3 = 17. The last node {E} is created under the node {B} with
{E}.count = 1 and {E}.nu = 20. After inserting all paths in
{D}-CPB, {D}-Tree is constructed completely. Figure 4(b) shows
a conditional UP-Tree for item {D} when the four strategies are
applied. Comparing with {D}-Tree shown in Figure 4(a), the node
utilities of the nodes in {D}-Tree are further reduced by applying
both strategies DLU and DLN. Therefore, the generation of
PHUIs can be more efficient since fewer PHUIs are generated by
applying the above four strategies. The proposed algorithm
UP-Growth is developed based on the strategies DLU and DLN.
The complete set of PHUIs is generated by recursively calling
UP-Growth. Initially, UP-Growth (TR, HR, null) is called, where
TR is the global UP-Tree and HR is the global header table. The
procedure of the UP-Growth is shown as follows:

Subroutine: UP-Growth (Tx, Hx, X)
Input: A UP-Tree Tx, a header table Hx for Tx and an itemset X.
Output: All PHUIs in Tx.
Procedure UP-Growth (Tx, Hx, X)

(1) For each entry ai in Hx do
(2) Generate a PHUI Y = X ai ;
(3) The estimate utility of Y is set as ai’s utility value in Hx;
(4) Construct Y’s conditional pattern base Y-CPB;
(5) Put local promising items in Y-CPB into Hy
(6) Apply strategy DLU to reduce path utilities of the paths;
(7) Apply strategy DLN and insert paths into Ty;
(8) If Ty null then call UP-Growth(Ty, Hy, Y);
(9) End for

3.3 Efficiently Identify High Utility Itemsets
In this part, high utility itemsets are identified by checking the real
utilities of the PHUIs in the database. The purpose of this part is
equivalent to that of phase II in [2, 7]. However, in previous work
[2, 7], two problems in this phase occur: (1) The number of
HTWUIs is too huge, and (2) scanning the original database is
very time-consuming.

In our framework, the estimated utilities of PHUIs are smaller
than or equal to the TWUs of HTWUIs since they are effectively
reduced by the proposed four strategies. Thus, the number of
PHUIs is much smaller than that of HTWUIs. Therefore, in phase
II, our approach is much more efficient than the previous methods
[2, 7]. Although our approach generates fewer candidates in phase
I, scanning original database is still time-consuming since the
original database is large and contains lots unpromising items. In
view of these, in our framework, high utility itemsets are
identified by scanning the reorganized transactions. Since there is
no unpromising item in the reorganized transactions, the I/O cost
and execution time for phase II can be further reduced. This
technique works well especially when the original database
contains lots of unpromising items.

259

Table 9. Dataset characteristics
Dataset N T D

T10I6D100K 1,000 10 100,000
Chess 76 37 3,196

BMS-Web-View-1 497 2.5 59,602

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algorithm and
compare it with IHUP algorithm [2]. The experiments were
performed on a 2.66 GHz Intel Core 2 Quad Processor with 2
gigabyte memory, and running on Windows XP. The algorithms
are implemented in Java language. Both synthetic and real
datasets are used to evaluate the performance of the algorithms.
Synthetic datasets were generated from the data generator in [1].
The parameters are described as follows: D is the total number of
transactions; T is the average size of transactions; N is the number
of distinct items; I is the average size of maximal potential
frequent itemsets. The utility table and the quantity of each item
are generated as the settings in [7]. Real world datasets
BMS-Web-View-1 and Chess were obtained from FIMI
Repository [11]. Table 9 shows the characteristics of the datasets
in the experiments.

For comparing the performance of the proposed algorithms, we
design three compared algorithms and give them new notations as
follows. The proposed algorithm, including UP-Tree (using DGU
and DGN) and UP-Growth (using DLU and DLN), is denoted as
UP+UPG. The algorithm proposed in [2] is denoted as
IHUP+FPG, since it uses IHUP-Tree and FP-Growth. UP+UPG
means the PHUIs are generated from UP-Tree by applying
UP-Growth. IHUP+FPG means the HTWUIs are generated from
IHUP-Tree by applying FP-Growth. To further compare the
performance of FP-Growth and UP-Growth, an algorithm which
is called UP+FPG is also proposed. Different from UP+UPG,
UP+FPG generates PHUIs from UP-Tree by FP-Growth rather
than UP-Growth. In UP+FPG, only DGU and DGN are applied in
UP-Tree. In the above algorithms, both UP-Tree and IHUP-Tree
are constructed by scanning database twice. The items in a
transaction are rearranged in descending order of the global TWU
during the construction of both UP-Tree and IHUP-Tree. In phase
II, the three algorithms identify high utility itemsets by scanning
the database which contains no unpromising items. For
convenience, PHUIs and HTWUIs are both called the candidates
for high utility itemsets in the following experiments.

4.1 Evaluation on Synthetic Datasets
We first show the performance of the algorithms on the synthetic
dataset T10I6D100K. Table 10 shows the number of candidates
on T10I6D100K under varied minimum utility thresholds. As
shown in Table 10, UP+FPG generates fewer candidates than
IHUP+FPG since the node utilities of the nodes in the UP-Tree
are less than the IHUP-Tree. This shows the effectiveness of
strategies DGU and DGN. By applying strategy DGU, global
unpromising items and their utilities are discarded from the
transactions and TUs. By applying DGN strategy, the node
utilities of the nodes in a global UP-Tree are effectively decreased
since the utilities of their descendants are discarded. In Table 10,
when the minimum utility threshold is less than 0.6%, the number
of candidates generated by UP+UPG becomes smaller than
UP+FPG obviously. This indicates that strategies DLU and DLN
work well and more itemsets which are impossible to be high
utility are reduced than FP-Growth when the minimum utility

Table 10. Number of candidates on T10I6D100K
Minimum

utility
IHUP+FPG UP+FPG UP+UPG

0.2% 20,651 15,057 10,664
0.4% 4,003 2,347 1,990
0.6% 1,684 910 844
0.8% 873 527 521
1.0% 566 411 411

0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

IHUP+FPG
UP+FPG
UP+UPG

Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 5. Execution time for phase I on T10I6D100K.

0.2 0.4 0.6 0.8 1.0
0

200

400

600
IHUP+FPG
UP+FPG
UP+UPG

Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 6. Execution time for phase II on T10I6D100K.

threshold is low. By applying DLU strategy, local unpromising
items are removed from the paths of conditional pattern base and
their minimum item utilities are eliminated from the path utilities.
By applying DLN, the node utilities of the nodes in a local
UP-Tree are decreased since they discard the minimum item
utilities of their descendants.

Figure 5 and Figure 6 show the execution time for phase I and
phase II, respectively. In Figure 5, UP+UPG and UP+FPG spend
slightly more execution time, i.e., about one second, than
IHUP+FPG. It is because the former two methods perform
additional processes to decrease the overestimated utilities of the
itemsets. Thus, as shown in Figure 6, the execution time of
UP+UPG and UP+FPG in phase II is much less than IHUP+FPG
by around two hundred seconds. It shows that it is worth spending
a little more execution time for decreasing the overestimated
utilities for pruning candidates. By the above observation, we
show that the overall performance of UP+UPG and UP+FPG
outperforms IHUP+FPG. The results are reasonable since the
more candidates are produced in phase I, the more candidates
need to be identified in phase II.

4.2 Evaluation on Real Datasets
In this section, we compare the performance of the algorithms on
real datasets. We first show the evaluation on Chess dataset [11],
which is a well-known dense dataset in which each transaction
contains 37 items. Table 11 shows the number of candidates on
Chess dataset under different minimum utility threshold. As
shown in Table 11, more than forty thousand candidates are

260

Table 11. Number of candidates on Chess
Minimum

utility
IHUP+FPG UP+FPG UP+UPG

30% 38,686,975 4,108,608 1,592,414
40% 6,682,935 79,766 3,527
50% 1,320,445 37 37
60% 264,418 34 34
70% 49,039 24 24

30 40 50 60 70 80 90 100
0

200

400

600

800

1,000

1,200
IHUP+FPG
UP+FPG
UP+UPG

Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 7. Execution time for phase I on Chess.

55 60 65 70 75 80 85 90 95 100
0.1

1

10

100

1,000

10,000
IHUP+FPG
UP+FPG
UP+UPG

Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 8. Execution time for phase II on Chess.

generated by IHUP+FPG when the minimum utility threshold is
70%. However, the number of candidates generated by UP+UPG
and UP+FPG is just 24 under the same threshold. On average, the
number of candidates generated by UP+UPG and UP+FPG is
more than 2,000 times smaller than the number of candidates
generated by IHUP+FPG. The reason is that Chess dataset
contains lots of long transactions. When a transaction which
contains lots of items is inserted into the IHUP-Tree, the node
utilities of all related nodes are increased by the large transaction
utility value. However, by applying strategies DGN and DLN, the
more promising items are in a transaction, the more node utilities
can be reduced in UP-Tree. Therefore, UP+UPG and UP+FPG
produce much less candidates than IHUP+FPG.

Figure 7 and Figure 8 show the execution time for phase I and
phase II on Chess dataset, respectively. In Figure 7, the execution
time of UP+UPG is about 1,000 times faster than IHUP+FPG
when the minimum utility threshold is around 30%. This is
because that IHUP+FPG recursively constructs conditional
IHUP-Tree by FP-Growth and it takes lots of time to generate the
candidates. In Figure 8, the performance of IHUP+FPG becomes
much worse than both UP+FPG and UP+UPG when the minimum
utility threshold is less than 50%. This is because that IHUP+FPG
generates large amount of candidates in phase I and there are too
many PHUIs need to be identified in phase II. On the contrary,
UP+FPG and UP+UPG only spend one second in phase II since
the number of candidates generated by the two approaches is quite
small. Table 11, Figure 7 and Figure 8 show that UP-Tree and

Table 12. Number of candidates on BMS-Web-View-1
Minimum

utility
IHUP+FPG UP+FPG UP+UPG

2.9% 29,561,924 206 206
3.0% 566,651 164 164
3.2% 2,010 133 133
3.6% 387 108 108
4.0% 170 76 76

2.9 3.1 3.3 3.5 3.7 3.9
0.1

1

10

100

1,000
IHUP+FPG
UP+FPG
UP+UPG

4
Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 9. Execution time for phase I on BMS-Web-View-1.

2.9 3.1 3.3 3.5 3.7 3.9
0.1

1
10

100
1,000

10,000
100,000

1,000,000
IHUP+FPG
UP+FPG
UP+UPG

4
Minimum Utility (%)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 10. Execution time for phase II on BMS-Web-View-1.

UP-Growth have better performance than IHUP-Tree and
FP-Growth even in dense datasets.

Table 12 shows the number of candidates on BMS-Web-View- 1
dataset when the minimum utility threshold is between 2.9% and
4%. When the threshold is higher than 4%, the number of
candidates of the three algorithms is the same. In Table 12, the
number of candidates generated by IHUP+FPG is about 100,000
times larger than that generated by UP+UPG and UP+FPG when
the threshold is 2.9%. The reason is that BMS-Web-View-1
dataset contains some long transactions which contain more than
one hundred items and the utility of the itemset is highly
overestimated by the IHUP+FPG. It causes IHUP+FPG generates
a large amount of candidates in phase I on this dataset.

Figure 9 and Figure 10 show the execution time of the three
algorithms in phase I and phase II on BMS-Web-View-1,
respectively. In Figure 9, IHUP+FPG performs a little better than
UP+UPG and UP+FPG when the minimum utility threshold is
above than 3.3% since the construction of UP-Tree requires more
processing time than IHUP-Tree. Although IHUP+FPG is slightly
faster than UP+UPG and UP+FPG when the threshold is above
than 3.3%, the three algorithms only spend about 1 second to
generate candidates. When the threshold is less than 3.3%, the
execution time of IHUP+FPG increases sharply. When the
threshold is less than 2.9%, UP+UPG and UP+FPG outperform
IHUP+FPG over than 1,000 times in phase I. In Figure 10, the
execution time of IHUP+FPG increases sharply with decreasing
minimum utility threshold. The reason is that there are too many

261

Table 13. Number of candidates on different data size

Database
size

IHUP
+

FPG

UP
+

FPG

UP
+

UPG

Number of
high utility

itemsets
200K 70,751 60,042 47,867 8,158
400K 74,666 64,658 52,340 8,980
600K 68,991 59,941 48,103 7,323
800K 68,083 59,513 48,159 8,103

1,000K 68,983 58,279 46,754 7,142

200 400 600 800 1,000
0

5,000

10,000

15,000

20,000
IHUP+FPG
UP+FPG
UP+UPG

Number of Transactions (K)

E
xe

cu
tio

n
T

im
es

(s
ec

.)

Figure 11. Scalability for the algorithms.

candidates needed to be identified for IHUP+FPG. In other words,
the search space of IHUP+FPG in phase II is very large. When the
threshold is less than 3%, the execution time of UP+UPG and
UP+FPG is over 10,000 times better than IHUP+FPG.

4.3 Scalability
In the following experiments, we vary the dataset size of T10I6
dataset to evaluate the scalability for the three algorithms. Table
13 shows the number of candidates generated by these algorithms.
The last column in Table 13 shows the number of high utility
itemsets which is identified after phase II. The results of the three
algorithms are identical. Figure 11 shows the total execution time
for the three algorithms when the minimum utility threshold is set
as 0.1%. As shown in Figure 11, all the three algorithms have a
good scalability. However, the execution time of UP+UPG and
UP+FPG is less than IHUP+FPG since IHUP+FPG generate more
candidates than the two approaches. When the size of database
increases, the execution time for identifying each high utility
itemset also increases. Therefore, IHUP+FPG requires more
processing time than UP+UPG and UP+FPG.

The experimental results show that our approach outperforms the
state-of-the-art algorithms on both real and synthetic datasets. The
main reasons for the improvements are summarized as follows.
First, the information about high utility itemsets are maintained in
the global UP-Tree, where the node utilities of the nodes are much
less than the TWUs of the nodes in IHUP-Tree since strategies
DGU and DGN are applied during the construction of a global
UP-Tree. Second, UP-Growth generates much fewer candidates
than FP-Growth since strategies DLU and DLN are applied during
the construction of a local UP-Tree. By the proposed algorithm
and strategies, generation of candidates can be more efficient in
phase I since lots of useless candidates are pruned. Third, the high
utility itemsets are efficiently identified from the set of PHUIs by
scanning the database without containing unpromising items.
Therefore, our approach achieves a better performance than IHUP
algorithm.

5. CONCLUSIONS
In this paper, we have proposed an efficient algorithm named
UP-Growth for mining high utility itemsets from transaction

databases. A data structure named UP-Tree is proposed for
maintaining the information of high utility itemsets. Hence, the
potential high utility itemsets can be efficiently generated from the
UP-Tree with only two scans of the database. Besides, we develop
four strategies to decrease the estimated utility value and enhance
the mining performance in utility mining. In the experiments, both
of synthetic and real datasets are used to evaluate the performance
of our algorithm. The mining performance is enhanced
significantly since both the search space and the number of
candidates are effectively reduced by the proposed strategies. The
experimental results show that UP-Growth outperforms the
state-of-the-art algorithms substantially, especially when the
database contains lots of long transactions.

6. ACKNOWLEDGMENTS
This research was supported by National Science Council, Taiwan,
R.O.C. under grant no. NSC 96-2221-E-006-143-MY3 and in part
by NSF, USA through grants IIS-0905215 and IIS-0914934.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. of the 20th Int'l Conf. on Very
Large Data Bases, pp. 487-499, 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee.
Efficient tree structures for high utility pattern mining in
incremental databases. In IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, Issue 12, pp. 1708-1721,
2009.

[3] R. Chan, Q. Yang, and Y. Shen. Mining high utility itemsets.
In Proc. of Third IEEE Int'l Conf. on Data Mining, pp. 19-26,
Nov., 2003.

[4] A. Erwin, R. P. Gopalan, and N. R. Achuthan. Efficient
mining of high utility itemsets from large datasets. In Proc.
of PAKDD 2008, LNAI 5012, pp. 554-561.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In Proc. of the ACM-SIGMOD Int'l
Conf. on Management of Data, pp. 1-12, 2000.

[6] Y.-C. Li, J.-S. Yeh, and C.-C. Chang. Isolated items
discarding strategy for discovering high utility itemsets. In
Data & Knowledge Engineering, Vol. 64, Issue 1, pp.
198-217, Jan., 2008.

[7] Y. Liu, W. Liao, and A. Choudhary. A fast high utility
itemsets mining algorithm. In Proc. of the Utility-Based Data
Mining Workshop, 2005.

[8] B.-E. Shie, V. S. Tseng, and P. S. Yu. Online mining of
temporal maximal utility itemsets from data streams. In Proc.
of the 25th Annual ACM Symposium on Applied Computing,
Switzerland, Mar., 2010.

[9] H. Yao, H. J. Hamilton, L. Geng, A unified framework for
utility-based measures for mining itemsets. In Proc. of ACM
SIGKDD 2nd Workshop on Utility-Based Data Mining, pp.
28-37, USA, Aug., 2006.

[10] S.-J. Yen and Y.-S. Lee. Mining high utility quantitative
association rules. In Proc. of 9th Int'l Conf. on Data
Warehousing and Knowledge Discovery, Lecture Notes in
Computer Science 4654, pp. 283-292, Sep., 2007.

[11] Frequent itemset mining implementations repository,
http://fimi.cs.helsinki.fi/

262

