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ABSTRACT 
Mining high utility itemsets from a transactional database refers to 
the discovery of itemsets with high utility like profits. Although a 
number of relevant approaches have been proposed in recent years, 
they incur the problem of producing a large number of candidate 
itemsets for high utility itemsets. Such a large number of 
candidate itemsets degrades the mining performance in terms of 
execution time and space requirement. The situation may become 
worse when the database contains lots of long transactions or long 
high utility itemsets. In this paper, we propose an efficient 
algorithm, namely UP-Growth (Utility Pattern Growth), for 
mining high utility itemsets with a set of techniques for pruning 
candidate itemsets. The information of high utility itemsets is 
maintained in a special data structure named UP-Tree (Utility 
Pattern Tree) such that the candidate itemsets can be generated 
efficiently with only two scans of the database. The performance 
of UP-Growth was evaluated in comparison with the 
state-of-the-art algorithms on different types of datasets. The 
experimental results show that UP-Growth not only reduces the 
number of candidates effectively but also outperforms other 
algorithms substantially in terms of execution time, especially 
when the database contains lots of long transactions. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications — Data 
Mining. 

General Terms 
Algorithms, Performance. 

Keywords 
Utility mining, frequent itemset, high utility itemset, candidate 
pruning.  

1. INTRODUCTION 
Frequent itemset mining is a fundamental research topic with wide 
data mining applications. Extensive studies [1, 5] have been 
proposed for mining frequent itemsets from the databases and 
successfully adopted in various application domains. In market 
analysis, mining frequent itemsets from a transaction database 
refers to the discovery of the itemsets which frequently appear 

together in the transactions. However, the unit profits and 
purchased quantities of items are not considered in the framework 
of frequent itemset mining. Hence, it cannot satisfy the 
requirement of the user who is interested in discovering the 
itemsets with high sales profits. In view of this, utility mining [2, 
3, 4, 6, 7, 8, 9, 10] emerges as an important topic in data mining 
for discovering the itemsets with high utility like profits.  

Mining high utility itemsets from the databases refers to finding 
the itemsets with high utilities. The basic meaning of utility is the 
interestedness/importance/profitability of items to the users. The 
utility of items in a transaction database consists of two aspects: (1) 
the importance of distinct items, which is called external utility, 
and (2) the importance of the items in the transaction, which is 
called internal utility. The utility of an itemset is defined as the 
external utility multiplied by the internal utility. An itemset is 
called a high utility itemset if its utility is no less than a user- 
specified threshold; otherwise, the itemset is called a low utility 
itemset. Mining high utility itemsets from databases is an 
important task which is essential to a wide range of applications 
such as website click streaming analysis, cross-marketing in retail 
stores, business promotion in chain hypermarkets and even 
biomedical applications. 

However, mining high utility itemsets from the databases is not an 
easy task since the downward closure property [1] used in 
frequent itemset mining cannot be applied here. In other words, 
pruning search space for high utility itemset mining is difficult 
because a superset of a low utility itemset may be a high utility 
itemset. A naïve approach for this problem is to enumerate all 
itemsets from the databases by the principle of exhaustion. 
Obviously, this approach will encounter the large search space 
problem, especially when databases contain lots of long 
transactions or a low threshold is set. Hence, how to effectively 
prune the search space and efficiently capture all high utility 
itemsets with no miss is a big challenge in utility mining. 

Existing studies [2, 4, 6, 7, 9] applied overestimated methods to 
facilitate the mining performance of utility mining. In these 
methods, potential high utility itemsets are found first, and then an 
additional database scan is performed for identifying their utilities. 
However, the existing methods often generate a huge set of 
potential high utility itemsets and the mining performance is 
degraded consequently. The situation may become worse when 
the database contains many long transactions or low threshold is 
set. The huge number of potential high utility itemsets forms a 
challenging problem to the mining performance since the higher 
processing cost is incurred with more potential high utility 
itemsets are generated.  
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To address this issue, we propose in this paper a novel algorithm 
with a compact data structure for efficiently discovering high 
utility itemsets from transactional databases. The major 
contributions of this work are summarized as follows:  

1. A novel algorithm, called UP-Growth (Utility Pattern Growth), 
is proposed for discovering high utility itemsets. Correspondingly, 
a compact tree structure, called UP-Tree (Utility Pattern Tree), is 
proposed to maintain the important information of the transaction 
database related to the utility patterns. High utility itemsets are 
then generated from the UP-Tree efficiently with only two scans 
of the database.  

2. Four strategies are proposed for efficient construction of 
UP-Tree and the processing in UP-Growth. By these strategies, 
the estimated utilities of candidates can be well reduced by 
discarding the utilities of the items which are impossible to be 
high utility or not involved in the search space. The proposed 
strategies can not only efficiently decrease the estimated utilities 
of the potential high utility itemsets but also effectively reduce the 
number of candidates. 

3. Both of synthetic and real datasets are used in experimental 
evaluations to compare the performance of UP-Growth with the 
state-of-the-art utility mining algorithms. The experimental results 
show that UP-Growth outperforms other algorithms substantially 
in terms of execution time, especially when the database contains 
lots of long transactions. 

The rest of this paper is organized as follows. In section 2, we 
introduce the background and related work for high utility itemset 
mining. In section 3, the proposed algorithm and data structure are 
described in details. Experiment results are shown in section 4 and 
the conclusions are given in section 5. 

2. BACKGROUND 
In this section, we first define the problem of utility mining and 
then describe the previous works of utility mining. 

2.1  Problem Definition 
Given a finite set of items I = {i1, i2, …, im}. Each item ip (1 ≤ p ≤ 
m) has a unit profit p(ip). An itemset X is a set of k distinct items 
{i1, i2, …, ik}, where ij I, 1≤ j ≤ k, and k is the length of X. An 
itemset with length k is called k-itemset. A transaction database D 
= {T1, T2, …, Tn} contains a set of transactions, and each 
transaction Td (1 ≤ d ≤ n) has an unique identifier d, called TID. 
Each item ip in the transaction Td is associated with a quantity  
q(ip, Td), that is, the purchased number of ip in Td. 

Definition 1. The utility of an item ip in the transaction Td is 
denoted as u(ip, Td) and defined as p(ip) × q(ip, Td). For example, 
in Table 1, u({A}, T1) = 5 × 1 = 5. 

Definition 2. The utility of an itemset X in Td is denoted as u(X, Td) 
and defined as   dp TXXi dp Tiu ),( . For example, u({AC}, T1) = 

u({A}, T1) + u({C}, T1) = 5 + 1 = 6. 
Definition 3. The utility of an itemset X in D is denoted as u(X) 
and defined as   DTTX d

dd
TXu ),( . For example, u({AD}) = 

u({AD}, T1) + u({AD}, T3) = 7 + 17 = 24. 

Definition 4. An itemset is called a high utility itemset if its utility 
is no less than a user-specified minimum utility threshold which is 
denoted as min_util. Otherwise, it is called a low utility itemset.  

Table 1. An example database 
TID Transaction TU
T1 (A,1) (C,1) (D,1) 8 
T2 (A,2) (C,6) (E,2) (G,5) 27 
T3 (A,1) (B,2) (C,1) (D,6) (E,1) (F,5) 30 
T4 (B,4) (C,3) (D,3) (E,1) 20 
T5 (B,2) (C,2) (E,1) (G,2) 11 

Table 2. Profit table 
Item A B C D E F G
Profit 5 2 1 2 3 1 1

Problem Statement. Given a transaction database D and a 
user-specified minimum utility threshold min_util, mining high 
utility itemsets from the transaction database is equivalent to 
discover from D all itemsets whose utilities are no less than 
min_util.  

After addressing the problem definition of utility mining, we 
introduce the transaction-weighted downward closure which is 
proposed in [7].  

Definition 5. The transaction utility of a transaction Td is denoted 
as TU(Td) and defined as u(Td, Td). For example, TU(T1) = 
u({ACD}, T1) = 8. 

Definition 6. The transaction-weighted utilization of an itemset X 
is the sum of the transaction utilities of all the transactions 
containing X, which is denoted as TWU(X) and defined as 

  DTTX d
dd

TTU )( . For example, TWU({AD}) = TU(T1) + 

TU(T3) = 8 + 30 = 38. If TWU(X) is no less than the minimum 
utility threshold, X is called a high transaction-weighted 
utilization itemset (abbreviated as HTWUI). 

Definition 7. The transaction-weighted downward closure, which 
is abbreviated as TWDC, is stated as follows. For any itemset X, if 
X is not a HTWUI, any superset of X is a low utility itemset. By 
this definition, the downward closure property can be maintained 
by using transaction-weighted utilization. For example, in Table 1, 
any superset of {AD} is a low utility itemset since TWU({AD}) < 
min_util.  

2.2  Related Work 
Extensive studies have been proposed for mining frequent 
itemsets. One of the well-known algorithms is Apriori algorithm 
[1], which is the pioneer for efficiently mining association rules 
from large databases. The tree-based approaches such as 
FP-Growth [5] were afterward proposed. It’s widely recognized 
that FP-Growth achieves a better performance than Apriori-based 
approaches since it finds frequent itemsets without generating any 
candidate itemset and it scans database just twice.  

However, in the framework of frequent itemset mining [1, 5], the 
importance of items to users is not considered. The unit profits 
and purchased quantities of the items are not taken into 
considerations. Thus, some methods were proposed for mining 
high utility itemsets from the databases, such as UMining [9], 
Two-Phase [7], IIDS [6] and IHUP [2]. UMining algorithm [9] 
proposed by Yao et al. used an estimation method to prune search 
space. Although it is shown to have good performance, it cannot 
capture the complete set of high utility itemsets since some high 
utility patterns may be pruned during the process.  
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Two-Phase algorithm [7] proposed by Liu et al. consists of two 
phases. In phase I, Two-Phase algorithm employs a breadth first 
search strategy to enumerate HTWUIs. It generates candidate 
itemsets of length k from HTWUIs of length (k-1) and prunes 
candidate itemsets by TWDC property. In each pass, HTWUIs 
and their estimated utility values i.e., TWUs, are computed by 
scanning database. After that, the complete set of HTWUIs is 
collected in phase I. In phase II, high utility itemsets and their 
utilities are identified from the HTWUIs by scanning original 
database once.  

Although Two-Phase algorithm effectively reduces the search 
space by TWDC property and captures the complete set of high 
utility itemsets, it still generates too many candidates for HTWUIs 
and requires multiple database scans. To overcome this problem, 
Li et al. [6] proposed an isolated items discarding strategy, 
abbreviated as IIDS, to reduce the number of candidates. By 
pruning isolated items during the level-wise search, the number of 
candidate itemsets for HTWUIs in phase I can be reduced 
effectively. However, this approach still scans database multiple 
times and uses a candidate generation-and-test scheme to find 
high utility itemsets. 

To efficiently generate HTWUIs in phase I and avoid scanning 
database multiple times, Ahmed et al. [2] proposed a tree-based 
algorithm, called IHUP, for mining high utility itemsets. They use 
an IHUP-Tree to maintain the information of high utility itemsets 
and transactions. Every node in IHUP-Tree consists of an item 
name, a support count, and a TWU value. The framework of the 
algorithm consists of three steps: (1) The construction of 
IHUP-Tree, (2) the generation of HTWUIs and (3) identification 
of high utility itemsets. The phase I of IHUP In step 1, items in 
the transaction are rearranged in a fixed order such as 
lexicographic order, support descending order or TWU 
descending order. Then, the rearranged transactions are inserted 
into the IHUP-Tree. Figure 1 shows a global IHUP-Tree for the 
database in Table 1, in which items are arranged in the descending 
order of TWU. In step 2, HTWUIs are generated from the 
IHUP-Tree by applying the FP-Growth algorithm [5]. Thus, 
HTWUIs in phase I can be found more efficiently without 
generating candidates for HTWUIs. In step 3, high utility itemsets 
and their utilities are identified from the set of HTWUIs by 
scanning the original database once.  

Although IHUP finds HTWUIs without generating any candidates 
for HTWUIs and achieves a better performance than IIDS and 
Two-Phase, it still produces too many HTWUIs in phase I. Note 
that IHUP and Two-Phase produce the same number of HTWUIs 
in phase I since they use transaction-weighted utilization mining 
model [7] to overestimate the utilities of the itemsets. However, 
this model may overestimate too many low utility itemsets as 
HTWUIs and produce too many candidate itemsets in phase I. 
Such a large number of HTWUIs degrades the mining 
performance in phase I in terms of execution time and memory 
consumption. Besides, the number of HTWUIs in phase I also 
affects the performance of the algorithms in phase II since the 
more HTWUIs are generated in phase I, the more execution time 
is required for identifying high utility itemsets in phase II.  

As stated above, the number of HTWUIs generated in phase I 
forms a crucial problem to the performance of algorithms. In view 
of this, we propose four strategies to reduce the estimated utility 
values of the itemsets. By applying the proposed strategies, the 
number of candidates generated in phase I can be reduced  
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Figure 1: An IHUP-Tree when min_util = 40. 

effectively and the high utility itemsets can be identified more  
efficiently since the number of itemsets needed to be checked in 
phase II is highly reduced in phase I. 

3. PROPOSED METHOD 
In this section, we first introduce the proposed data structure, 
named UP-Tree, and then describe the proposed algorithm, called 
UP-Growth, in details. The framework of the proposed method 
consists of three parts: (1) construction of UP-Tree, (2) generation 
of potential high utility itemsets from the UP-Tree by UP-Growth, 
and (3) identification of high utility itemsets from the set of 
potential high utility itemsets. Note that we use a new term 
potential high utility itemsets (PHUIs) to distinguish the 
discovered patterns found by our approach from the HTWUIs 
since our approach is not based on the traditional framework of 
transaction-weighted utilization mining model. In our proposed 
model, the set of PHUIs is much smaller than the set of HTWUIs 
in phase I.  

3.1  The Proposed Data Structure: UP-Tree 
To facilitate the mining performance and avoid scanning original 
database repeatedly, we use a compact tree structure, called 
UP-Tree to maintain the information of transactions and high 
utility itemsets.  

3.1.1  The elements in UP-Tree 
In UP-Tree, each node N includes N.name, N.count, N.nu, 
N.parent, N.hlink and a set of child nodes. The details are 
introduced as follows. N.name is the item name of the node. 
N.count is the support count of the node [5]. N.nu is called node 
utility which is an estimate utility value of the node. N.parent 
records the parent node of the node. N.hlink is a node link which 
points to a node whose item name is the same as N.name. 

Header table is employed to facilitate the traversal of UP-Tree. In 
the header table, each entry is composed of an item name, an 
estimate utility value, and a link. The link points to the last 
occurrence of the node which has the same item as the entry in the 
UP-Tree. By following the link in the header table and the nodes 
in UP-Tree, the nodes whose item names are the same can be 
traversed efficiently. 

3.1.2  Discarding global unpromising items during 
the construction of a global UP-Tree 
The construction of UP-Tree can be performed with two scans of 
the original database. In the first scan of database, the transaction 
utility of each transaction is computed. At the same time, TWU of 
each single item is also accumulated. After scanning database  
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Table 3. Items and their TWUs 
Item A B C D E F G
TWU 65 61 96 58 88 30 38

Table 4. Reorganized transactions and their RTUs 
TID Reorganized transaction RTU
T1’ (C,1) (A,1) (D,1) 8 
T2’ (C,6) (E,2) (A,2)  22 
T3’ (C,1) (E,1) (A,1) (B,2) (D,6)  25 
T4’ (C,3) (E,1) (B,4) (D,3)  20 
T5’ (C,2) (E,1) (B,2)  9 

once, items and their TWUs are obtained. By TWDC property, if 
the TWU of an item is less than minimum utility threshold, its 
supersets are unpromising to be high utility itemsets. The item is 
called unpromising items. Definition 8 gives a formal definition 
for unpromising items and promising items. 

Definition 8. (Promising item and unpromising item) An item 
ip is called a promising item if TWU(ip)min_util. Otherwise, the 
item is called an unpromising item. 

After the first scan of database, promising items are organized in 
the header table in the descending order of TWU values. Note that 
other orders can be used. In this paper, we suggest the TWU 
descending order since [2] indicates that this order facilitates the 
mining performance. During the second scan of database, 
transactions are inserted into UP-Tree. Initially, the tree is created 
with a root R. When a transaction is retrieved, unpromising items 
are removed from the transaction and their utilities are eliminated 
from the TU of the transaction since only the supersets of 
promising items are possible to be the high utility itemsets. The 
remaining promising items in the transaction are sorted in the 
descending order of TWU. The transaction after the above 
reorganization is called reorganized transaction and its TU is 
called RTU (reorganized transaction utility). The RTU of a 
reorganized transaction Td is denoted as RTU(Td). 

Example 1. Consider the transaction database in Table 1 and the 
profit table in Table 2. Suppose the minimum utility threshold 
min_util is 40. In the first scan of database, TUs of the 
transactions and the TWUs of the items are computed. They are 
shown in the last column of Table 1 and in Table 3, respectively. 
As shown in Table 3, {F} and {G} are unpromising items since 
their TWUs are less than min_util. The promising items are 
reorganized in the header table in the descending order of TWU. 
Table 4 shows the reorganized transactions and their RTUs for the 
database in Table 1. As shown in Table 4, unpromising items {F} 
and {G} are removed from the transactions T2, T3 and T5, 
respectively. Besides, the utilities of {F} and {G} are eliminated 
from the TUs of T2, T3 and T5, respectively. The remaining 
promising items {A}, {B}, {C}, {D} and {E} in the transaction 
are sorted in the descending order of TWU. Then, we insert 
reorganized transactions into the UP-Tree by the same processes 
as IHUP-Tree [2]. We use the following example to describe the 
operation of insertion. 

Example 2. Consider the reorganized transactions in Table 4. The 
first reorganized transaction T1’ = {C, A, D} leads to create a 
branch in UP-Tree. The first node {C} is created under the root 
with {C}.count = 1 and {C}.nu = 8. The second node {A} is 
created under node {A} with {A}.count = 1 and {A}.nu = 8. The 
third node {C} is created as a child of node {A} with {C}.count =  
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Figure 2. A UP-Tree by applying strategy DGU. 

1 and {C}.nu = 8. When the next reorganized transaction T2’ = {C, 
E, A} is retrieved, the node utility of the node {C} is increased by 
22 and {C}.count is increased by 1. Then, a new node {E} is 
created under {C} with {E}.count=1 and {E}.nu = 22. Similarly, 
a new node {A} is created under the node {E} with {A}.count=1 
and {A}.nu = 22. The reorganized transactions T3’, T4’ and T5’ are 
inserted in the same way. After inserting all reorganized 
transactions, the construction of a global UP-Tree with strategy 
DGU is complete. The global UP-Tree is shown in Figure 2. 

Strategy 1. Discarding global unpromising items (DGU). The 
unpromising items and their utilities are eliminated from the 
transaction utilities during the construction of a global UP-Tree.  

Rationale: The principle of DGU strategy is to discard the 
information of unpromising items from the database since an 
unpromising item plays no role in high utility itemsets and only 
the supersets of promising items are likely to be high utility. 

3.1.3  Generating PHUIs from the global UP-Tree 
by FP-Growth 
In Figure 2, each node in the UP-Tree is associated with two 
numbers: the first one is support count and the second one is node 
utility. Besides, the nodes which have the same item names are 
linked in a sequence by their node links. Comparing with the 
IHUP-Tree in Figure 1, the node utilities of the nodes in UP-Tree 
are less than the node utilities of the nodes in IHUP-Tree since 
reorganized transactions are inserted with RTUs instead of TWUs. 
In the UP-Tree, each node {ai} to the root forms a path ({ai} 
{ai+1}...{an}). Each path represents a common prefix that 
shared by multiple reorganized transactions. Besides, {ai}.count is 
the number of reorganized transactions that share the path and 
{ai}.nu is an estimate utility value for the path. Similar to [2], 
PHUIs can be generated from the UP-Tree by applying 
FP-Growth [5]. 

Example 3. Consider the UP-Tree in Figure 2. Suppose min_util 
is 40. The algorithm starts from the bottom of the header table and 
considers the item {D} first. By applying FP-Growth, a PHUI 
{D}:58 is generated since its estimate utility value, i.e., 58, is 
above than min_util. By following {D}.hlink, the nodes with the 
same item names are found. By tracing the nodes to root, three 
paths (DAC: 1, 8), (DBAEC: 1, 25) and 
(DBEC: 1, 20) are found. For each path, the first number 
beside the path is the support count and the second number is the 
path utility, which is equal to {D}.nu. These paths are collected 
into {D}’s conditional pattern base [5] which is denoted as 
{D}-CPB and shown in Table 5. In this table, the collected paths 
are shown in the first column; the support counts and the path  
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Table 5. {D}’s conditional pattern base 

Path Reorganized 
path 

Support 
count 

Path utility by 
strategies DGU, DGN

{AC} {C} 1 8 
{BAEC} {CBE} 1 25 
{BEC} {CBE} 1 20 

Table 6. Local items and their path utilities in {D}-CPB 
Item A B C E 

Path utility 33 45 53 45 

utilities of the paths are shown in the third and the forth columns, 
respectively. For convenience, the path ({ai}{ai+1}...{an}) 
in the conditional pattern base is denoted as {ai, ai+1,..., an} and 
the item ai is discarded from the path in {ai}’s conditional pattern 
base since every path in {ai}-CPB must contain ai. 

Definition 9. (Path utility of a path in a conditional pattern 
base) The path utility of a path pj = ({ai}{ai+1}...{an}) in 
{ai}-CPB is equal to {ai}.nu and is denoted as pu(pj, {ai}-CPB). 
For example, in Table 5, the path utility of the path {AC} in 
{D}-CPB is 8.  

Definition 10. (Path utility of an item in a path in a conditional 
pattern base) For each item ip in the path pj in {ai}-CPB, the path 
utility of an item ip in a path pj in {ai}-CPB is equal to pu(pj, 
{ai}-CPB)and denoted as pu(ip, pj). For example, the path utility 
of {A} in the path {AC} is 8. 

Definition 11. (Path utility of an item in a conditional pattern 
base) The path utility of an item ip in {ai}-CPB is defined as 

  CPBappi jp
ijjp

pipu
}{

),( , which is denoted as pu(ip, {ai}-CPB). 

For example, the path utility of item {A} in {D}-CPB is equal to 
(pu({A}, {AC}) + pu({A}, {BAEC})) = (8 + 25) = 33. 

Definition 12. (Local promising item in a conditional pattern 
base) An item ip is called a local promising item in {ai}-CPB if 
pu(ip, {ai}-CPB)  min_util; otherwise, ip is called a local 
unpromising item.  

Property 1. Let iu be a local unpromising item in {ai}-CPB, any 
superset of iu is not a high utility itemset. 

Example 5. By scanning {D}-CPB once, items and their path 
utilities are obtained, which is shown in Table 6. In Table 6, item 
{A} is a local unpromising item since its path utility is less than 
min_util, i.e., 33<40. Then, local promising items {B}, {C} and 
{E} are arranged in the local header table. Scan {D}-CPB again to 
construct {D}’s conditional UP-Tree [5], which is denoted as 
{D}-Tree. When a path in the conditional pattern base is retrieved, 
unpromising items are removed from the path and the remaining 
items are rearranged in the descending order according to their 
local path utilities. The reorganized paths are shown in the second 
column of Table 5. After inserting all reorganized paths, {D}-Tree 
is constructed completely and shown in Figure 4(a). Generating 
PHUIs from {D}-Tree by applying FP-Growth, a set of PHUIs 
which are involved with item {D} are obtained, that is, {{D}:58, 
{DE}:45, {DEB}:45, {DEC}:45, {DEBC}:45, {DB}:45, 
{DBC}:45, {DC}:53}. Consider the next item, i.e., {B}, in the 
global header table in the same manner, it derives a set of PHUIs 
which includes item {B}, that is, {{B}:61 {BE}:54, {BEC}:54, 
{BC}:54}. Consider the remaining items in the header table and 
we can obtain the rest PHUIs, i.e., {{A}:65, {AC}:55, {ACE}:47, 
{AE}:47, {E}:88, {EC}:76, {C}:96}. After finding all PHUIs, 

high utility itemsets and their utilities are identified from the set of 
PHUIs by scanning original database once. 

As stated above, we have shown a basic framework of our 
approach for mining high utility itemsets. In the above examples, 
the strategy DGU is also presented to decrease the estimated 
utilities of the itemsets. DGU strategy uses RTU to estimate the 
utilities of the itemsets instead of using TWU. By applying DGU, 
unpromising items and their utilities are excluded from the 
UP-Tree such that the node utilities of the nodes are less than the 
TWUs of the nodes in IHUP-Tree. As a result, the number of 
PHUIs generated by the proposed approach is less than the 
HTWUIs generated by IHUP and Two-Phase in phase I. Although 
DGU seems simple, it is quite effective especially when the 
transactions contain lots of unpromising items. Besides, DGU can 
be easily integrated into other TWU-based approaches [2, 7]. 
Moreover, before the construction of UP-Tree, DGU can be used 
repeatedly till all reorganized transactions contain no unpromising 
items. Due to the page limit, we do not discuss it in this paper and 
leave it in the future work. After addressing DGU, we propose 
DGN (Decreasing Global Node utilities) strategy to further reduce 
the number of PHUIs.  

3.1.4  Decreasing node utilities in construction of a 
global UP-Tree 
As shown in example 5, the search space of high utility itemsets 
can be divided into five smaller search spaces: (1) {D}-CPB, (2) 
{B}-CPB without containing item {D}, (3) {A}-CPB without 
containing items {B} and {D}, (4) {E}-CPB without containing 
items {A}, {B} and {D}, and (5) {C}-CPB without containing 
items {E}, {A}, {B} and {D}.  

When DGU strategy is applied, there are two paths {AEC}: 25 
and {EC}: 29 in {B}-CPB, where the numbers beside the paths 
are their path utilities. Although {D} doesn’t appear in {B}’s 
conditional pattern base, the utility of {D} is involved in the path 
utilities of the paths in {B}-CPB. The path utility of the path 
{AEC} is 25, which is equal to the RTU of the reorganized 
transaction T3’. This estimated utility value is actually the sum of 
u({B}, T3’), u({D}, T3’), u({A}, T3’), u({E}, T3’) and u({C}, T3’). 
However, all paths in {B}-CPB are not related with {D} since {D} 
is below {B} in the UP-Tree as shown in Figure 2. Besides, only 
the item which is an ancestor of the node {B} will appear in 
{B}-CPB. Any item which is a descendant of the node {B} will 
not appear in {B}-CPB. Therefore, the utilities of {B}’s 
descendants can be removed from the path utility of each path in 
{B}-CPB. The process can be done during the construction of 
global UP-Tree since the paths in the conditional pattern bases are 
directly derived from the global UP-Tree. 

When a reorganized transaction tj’ = {i1, i2, …, in} (ik I, 1 ≤ k ≤ n) 
is inserted into a global UP-Tree, the function 
Insert_Reorganized_Transaction(R, i1) is called. The function 
Insert_Reorganized_Transaction(N, ix) takes a node N in the 
UP-Tree and an item ix (ix tj’, 1 ≤ x ≤ n) in the reorganized 
transaction tj’ as inputs. The function is performed as follows:  

Line 1: If N has a child S such that S.item = ix, then increment 
S.count by 1; otherwise, created a new child node S with 
S.item = ix, S.count = 1, S.parent = N and S.nu = 0. 

Line 2: Increase S.nu by (RTU(tj’) – )),(
)1( 

n

xp jp tiu , where 

ip tj’ and 1≤ p ≤ n. 

Line 3: Call Insert_Reorganized_Transaction(S, ix+1) if p n. 
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Example 6. Consider the reorganized transactions in Table 4. 
When T1’ = {(C,1) (A,1) (D,1)} is inserted to a global UP-Tree, 
the first node {C} is created. {C}.nu is increased by the RTU of 
T1’ minus the utilities of the rest items which are behind the item 
{C} in T1’, i.e., {C}.nu = RTU(T1’) – ( u({A}, T1’) + u({D}, T1’) ) 
= 8 – (5+2) = 1. For convenience, it can also be considered as the 
sum of the utilities of the items which are before the item {D} in 
T1’, i.e., {C}.nu = p({C}) × q({C}, T1’) = 1×1 = 1, where p({C}) 
is the unit profit of the item {C} and q({C}, T1’) is the purchased 
number of {C} in T1’. The second node {A} is crated with 
{A}.count = 1 and {A}.nu = (p({C}) × q({C}, T1’) + p({A}) × 
q({A}, T1’)) = (1×1 + 5×1) = 6. The third node {D} is created with 
{D}.count = 1 and {D}.nu = (p({C}) × q({C}, T1’) + p({A}) × 
q({A}, T1’) + p({D}) × q({D}, T1’)) = (1×1 + 5×1 + 1×2) = 8. 
When T2’ = {(C, 6) (E, 2) (A, 2)} is inserted into the tree, {C}.nu 
is increased by p({C}) × q({C}, T2’) = 6 and {C}.count is 
increased by 1. Then, a new node {E} is created under the node 
{C} with {E}.count = 1 and {E}.nu = 12. Similarly, a new node 
{A} is created under the node {E} with {A}.count = 1 and {A}.nu 
= 22. After inserting all reorganized transactions, the global 
UP-Tree is constructed completely. Figure 3 shows the global 
UP-Tree. By Figure 3, we can know that the node utility of each 
node is significantly reduced. Generating PHUIs from the 
UP-Tree by applying FP-Growth, and we obtain a set of PHUIs, 
that is, {{D}:58, {DE}:45, {DEB}:45, {DEBC}:45, {DEC}:45, 
{DB}:45, {DBC}:45, {DC}:53, {B}:61, {A}:65, {E}:88, {C}:96}. 

Strategy 2. Discarding global node utilities (DGN). For any 
node in a global UP-Tree, the utilities of its descendants are 
discarded from the utility of the node during the construction of a 
global UP-Tree.  

Rationale: Let <i1, i2, …, in> be a list of promising items which 
are arranged by the descending order of TWU values in a global 
header table. Since the items ik+1, ik+2, ..., in are not involved in 
ik-CPB and ik-Tree, they won’t be contained in any PHUI of 
ik-Tree. Thus, their utilities can be discarded from the node ik in 
the global UP-Tree. 

By applying strategy DGN, the utilities of the nodes which are 
closer to the root of the global UP-Tree are effectively reduced. 
DGN strategy is especially suitable for the database which 
contains lots of long transactions since the more items are in the 
transactions and the more utilities can be discarded by DGN. On 
the contrary, traditional transaction-weighted utilization mining 
model may be unsuitable for the long transactions since the more 
items in the transaction, the higher TWU is. 

3.2 The Proposed Mining Method: UP-Growth 
In this section, we describe the details of UP-Growth for 
efficiently generating PHUIs from the global UP-Tree with two 
strategies, namely DLU (Discarding local unpromising items) and 
DLN (Decreasing local node utilities). Although strategies DGU 
and DGN described in previous section can effectively reduce the 
number of candidates in phase I, they are applied during the 
construction of the global UP-Tree and cannot be applied during 
the construction of the local UP-Tree. The reason is that the 
individual items and their utilities are not maintained in the 
conditional pattern base. We cannot know the utility values of the 
unpromising items in the conditional pattern base. To overcome 
this problem, a naïve approach is to maintain the utilities of the 
items in the conditional pattern base. However, this approach may 
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Figure 3. A UP-Tree by applying strategies DGU and DGN. 

Table 7. Minimum item utility table 
Item A B C D E 

Minimum item utility 5 4 1 2 3 
 
be impractical since it consumes lots of memory usages. Instead 
of maintaining exact utility values of the items in the conditional 
pattern base, we maintain a minimum item utility table, 
abbreviated as MIUT, to maintain the minimum item utility for all 
global promising items.  

Definition 13. (Minimum item utility of an item) The utility of 
item ip in transaction Td is called the minimum item utility of ip if 
there doesn’t exist a transaction Td’ such that u(ip, Td’) < u(ip, Td). 
The minimum item utility of ip is denoted as miu(ip).  

Definition 14. (Minimum item utility of an item in a path) The 
minimum item utility of item iu in path pj is defined as miu(iu) × 
pj.count, where pj.count is the support count of the path pj in the 
conditional pattern base. 

Note that the MIUT can be constructed during the first scan of 
database. Table 7 shows the MIUT for all global promising items 
in Table 1.  

Strategy 3. Discarding local unpromising items (DLU). The 
minimum item utilities of unpromising items are discarded from 
path utilities of the paths during the construction of a local 
UP-Tree. 

Rationale: By the rationale of DGU strategy, in a conditional 
pattern tree, local unpromising items and their utilities can be 
discarded. Since the minimum item utility of a local unpromising 
item in a path is always equal to or less than its real utility in the 
path, we can also discard its minimum item utility from the paths 
of the conditional pattern tree without losing any PHUI. 

The purpose of DLU strategy is similar to DGU strategy, while 
DLU is applied during the second scan of the conditional pattern 
base. First, we scan conditional pattern base once to identify local 
promising items and unpromising items. Then, we scan 
conditional pattern base again to construct a local UP-Tree. When 
a path is retrieved, each unpromising item is removed from the 
path and its minimum item utility in this path is eliminated from 
the path utilities.  

Example 7. Consider {D}’s conditional pattern base shown in 
Table 5. Table 6 shows the local items in {D}-CPB and their path  
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Table 8. {D}-CPB by applying DGU, DGN and DLU 

Path Reorganized 
path 

Support 
count 

Path utility by 
strategies DGU, 

DGN, DLU 
{AC} {C} 1 3 

{BAEC} {CBE} 1 20 
{BEC} {CBE} 1 20 
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(a) Strategy DGU             (b) Four strategies 

Figure 4. {D}’s conditional UP-Tree. 

utilities. In Table 6, a local unpromising item {A} is identified. 
During the second scan of {D}-CPB, local unpromising item {A} 
is removed from the path {AC} and {BAEC}, respectively. The 
minimum item utilities of {A} in the above paths, that is, 
miu({A})× {AC}.count = 5×1 = 5 and miu({A}) × {BAEC}.count 
= 5×1, are eliminated from the path utilities of {AC} and {BAEC}, 
respectively. After that, the reorganized paths and the reduced 
path utilities are shown in Table 8. Here, the path utilities of the 
paths in {D}-CPB are shown to be further reduced after applying 
strategy DLU. 

Strategy 4. Decreasing local node utilities (DLN). The 
minimum item utilities of descendant nodes for the node are 
decreased during the construction of a local UP-Tree. 

Rationale: Assume that there is a list of promising items <i1’, 
i2’, …, in’> ordered by the descending order of local path utility 
values in a local header table. By the rationale of DGN strategy, 
the items ik+1’, ik+2’, ..., in’ and their utilities can be discarded from 
ik’-Tree. Since the minimum item utility of an item im’ (k+1 ≤ m ≤ 
n) in a path is always equal to or less than its real utility in the 
path, we can also discard the minimum item utility of im’ from the 
paths of ik’-Tree without losing any PHUI.  

The purpose of DLN strategy is similar to DGN strategy, while 
DLN strategy eliminates the minimum item utility values of 
descendants for a node in a local UP-Tree. It is applied during the 
insertion of the reorganized paths. When a reorganized path pj’ = 
{i1, i2, …, in} (ik I, 1 ≤ k ≤ n) is inserted into the conditional 
UP-Tree, the function Insert_Reorgnized_Path (R’, i1) is called, 
where R’ is the root for the conditional UP-Tree. 

The function Insert_Reorgnized_Path (N, ix) takes a node N and 
an item ix (1 ≤ x ≤ n) as the inputs, which is performed as follows:  

Line 1: If N has a child node S such that S.item = ix, then increase 
S.count by pj.count; otherwise, a new child node S is 
created with S.item = ix, S.count = pj’.count S.parent = N 
and S.nu = 0. 

Line 2: Increase S.nu by (pu(pj’, {ai}-CPB) – pj’.count × 

 

n

xp pimiu
1

))( , where ippj’ and 1≤ p ≤ n. 

Line 3: Call Insert_Reorgnized_Path (S, i(p+1)) if p n. 

Example 8. Consider {D}’s conditional pattern base shown in 
Table 8, the reorganized transactions are shown in the second 
column, and their path utilities which are reduced by strategies 
DGU, DGN and DLU are shown in the last column. When the 
first reorganized path {C} is inserted into the {D}-Tree, the first 
node {C} is created under the root R’ with {C}.count = 1 and 
{C}.nu = 3. When the second path {C, B, E} is inserted into the 
tree, {C}.count is increased by 1, and {C}.nu is increased by (20 – 
(miu({B}) × 1 + miu({E}) × 1)) = 20 – (4+3) = 13. After that, 
{C}.nu is equal to 16. The second node {B} is crated under the 
node {C} with {B}.count = 1 and {B}.nu = (20 – miu({E}) × 1) = 
20 – 3 = 17. The last node {E} is created under the node {B} with 
{E}.count = 1 and {E}.nu = 20. After inserting all paths in 
{D}-CPB, {D}-Tree is constructed completely. Figure 4(b) shows 
a conditional UP-Tree for item {D} when the four strategies are 
applied. Comparing with {D}-Tree shown in Figure 4(a), the node 
utilities of the nodes in {D}-Tree are further reduced by applying 
both strategies DLU and DLN. Therefore, the generation of 
PHUIs can be more efficient since fewer PHUIs are generated by 
applying the above four strategies. The proposed algorithm 
UP-Growth is developed based on the strategies DLU and DLN. 
The complete set of PHUIs is generated by recursively calling 
UP-Growth. Initially, UP-Growth (TR, HR, null) is called, where 
TR is the global UP-Tree and HR is the global header table. The 
procedure of the UP-Growth is shown as follows:  

Subroutine: UP-Growth (Tx, Hx, X) 
Input: A UP-Tree Tx, a header table Hx for Tx and an itemset X. 
Output: All PHUIs in Tx. 
Procedure UP-Growth (Tx, Hx, X) 

(1)  For each entry ai in Hx do  
(2)    Generate a PHUI Y = X ai ; 
(3)    The estimate utility of Y is set as ai’s utility value in Hx; 
(4)    Construct Y’s conditional pattern base Y-CPB; 
(5)    Put local promising items in Y-CPB into Hy 
(6)    Apply strategy DLU to reduce path utilities of the paths;          
(7)    Apply strategy DLN and insert paths into Ty; 
(8)    If Ty null then call UP-Growth(Ty, Hy, Y); 
(9)  End for 

3.3  Efficiently Identify High Utility Itemsets 
In this part, high utility itemsets are identified by checking the real 
utilities of the PHUIs in the database. The purpose of this part is 
equivalent to that of phase II in [2, 7]. However, in previous work 
[2, 7], two problems in this phase occur: (1) The number of 
HTWUIs is too huge, and (2) scanning the original database is 
very time-consuming.  

In our framework, the estimated utilities of PHUIs are smaller 
than or equal to the TWUs of HTWUIs since they are effectively 
reduced by the proposed four strategies. Thus, the number of 
PHUIs is much smaller than that of HTWUIs. Therefore, in phase 
II, our approach is much more efficient than the previous methods 
[2, 7]. Although our approach generates fewer candidates in phase 
I, scanning original database is still time-consuming since the 
original database is large and contains lots unpromising items. In 
view of these, in our framework, high utility itemsets are 
identified by scanning the reorganized transactions. Since there is 
no unpromising item in the reorganized transactions, the I/O cost 
and execution time for phase II can be further reduced. This 
technique works well especially when the original database 
contains lots of unpromising items. 

259



 

 

Table 9. Dataset characteristics 
Dataset N T D 

T10I6D100K 1,000 10 100,000
Chess 76 37 3,196

BMS-Web-View-1 497 2.5 59,602

4. EXPERIMENTAL EVALUATION 
In this section, we evaluate the performance of our algorithm and 
compare it with IHUP algorithm [2]. The experiments were 
performed on a 2.66 GHz Intel Core 2 Quad Processor with 2 
gigabyte memory, and running on Windows XP. The algorithms 
are implemented in Java language. Both synthetic and real 
datasets are used to evaluate the performance of the algorithms. 
Synthetic datasets were generated from the data generator in [1]. 
The parameters are described as follows: D is the total number of 
transactions; T is the average size of transactions; N is the number 
of distinct items; I is the average size of maximal potential 
frequent itemsets. The utility table and the quantity of each item 
are generated as the settings in [7]. Real world datasets 
BMS-Web-View-1 and Chess were obtained from FIMI 
Repository [11]. Table 9 shows the characteristics of the datasets 
in the experiments. 

For comparing the performance of the proposed algorithms, we 
design three compared algorithms and give them new notations as 
follows. The proposed algorithm, including UP-Tree (using DGU 
and DGN) and UP-Growth (using DLU and DLN), is denoted as 
UP+UPG. The algorithm proposed in [2] is denoted as 
IHUP+FPG, since it uses IHUP-Tree and FP-Growth. UP+UPG 
means the PHUIs are generated from UP-Tree by applying 
UP-Growth. IHUP+FPG means the HTWUIs are generated from 
IHUP-Tree by applying FP-Growth. To further compare the 
performance of FP-Growth and UP-Growth, an algorithm which 
is called UP+FPG is also proposed. Different from UP+UPG, 
UP+FPG generates PHUIs from UP-Tree by FP-Growth rather 
than UP-Growth. In UP+FPG, only DGU and DGN are applied in 
UP-Tree. In the above algorithms, both UP-Tree and IHUP-Tree 
are constructed by scanning database twice. The items in a 
transaction are rearranged in descending order of the global TWU 
during the construction of both UP-Tree and IHUP-Tree. In phase 
II, the three algorithms identify high utility itemsets by scanning 
the database which contains no unpromising items. For 
convenience, PHUIs and HTWUIs are both called the candidates 
for high utility itemsets in the following experiments.  

4.1  Evaluation on Synthetic Datasets 
We first show the performance of the algorithms on the synthetic 
dataset T10I6D100K. Table 10 shows the number of candidates 
on T10I6D100K under varied minimum utility thresholds. As 
shown in Table 10, UP+FPG generates fewer candidates than 
IHUP+FPG since the node utilities of the nodes in the UP-Tree 
are less than the IHUP-Tree. This shows the effectiveness of 
strategies DGU and DGN. By applying strategy DGU, global 
unpromising items and their utilities are discarded from the 
transactions and TUs. By applying DGN strategy, the node 
utilities of the nodes in a global UP-Tree are effectively decreased 
since the utilities of their descendants are discarded. In Table 10, 
when the minimum utility threshold is less than 0.6%, the number 
of candidates generated by UP+UPG becomes smaller than 
UP+FPG obviously. This indicates that strategies DLU and DLN 
work well and more itemsets which are impossible to be high 
utility are reduced than FP-Growth when the minimum utility  

Table 10. Number of candidates on T10I6D100K 
Minimum 

utility 
IHUP+FPG UP+FPG UP+UPG

0.2% 20,651 15,057 10,664 
0.4% 4,003 2,347 1,990 
0.6% 1,684 910 844 
0.8% 873 527 521 
1.0% 566 411 411 
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Figure 5. Execution time for phase I on T10I6D100K. 
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Figure 6. Execution time for phase II on T10I6D100K. 

threshold is low. By applying DLU strategy, local unpromising 
items are removed from the paths of conditional pattern base and 
their minimum item utilities are eliminated from the path utilities. 
By applying DLN, the node utilities of the nodes in a local 
UP-Tree are decreased since they discard the minimum item 
utilities of their descendants. 

Figure 5 and Figure 6 show the execution time for phase I and 
phase II, respectively. In Figure 5, UP+UPG and UP+FPG spend 
slightly more execution time, i.e., about one second, than 
IHUP+FPG. It is because the former two methods perform 
additional processes to decrease the overestimated utilities of the 
itemsets. Thus, as shown in Figure 6, the execution time of 
UP+UPG and UP+FPG in phase II is much less than IHUP+FPG 
by around two hundred seconds. It shows that it is worth spending 
a little more execution time for decreasing the overestimated 
utilities for pruning candidates. By the above observation, we 
show that the overall performance of UP+UPG and UP+FPG 
outperforms IHUP+FPG. The results are reasonable since the 
more candidates are produced in phase I, the more candidates 
need to be identified in phase II. 

4.2  Evaluation on Real Datasets 
In this section, we compare the performance of the algorithms on 
real datasets. We first show the evaluation on Chess dataset [11], 
which is a well-known dense dataset in which each transaction 
contains 37 items. Table 11 shows the number of candidates on 
Chess dataset under different minimum utility threshold. As 
shown in Table 11, more than forty thousand candidates are   
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Table 11. Number of candidates on Chess 
Minimum  

utility 
IHUP+FPG UP+FPG UP+UPG

30% 38,686,975 4,108,608 1,592,414
40% 6,682,935 79,766 3,527
50% 1,320,445 37 37
60% 264,418 34 34
70% 49,039 24 24
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Figure 7. Execution time for phase I on Chess. 
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Figure 8. Execution time for phase II on Chess. 

generated by IHUP+FPG when the minimum utility threshold is 
70%. However, the number of candidates generated by UP+UPG 
and UP+FPG is just 24 under the same threshold. On average, the 
number of candidates generated by UP+UPG and UP+FPG is 
more than 2,000 times smaller than the number of candidates 
generated by IHUP+FPG. The reason is that Chess dataset 
contains lots of long transactions. When a transaction which 
contains lots of items is inserted into the IHUP-Tree, the node 
utilities of all related nodes are increased by the large transaction 
utility value. However, by applying strategies DGN and DLN, the 
more promising items are in a transaction, the more node utilities 
can be reduced in UP-Tree. Therefore, UP+UPG and UP+FPG 
produce much less candidates than IHUP+FPG. 

Figure 7 and Figure 8 show the execution time for phase I and 
phase II on Chess dataset, respectively. In Figure 7, the execution 
time of UP+UPG is about 1,000 times faster than IHUP+FPG 
when the minimum utility threshold is around 30%. This is 
because that IHUP+FPG recursively constructs conditional 
IHUP-Tree by FP-Growth and it takes lots of time to generate the 
candidates. In Figure 8, the performance of IHUP+FPG becomes 
much worse than both UP+FPG and UP+UPG when the minimum 
utility threshold is less than 50%. This is because that IHUP+FPG 
generates large amount of candidates in phase I and there are too 
many PHUIs need to be identified in phase II. On the contrary, 
UP+FPG and UP+UPG only spend one second in phase II since 
the number of candidates generated by the two approaches is quite 
small. Table 11, Figure 7 and Figure 8 show that UP-Tree and  

Table 12. Number of candidates on BMS-Web-View-1 
Minimum 

utility 
IHUP+FPG UP+FPG UP+UPG

2.9% 29,561,924 206 206
3.0% 566,651 164 164
3.2% 2,010 133 133
3.6% 387 108 108
4.0% 170 76 76
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Figure 9. Execution time for phase I on BMS-Web-View-1. 
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Figure 10. Execution time for phase II on BMS-Web-View-1. 

UP-Growth have better performance than IHUP-Tree and 
FP-Growth even in dense datasets.  

Table 12 shows the number of candidates on BMS-Web-View- 1 
dataset when the minimum utility threshold is between 2.9% and 
4%. When the threshold is higher than 4%, the number of 
candidates of the three algorithms is the same. In Table 12, the 
number of candidates generated by IHUP+FPG is about 100,000 
times larger than that generated by UP+UPG and UP+FPG when 
the threshold is 2.9%. The reason is that BMS-Web-View-1 
dataset contains some long transactions which contain more than 
one hundred items and the utility of the itemset is highly 
overestimated by the IHUP+FPG. It causes IHUP+FPG generates 
a large amount of candidates in phase I on this dataset.  

Figure 9 and Figure 10 show the execution time of the three 
algorithms in phase I and phase II on BMS-Web-View-1, 
respectively. In Figure 9, IHUP+FPG performs a little better than 
UP+UPG and UP+FPG when the minimum utility threshold is 
above than 3.3% since the construction of UP-Tree requires more 
processing time than IHUP-Tree. Although IHUP+FPG is slightly 
faster than UP+UPG and UP+FPG when the threshold is above 
than 3.3%, the three algorithms only spend about 1 second to 
generate candidates. When the threshold is less than 3.3%, the 
execution time of IHUP+FPG increases sharply. When the 
threshold is less than 2.9%, UP+UPG and UP+FPG outperform 
IHUP+FPG over than 1,000 times in phase I. In Figure 10, the 
execution time of IHUP+FPG increases sharply with decreasing 
minimum utility threshold. The reason is that there are too many  
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Table 13. Number of candidates on different data size 

Database 
size 

IHUP 
+ 

FPG 

UP 
+ 

FPG 

UP 
+ 

UPG 

Number of 
high utility 

itemsets 
200K 70,751 60,042 47,867 8,158 
400K 74,666 64,658 52,340 8,980 
600K 68,991 59,941 48,103 7,323 
800K 68,083 59,513 48,159 8,103 

1,000K 68,983 58,279 46,754 7,142 
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Figure 11. Scalability for the algorithms. 

candidates needed to be identified for IHUP+FPG. In other words, 
the search space of IHUP+FPG in phase II is very large. When the 
threshold is less than 3%, the execution time of UP+UPG and 
UP+FPG is over 10,000 times better than IHUP+FPG. 

4.3  Scalability  
In the following experiments, we vary the dataset size of T10I6 
dataset to evaluate the scalability for the three algorithms. Table 
13 shows the number of candidates generated by these algorithms. 
The last column in Table 13 shows the number of high utility 
itemsets which is identified after phase II. The results of the three 
algorithms are identical. Figure 11 shows the total execution time 
for the three algorithms when the minimum utility threshold is set 
as 0.1%. As shown in Figure 11, all the three algorithms have a 
good scalability. However, the execution time of UP+UPG and 
UP+FPG is less than IHUP+FPG since IHUP+FPG generate more 
candidates than the two approaches. When the size of database 
increases, the execution time for identifying each high utility 
itemset also increases. Therefore, IHUP+FPG requires more 
processing time than UP+UPG and UP+FPG. 

The experimental results show that our approach outperforms the 
state-of-the-art algorithms on both real and synthetic datasets. The 
main reasons for the improvements are summarized as follows. 
First, the information about high utility itemsets are maintained in 
the global UP-Tree, where the node utilities of the nodes are much 
less than the TWUs of the nodes in IHUP-Tree since strategies 
DGU and DGN are applied during the construction of a global 
UP-Tree. Second, UP-Growth generates much fewer candidates 
than FP-Growth since strategies DLU and DLN are applied during 
the construction of a local UP-Tree. By the proposed algorithm 
and strategies, generation of candidates can be more efficient in 
phase I since lots of useless candidates are pruned. Third, the high 
utility itemsets are efficiently identified from the set of PHUIs by 
scanning the database without containing unpromising items. 
Therefore, our approach achieves a better performance than IHUP 
algorithm.  

5. CONCLUSIONS 
In this paper, we have proposed an efficient algorithm named 
UP-Growth for mining high utility itemsets from transaction 

databases. A data structure named UP-Tree is proposed for 
maintaining the information of high utility itemsets. Hence, the 
potential high utility itemsets can be efficiently generated from the 
UP-Tree with only two scans of the database. Besides, we develop 
four strategies to decrease the estimated utility value and enhance 
the mining performance in utility mining. In the experiments, both 
of synthetic and real datasets are used to evaluate the performance 
of our algorithm. The mining performance is enhanced 
significantly since both the search space and the number of 
candidates are effectively reduced by the proposed strategies. The 
experimental results show that UP-Growth outperforms the 
state-of-the-art algorithms substantially, especially when the 
database contains lots of long transactions. 
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