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ABSTRACT
Matrix factorization is one of the fundamental techniques for an-
alyzing latent relationship between two entities. Especially, it is
used for recommendation for its high accuracy. Efficient parallel
SGD matrix factorization algorithms have been developed for large
matrices to speed up the convergence of factorization. However,
most of them are designed for a shared-memory environment thus
fail to factorize a large matrix that is too big to fit in memory, and
their performances are also unreliable when the matrix is skewed.

This paper proposes a fast and robust parallel SGD matrix fac-
torization algorithm, called MLGF-MF, which is robust to skewed
matrices and runs efficiently on block-storage devices (e.g., SSD
disks) as well as shared-memory. MLGF-MF uses Multi-Level
Grid File (MLGF) for partitioning the matrix and minimizes the
cost for scheduling parallel SGD updates on the partitioned regions
by exploiting partial match queries processing. Thereby, MLGF-
MF produces reliable results efficiently even on skewed matrices.
MLGF-MF is designed with asynchronous I/O permeated in the al-
gorithm such that CPU keeps executing without waiting for I/O to
complete. Thereby, MLGF-MF overlaps the CPU and I/O process-
ing, which eventually offsets the I/O cost and maximizes the CPU
utility. Recent flash SSD disks support high performance parallel
I/O, thus are appropriate for executing the asynchronous I/O.

From our extensive evaluations, MLGF-MF significantly out-
performs (or converges faster than) the state-of-the-art algorithms
in both shared-memory and block-storage environments. In ad-
dition, the outputs of MLGF-MF is significantly more robust to
skewed matrices. Our implementation of MLGF-MF is available at
http://dm.postech.ac.kr/MLGF-MF as executable files.

Categories and Subject Descriptors
H.4.0 [Information Systems Applications]: General—Matrix fac-
torization
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1. INTRODUCTION
Matrix factorization is one of the fundamental techniques for an-

alyzing latent relationship between two entities. For example, the
latent relationship between documents and keywords can be ana-
lyzed for topic detection and document clustering [21]. The latent
relationship between users and products can be analyzed for rec-
ommendation [1, 11]. Especially, it is popularly used for recom-
mendation for its high accuracy.

Efficient algorithms for matrix factorization have been developed
including alternating least square (ALS) [9, 24], coordinate descent
[8, 22], and stochastic gradient descent (SGD) [26, 5]. Among
those, SGD has gained much attention, as the winners of two exten-
sive competitions, KDDCup 2011 [3] and Netflix comptition [1],
used SGD-based matrix-factorization algorithms [1, 25].

To further speed up the convergence of matrix factorization for
large matrix, parallel or distributed SGD algorithms have been de-
veloped [5, 16, 23, 25, 26]. They first partition the dataset (i.e., a
matrix) into several subsets (i.e., sub-matrices) and simultaneously
perform SGD updates on each subset in parallel or in a distributed
manner. However, (1) most of the algorithms are designed with an
assumption that the dataset fully resides in memory, thus they fail
to factorize a large matrix that is too big to fit in memory. (2) Also,
their performances are unreliable when the matrix is skewed (i.e.,
the numbers of non-zero entries in the sub-matrices are highly dif-
ferent.) A rating matrix is easily skewed in practice for two reasons:
a) old user tend to have more ratings than new users; b) some items
often have far more ratings than others. As Figure 1 shows, they
partition the matrix into grids. Thus, when the matrix is skewed, a
sub-matrix (or a grid cell) with scarce non-zero entries is updated
multiple times while a sub-matrix with many non-zero entries is
updated once, which could cause a bias on the SGD output.

An SGD algorithm for block-storage devices (e.g., SSD disks)
has been developed based on GraphChi [12]. However, the SGD
algorithm on GraphChi has two major limitations: First, GraphChi
aligns a dataset by the row and column indices of entries to process
the dataset via sequential scan. Thus, the order of SGD updates is
pre-determined accordingly, which makes the convergence slow. A
random order of SGD updating typically produces a better result
with a faster convergence [5, 25]. Second, the SGD on GraphChi
does not fully utilize the CPU and I/O resources. In a block-storage
device, the speed of I/O is far slower than that of memory. Thus, in
GraphChi, CPU often winds up waiting for I/O to complete, which
ends up wasting CPU resources and slower convergence. Section 3
discusses limitations of existing SGD algorithms in detail.
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This paper proposes a fast and robust parallel SGD matrix fac-
torization algorithm, named MLGF-MF, which is robust to skewed
matrices and runs efficiently on a block-storage device as well as
shared-memory. MLGF-MF minimizes the cost for scheduling par-
allel SGD updates by developing efficient scheduling operators.
MLGF-MF also supports the random order update while being ef-
ficient for block-storage devices. As discussed above, the random
order of SGD updates is important for fast convergence.

The key idea of MLGF-MF is two folded: First, MLGF-MF uses
Multi-Level Grid File (MLGF) instead of typical grid structures for
partitioning a matrix. MLGF [20] is a multi-dimensional index,
where a region having entries more than the pre-specified capacity
is dynamically partitioned. By using MLGF, MLGF-MF contains
a similar number of entries in each region, which makes its perfor-
mance more robust to a skewed matrix. MLGF-MF also efficiently
supports partial match query processing, which is important to ef-
ficiently execute our new scheduling operators (detailed in Section
4.2).

Second, since the speed of I/O is slower than that of memory, in
a disk-based algorithm, it is important to overlap the CPU and I/O
processings in order to offset the I/O cost and maximize the CPU
utility. MLGF-MF is designed with asynchronous I/O permeated
in the algorithm such that CPU keeps executing without waiting for
I/O to complete. Thereby, MLGF-MF overlaps the processings of
CPU and I/O, which leads to offsetting the I/O cost and improving
the CPU utility. Recent flash SSD disks support high performance
parallel I/O thus are appropriate for executing the asynchronous
I/O.

From our extensive evaluations, MLGF-MF significantly out-
performs (or converges faster than) the state-of-the-art algorithms
in both shared-memory and block-storage environments. In ad-
dition, the outputs of MLGF-MF is significantly more robust for
skewed matrices. Our implementation of MLGF-MF is available at
http://dm.postech.ac.kr/MLGF-MF as executable files.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the preliminary for matrix factorization
via SGD. We provide the details of the state-of-the art methods,
and discuss their limitations in Section 3. In Section 4, we pro-
pose MLGF-MF. Specifically, we introduce the MLGF and propose
MLGF-MF in Section 4.1. We propose an efficient scheduling op-
erators and discuss the optimal splitting strategy in Section 4.2. In
Section 4.3, we introduce efficient I/O model for MLGF-MF. We
report the evaluation result in Section 5, and conclude our paper in
Section 6.

2. PRELIMINARY: MATRIX FACTORIZA-
TION VIA STOCHASTIC GRADIENT DE-
SCENT(SGD)

Let R ∈ Rm×n be a target matrix (e.g., rating matrix), where
m is the number of row entities (e.g., users), and n is the number
of column entities (e.g, items). Let rij denote (i, j)-th entry of
matrix R which presents the relationship between the correspond-
ing row and column entities (e.g., the rating of the user i on item
j). The goal of matrix factorization is to find two latent factor
matrices U ∈ Rk×m and V ∈ Rk×n which accurately approxi-
mate the original matrix R (UTV ≈ R) with lower dimensionality
k << min(m,n). This problem is formulated as the following
optimization problem.

min
U,V
J (U, V ) =

∑
(i,j)∈Θ(R)

{
||rij − uTi vj ||2 + λu||uTi ||2 + λv||vj ||2

}
(1)

where Θ(R) is a set of index pairs for non-zero entries in the target
matrix R; uTi is the transpose of the i-th column vector of matrix
U ; vj is the j-th column vector of matrix V ; || · ||2 is L2 norm; λu
and λv are the regularizers which are non-negative scalar values
used to avoid the overfitting problem.

Gradient descent [14] is one of the fundamental techniques to
solve the optimization problem which finds a local minimum of
function J (U, V ) by the gradient of the function. The key idea
of gradient descent is iteratively updating the learning parameters
(i.e., U and V ) by the amount of the product of gradient (i.e.,
∇J (U, V )) and pre-specified learning rate η. More specifically,
each parameter is updated as follows.

U ← U − η∇UJ (U, V ) (2)
V ← V − η∇V J (U, V ) (3)

However, calculating ∇UJ (U, V ) and ∇V J (U, V ) is computa-
tionally expensive.

For the computational reason, stochastic gradient descent (SGD) [1,
25] is widely used instead of traditional gradient descent [23, 25].
The key idea of SGD is to replace the gradient by an unbiased es-
timation of the gradient, which is computationally much cheaper
[10, 18]. Specifically, SGD approximates∇J (U, V ) by the gradi-
ent of a randomly selected (i, j) pair (i.e., ∇ui,vjJ (U, V )) which
yields the following update rules.

ui ← ui + η
(

(rij − uTi vj)vj − λuui
)

(4)

vj ← vj + η
(

(rij − uTi vj)ui − λvvj
)

(5)

Note that, the gradient of randomly sampled (i, j) pair is an un-
biased estimator of ∇J (U, V ) because the expected value of the
gradient of randomly sampled (i, j) pair is the same as the true value
of∇J (U, V ).

3. EXISTING SGD METHODS AND THEIR
LIMITATIONS

3.1 Parallel or distributed SGD for matrix fac-
torization

As the size of a dataset is larger, the required time for the con-
vergence via SGD becomes longer. To speed up the convergence,
several parallel or distributed algorithms for SGD have been pro-
posed [5, 16, 23, 25, 26]. The key ideas of the algorithms are simi-
lar: They partition the dataset Θ(R) into several subsets and update
the parameters (i.e., U and V ) for each subset in parallel. The al-
gorithms are distinguished from each others according to the data
partitioning strategy and the SGD update scheduling algorithm.

PSGD is the one of early works for parallel SGD computation [26].
PSGD first generates several subsets via uniform random sampling
and runs SGD on each subset independently and in parallel. The
outputs of SGD update on each subset are averaged at the end.
Zinkevich et al. theoretically proved that, even with this simple pro-
cess, the SGD would eventually converges [26]. However, PSGD
exhibits slow convergence in practice [5], and it would incur heavy
I/O cost if it is directly extended to block-storage device because it
accesses data objects in random order. Similarly, [16] suffers from
the same problem.

Gemulla et al. proposed a distributed (or parallel) SGD algo-
rithm, DSGD, based on the concept of interchangeability [5]. Specif-
ically, a pair of data objects such that the order of SGD updates does
not affect on the final outcome is referred to as an interchangeable
pair. Given two entries rij and rxy , SGD update on rij will only
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(a) Whole dataset (b) Partitioning of DSGD (c) Partitioning of FPSGD (d) Partitioning of NOMAD

Figure 1: Difference in partitioning strategies of DSGD, FPSGD, NOMAD

affect on ui and vj vectors, and SGD update on rxy will only af-
fect on ux and vy vectors. If i 6= x and j 6= y, updating order on
rij and rxy does not make any difference on the result. This con-
cept is naturally extended to interchangeable blocks. Two blocks
X and Y are interchangeable, if any points px ∈ X and py ∈ Y
are interchangeable.

To find a set of interchangeable blocks, DSGD partitions the
dataset into a p-by-p grid, i.e., R = {Rij |1 ≤ i ≤ p, 1 ≤ j ≤ p}
where Rij is the (i, j)-th grid cell. A maximal set of mutually
interchangeable blocks, which is called a stratum, can be easily ob-
tained via a random permutation. Suppose that σ(·) = f : N→ N
is a random permutation from [1, p] to [1, p]. Then, a set of block
R′ = {Riσ(i)|1 ≤ i ≤ p} is a maximal set of mutually inter-
changeable blocks. Based on this retrieved stratum, DSGD runs p
SGD updates in parallel. Algorithm 1 describes DSGD.

Algorithm 1: DSGD for matrix factorization
Input : Rating Matrix R,the number of iteration T, and the

number of concurrent executions p
Output: Factor matrices U, V

1 Initialize U, V;
2 Block R / U / V into p× p / p× 1 / 1× p grid;
3 for t = 1, . . . , T do
4 Pick step size η;
5 for s = 1, . . . , p do
6 Generate a random permutation σ′;
7 Pick p blocks {R1σ′(1), . . . , Rpσ

′(p)} to form a
stratum;

8 for b = 1, . . . , p do in parallel
9 Run SGD Updating on the block Rbσ

′(b) with step
size η;

Zhuang et al. pointed out that DSGD does not fully utilize the
CPU resource [25]: Suppose that DSGD is performed in a p-by-p
grid setting with p parallel threads. If a thread finish its job earlier,
there is no interchangeable block except the just updated block by
the thread. Thus it should wait for other threads. To remedy this
problem, FPSGD is developed based on two key ideas: 1) using
at least (p + 1)-by-(p + 1) grid and 2) developing a non-locking
scheduling algorithm. By (p+ 1)-by-(p+ 1) grid, there is always
an or additional free blocks, which is a block not being updated
by any other threads but interchangeable to all blocks being up-
dated. Then, the proposed non-locking scheduling algorithm as-
signs a new block having the smallest number of updates among

free blocks to the early terminated thread. Algorithm 2 describes
FPSGD.

Algorithm 2: FPSGD for matrix factorization
Input : Rating Matrix R,the number of update T, the number

of concurrent executions p, the size of grid cell
p′ > p

Output: Factor matrices U, V
1 Initialize U , V ;
2 Grid R into a set B with at least p′ × p′ blocks;
3 Sort each block by user (or item) indices;
4 totNumUpdate := 0;
5 for s = 1, . . . , p do in parallel
6 while totNumUpdate < T do
7 bs = getJob();
8 Run SGD update on block bs;
9 putJob(bs);

10 totNumUpdate+ +;

11 Procedure getJob()
12 bx = NULL ;
13 forall the b in B do
14 if b is non-free then
15 continue ;

16 else if b.numUpdate ≤ bx.numUpdate then
17 bx = b;

18 return bx;

19 Procedure putJob(b)
20 b.numUpdate++;
21 return;

Limitation of DSGD and FPSGD: DSGD and FPSGD produce un-
reliable results when the matrix is skewed. Suppose that we have a
dataset of Figure 1(a) and the number of concurrent executions is
three. Then, DSGD and FPSGD will partition the dataset as Figure
1(b) and 1(c) respectively. In these figures, there is a clear differ-
ence on the number of non-zero entries in each block. In Figure
1(b), the darkest block has 24 non-zero entries while the second
darkest block has only two non-zero entries. Similarly, in Figure
1(c), the number of entries in the darkest block is 20 while the sec-
ond darkest block has only one entry. Due to this difference, DSGD
could significantly waste the CPU resource. In FPSGD, the number
of SGD updates for each block varies, which could make a bias and
eventually make the convergence slow.
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Second, the grid structure becomes inefficient when it is applied
to block-storage device (or disk) [15, 20]. It has significant space
overhead for storing the directories, which becomes significantly
larger as the data size grows [20]. It also has non-negligible cost
for maintaining the directories if the data is updated incrementally,
because when there is a overflowing page, a split of a region affects
other entries in the directory.

Yun et al. also pointed out that DSGD suffers from two prob-
lems [23]: 1) the waste of CPU and network resources due to bulk
synchronization, which is the synchronization after every iteration,
and 2) the curse of the last reducer, as all machines have to wait for
the slowest machine to finish. NOMAD, a recently proposed paral-
lel (or distributed) SGD algorithm [23], adopts asynchronous com-
munication and computation to avoid bulk synchronization, and
decentralized lock-free scheduling. Specifically, NOMAD is ex-
ecuted as follows.

1. The row indices are partitioned and assigned to the workers
in advance, and original matrix R is also partitioned and as-
signed accordingly. The ownerships of update of row vectors
are assigned to the workers according to the partition, and are
never changed during the execution of the algorithm.

2. Ownerships of update for columns are initially distributed to
the workers and exchanged among workers later.

3. During SGD updating, each worker updates the parameters
(i.e., ui and vj) only for the rows and columns that the worker
has the ownership of update.

4. After the pre-determined number of updates, workers hand
over their ownerships of update for columns to each other
via asynchronous message passing.

Figure 1(d) illustrates how NOMAD works. In this example,
there are three workers (W1,W2,W3). The matrix is row-wise
partitioned into three rows, and the ownership of update for each
row is assigned to each worker. The ownerships of update for
columns (i.e., shaded slices) are distributed to the workers non-
consecutively. Each worker performs SGD updating on the entries
of which each worker has the ownerships of update for both row
and column indices. For example, let W1 initially has the owner-
ship of update for column c16. W1 performs SGD update for the
red diamond data object because it has the ownerships of update
for both row and column indices. After a few updates, suppose W1

hands over the ownership of update for column c16 to W3. Then,
W1 does not perform SGD update on column c16 anymore. In-
stead, W3 starts performing SGD update on the blue circled data
objects.

Limitation of NOMAD: NOMAD also suffers from similar lim-
itations. First, NOMAD is mainly designed for distributed envi-
ronment and not I/O-efficient for block-storage device. As shown
in the figure, the ownerships of update for columns are allocated
non-consecutively to each worker. However, access on data entries
having non-consecutive column indices incurs more I/O cost. In
addition, NOMAD cannot be naturally extended to block-storage
environment because the data storage scheme for each worker is
not clearly designed.

NOMAD produces unreliable results for a skewed matrix. As
shown in Figure 1(d), there is a clear difference on the number of
entries assigned to the workers in NOMAD. For example, W1 has
35, whileW2 andW3 have 25 and 9 non-zero entries. Accordingly,
the number of currently updated entries also varies; W1 updates 16
entries while W2 and W3 update only 8 and 3 entries. Due to this

difference, the entries in W1 are less updated than those in W3,
which result in a bias in the final output. As discussed in [23], this
could be resolved via random permutation, but the random permu-
tation is not applicable for block-storage device since it produces
too much I/O cost, and such time-consuming batch process is sel-
dom used in real-applications.

3.2 Disk-based SGD method and its limitation
To the best of our knowledge, the SGD implementation in GraphChi

[12] is the only implementation of parallel SGD for block-storage
device. In this implementation, SGD updating is parallelized via
parallel sliding windows (PSW), which consists of three stages: it
1) loads a subgraph from disk, 2) updates the factor matrices corre-
sponding to the subgraph, and 3) writes the updated values to disk.
To support PSW framework, the matrix R is row-wise partitioned
into several execution intervals. Then, every entry corresponding
to the interval is stored in a shard file, and the order of entries in a
shard file is sorted by the column indices.

The SGD implementation on GraphChi has two major limita-
tions: First, in GraphChi, the data accessing order is pre-determined
and not changed over, which makes it converge slowly. A ran-
dom order of SGD updating is important for fast convergence [5,
25], thus most other SGD algorithms (e.g., DSGD, FPSGD, NO-
MAD) are designed with random order of SGD updates. Second,
GraphChi does not fully utilize CPU and I/O resources [7]. The
I/O speed of block-storage device is far slower than that of mem-
ory. Thus, in a disk-based algorithm, it is important to overlap the
CPU and I/O processings in order to offset the I/O cost and max-
imize the CPU utility. However, GraphChi does not overlap CPU
and I/O processings, thus the CPU resources are wasted during I/O
processing.

4. MULTI-LEVEL GRID FILE BASED MA-
TRIX FACTORIZATION (MLGF-MF)

In this section, we detail MLGF-MF, a novel parallel SGD algo-
rithm for matrix factorization which is efficient for block-storage
environment as well as for shared-memory and robust to a skewed
matrix. Specifically, we 1) introduce a data structure which is more
robust to a skewed matrix and provide a formal description of al-
gorithm in Section 4.1, 2) develop efficient operators for schedul-
ing parallel SGD update based on partial match query and provide
an optimal region splitting strategy to support an efficient partial
match query processing in Section 4.2, and 3) provide an efficient
I/O model for SGD-based matrix factorization via asynchronous
I/O in Section 4.3.

4.1 Multi-Level Grid File (MLGF)
Multi-Level Grid File (MLGF) is a multi-dimensional index-

ing [20], which is distinguished from a grid file in that, 1) hash
values are used to represent regions, and 2) a region is dynamically
partitioned via a hash function (e.g., msb hash function) if it has
more data entries than a pre-specified capacity.

Figure 2 illustrates how MLGF is built. Assume that the maxi-
mum capacity of a region is four, and there is only one region for
whole space at initial t0, and the region addresses the data block
B0. Accordingly, D0 has only one entry having “-” hash value,
which matches any value. At time t1 (Figure 2(a)), a data object is
inserted, and the region exceeds its maximum capacity. The region
is partitioned, and data objects are distributed to each partitioned re-
gion accordingly. For simplicity, we assume the region is vertically
partitioned. After partitioning, there are two blocks B0, B1, each
of which has three and two data objects, respectively. DirectoryD0
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(a) at time t1 (b) at time t2 (c) at time t3 (d) at time t4

Figure 2: Example of MLGF partitioning. D0 is a directory of MLGF; Bi is a data block; Red “x” is an updated data object; Italic
numbers around the block are hash values; Capacity of a data block is four.

is also changed accordingly, and has two entries (−, 0) and (−, 1)
which address block B0 and B1 respectively. At time t2 (Figure
2(b)), four data objects are inserted. While B1 does not exceed the
capacity thus it is not partitioned, B0 is partitioned again because
it exceeds the maximum capacity. Suppose, in this time, block B0

is horizontally partitioned. Then, directory D0 has three entries,
(0, 0), (−, 1), and (1, 0), which address block B0, B1, and B2, re-
spectively. Similar tasks are repeated for each update, and the final
partitions and the directory will be as shown in Figure 2(d).

Note that, in MLGF, the directory is organized hierarchically,
and the entries of a directory can address other directories. Figure 3
shows an example of MLGF directory and the corresponding block
partitioning for the data set in Figure 1(a). In this figure, the entries
of D1 in Figure 3(a) address other directories hierarchically. For
example, the hash value of the first entry inD1 is (00, 00), and this
entry addresses another directory D2. In D2, most entries address
data blocks, while the sixth entry addresses another directory.

We choose MLGF as our underlying structure for matrix factor-
ization for following reasons: 1) In MLGF, a region is dynamically
partitioned based on the number of entries and thus each region
ends up having similar number of entries. Thus, parallel executions
of matrix factorization become more robust to a skewed dataset.
2) MLGF efficiently supports block-storage devices [20]. Specifi-
cally, in MLGF, a region partitioning does not affect on other en-
tries in the directory, and it supports an efficient partial match query
processing, which is an important operation for scheduling algo-
rithm. 3) Other alternatives such as R-tree [6] and Kd-tree [2] are
not suitable for our problem because R-tree is designed for spatial
objects having sizes thus its operations are more expensive than
MLGF, and Kd-tree does not account for block-storage devices [4].

Our parallel matrix factorization algorithm, MLGF-MF, is per-
formed based on the partitioned regions of MLGF. Specifically, our
scheduling algorithm outputs an MLGF region (Algorithm 4), and
once an MLGF region is assigned to a thread, the thread reads all
data objects from the region, and updates two factor matricesU and
V accordingly. Algorithm 3 formally describes MLGF-MF.

4.2 Scheduling Operators for MLGF-MF
In this subsection, we introduce efficient scheduling operators

for MLGF-MF. The main task of a scheduler is assigning a new in-
terchangeable block to a thread. To support this, a scheduler should
be aware of which blocks are interchangeable and non-interchangeable
against the blocks currently being updated.

In grid structure, it is easy to find which blocks are interchange-
able and non-interchangeable, as the sizes of the blocks are the
same. An interchangeable pair refers to a pair of entries such that
the order of SGD updates does not affect on the final outcome [5].
In grid structure, an interchangeable pair can be interpreted as a
pair having different row and column indices, thus a set of non-

(a) Example of directories of MLGF

(b) Example of corresponding block
partitioning

Figure 3: Example of an index and the corresponding block
partitioning of MLGF

interchangeable blocks for a certain block Rij can be retrieved by
{Ri

′j′ |i′ = i or j′ = j}.
However, in MLGF, identifying non-interchangeable blocks seems

not intuitive, as the size of each region is different from each other.
A straightforward way to retrieve all the non-interchangeable blocks
is traversing the whole MLGF index and testing all regions, which
is time-consuming. We exploit partial match query processing,
which is extensively studied in database community [17, 19, 20],
to efficiently retrieve non-interchangeable blocks. A partial match
query in MLGF is processed as follows. Given a query region, we
starts examining from entries of the root directory of MLGF, to
see whether they intersect with the query region. If an entry inter-
sects with the query region, we recursively examine the directory
addressed by the entry. However, if an entry is not intersecting
with the query region, we do not further examine the directory ad-
dressed by the entry. Due to the compact directory structure, par-
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Algorithm 3: MLGF-MF
Input : Rating Matrix R, the number of update T, the number

of concurrent execution p
Output: Factor matrices U, V

1 Initialize U , V ;
2 Construct MLGF index IMLGF based on matrix R;
3 Initialize leafList via traversal on IMLGF ;
4 totNumUpdate := 0;
5 for s = 1, . . . , p do in parallel
6 while totNumUpdate < T do
7 bs, blockLists = getJob();
8 Run SGD update on block bs;
9 putJob(bs, blockLists);

10 totNumUpdate+ +;

(a) Query regions of two par-
tial match queries

(b) Retrieved non-inter-
changeable blocks

Figure 4: Example of retrieving non-interchangeable blocks via
partial match queries in MLGF

tial match query is more efficient processed in MLGF than in grid
structure [20].

Non-interchangeable blocks are retrieved by processing partial
match queries. For example, assume that SGD updates are exe-
cuted on region A in Figure 4, which is specified by hash values
(hx, hy). Then, two partial match queries are generated on regions
Q1 = (hx,−) and Q2 = (−, hy). By processing Q1 and Q2,
we retrieve all regions intersecting with Q1 or Q2 which are actu-
ally regions sharing either the row or column indices with block A
(Figure 4(b)).

In practice, non-interchangeable blocks for a certain block b are
repeatedly retrieved for each iteration. Thus, we retrieve non-inter-
changeable blocks once in the beginning and use it for the following
iterations. Algorithm 4 describes our scheduling operators, i.e.,
getJob() and putJob().

Region splitting policy: The cost of partial match query process-
ing is proportional to the number of regions intersecting with the
query region. If the number of intersecting region increases, we
have to examine more directories. Lee et al. [13] proposed the op-
timal splitting policy for a given query set on a two-dimensional
space as follows.

THEOREM 1. [13] Suppose that l query regions of varying sizes
qi(x) × qi(y) (i = 1, . . . , l) are given in a two-dimensional do-
main space partitioned into page regions of varying sizes, where
qi(x) is the length of a query region qi along x-axis, and the record
density of each query region is di. Then, the optimal interval ra-
tio of page regions that minimize the total number of the page re-

Algorithm 4: Scheduling operators of MLGF-MF

1 Procedure getJob()
2 bx = NULL ;
3 forall the b in leafList do
4 if b.lock > 0 then
5 continue ;

6 else if b.numUpdate < bx.numUpdate then
7 bx = b;

8 blockListx = getNonInterchangeable (bx) ;
9 forall the b in blockListx do

10 b.lock = b.lock + 1;

11 return bx, blockListx;

12 Procedure putJob(b, blockList)
13 b.numUpdate++;
14 forall the b in blockList do
15 b.lock = b.lock - 1 ;

16 return;

17 Procedure getNonInterchangeable(b)
18 q1, q2 = generateTwoPartialQuery(b);
19 L1 = IMLGF .partialQuery(q1);
20 L2 = IMLGF .partialQuery(q2);
21 return L1 ∪ L2 ;

gions intersecting with the query regions is given by p(x) : p(y) =∑l
i=1 qi(x)

√
di :

∑l
i=1 qi(y)

√
di.

We apply the optimal region splitting policy to MLGF-MF. In
MLGF-MF, we generate two partial queries for each region ri with
sizes ri(x)×n and m× ri(y), where m and n are the size of rows
and columns of R. Then, the optimal interval ratio of page region
is

p(x) : p(y) =

l∑
i=1

(ri(x) +m)
√
di :

l∑
i=i

(ri(y) + n)
√
di

Suppose each region ri already follows the optimal ratio (i.e. ri(x) =
γi · p(x) and ri(y) = γi · p(y), where γi is the scaling factor for
ri). Then,

p(x) : p(y)

=

l∑
i=1

(γi · p(x) +m)
√
di :

l∑
i=i

(γi · p(y) + n)
√
di

= (p(x)Z +mD) : (p(y)Z + nD)

where Z =
∑l
i=1 γi

√
di and D =

∑l
i=1

√
di. From the above

ratio, we can obtain

p(x) · (p(y)Z + nD) = p(y) · (p(x)Z +mD)

p(x)p(y)Z + p(x)nD = p(x)p(y)Z + p(y)mD

p(x)nD = p(y)mD

p(x) : p(y) = m : n

Therefore, the splitting direction for overflowing regions follows
the ratio of m : n, which is the ratio of the original matrix R.

4.3 Efficient I/O Model for MLGF-MF
As the I/O speed of block-storage device is far slower than that of

memory, it is important to overlap the CPU and I/O processings in a
disk-based algorithm, in order to offset the I/O cost and maximize
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Algorithm 5: MLGF-MF with asynchronous I/O
Input : Rating Matrix R, the number of update T, the number

of concurrent execution p
Output: Factor matrices U, V

1 Initialize U , V ;
2 Construct MLGF index IMLGF based on matrix R;
3 Initialize leafList via traversal on IMLGF .
totNumUpdate := 0;

4 for s = 1, . . . , p do in parallel
5 bs, blockLists = getJob();
6 IssueReadAndCallback (bs, blockList,

callbackSGD);
7 totNumUpdate+ +;

8 Wait until the completion of all callback threads ;
9 return;

10 Procedure callbackSGD(b, blockList)
11 // This function is called after the completion of read I/O

on the block b ;
12 if totNumUpdate < T then
13 bf , blockListf = getJob();
14 IssueReadAndCallback (bf , blockListf ,

callbackSGD);
15 totNumUpdate+ +;

16 Run SGD update on block b ;
17 putJob(b, blockList) ;
18 return;

the CPU utility. MLGF-MF is designed with asynchronous I/O
permeated in the algorithm such that CPU keeps executing with-
out waiting for I/O to complete. Specifically, for each update on a
block, we first find a future block bf that will be updated just after
the SGD update on the current block. We issue an asynchronous
I/O request for future block bf . After that, we return to the current
block, and continue to perform SGD update on the current block.
After completing the SGD updates, putJob() is called for postpro-
cessing. When the I/O request for bf is completed, another callback
thread starts to processes SGD updates, and so on. In this way, we
overlap the I/O processing and CPU processing, which offsets the
I/O cost and maximizes the CPU utility. Algorithm 5 describes
MLGF-MF with asynchronous I/O.

In our implementation, we also use a thread pool, and the number
of concurrent callback threads is strictly restricted not to exceed the
maximum number of concurrent threads p.

5. EXPERIMENT
This section extensively evaluates the empirical performance of

MLGF-MF. Our experiments are designed to verify that (1) MLGF-
MF is efficient for both shared-memory and block-storage environ-
ments, and (2) MLGF-MF is robust to skewed datasets. In addition,
we investigate the bottleneck of MLGF-MF for block-storage en-
vironment, the scalability of MLGF-MF, and the performance of
MLGF-MF on varying sizes of pages.

5.1 Experimental setting

Dataset description: Throughout our experiments, we evaluate MLGF-
MF and competitors for three benchmark datasets: 1) NetFlix [1],
2) Yahoo! Music [3], 3) HugeWiki [23] (see Table 1 for more de-
tails). We follow the official partitioning for training and testing

sets for NetFlix and Yahoo! Music. For HugeWiki, there is no
known partitioning for training and testing sets, so we randomly
extract 1% of dataset for testing, and use the others for training. In
addition, to evaluate the robustness of the methods, we generated
a skewed version of NetFlix by reordering user IDs and item IDs
in an decreasing order according to the number of ratings, which
makes the matrix dense in the upper-left side and scarce in the
lower-right side. This dataset is denoted as NetFlixfreq .

We follow the SGD parameter setting of Zhuang et al. [25] for
NetFlix and Yahoo! Music. For HugeWiki, we follow the setting
of Yun et al. [23] except we decrease the latent space size k = 40,
which further improves the SGD performance. Our settings for
SGD update parameters are reported in Table 1. For initializing the
latent matrices, we set each entry of U and V via uniform random
sampling in the range [0, 0.1]. We set the maximum number of
concurrent threads p to be 8. And, by default, FPSGD uses 2p-by-
2p grid.

Dataset name Netflix Yahoo! Music Hugewiki
m 480,189 1,000,990 50,082,603
n 17,770 624,961 39,780

# Training 99,072,112 252,800,275 3,411,259,583
# Test 1,408,395 4,003,960 34,458,060

k 40 100 40
λu 0.05 1 0.01
λv 0.05 1 0.01
η 0.002 0.0001 0.001

Table 1: Dataset details and SGD update parameter settings

Competitors: We evaluate the performance of MLGF-MF for both
shared-memory and block-storage device environments. We use
the state-of-the-art parallel SGD matrix factorization algorithms
as our competitors. Specifically, we use FPSGD [25] and NO-
MAD [23] for shared-memory environment, and GraphChi [12]
for block-storage device environment. We use publicly available
source codes from authors of FPSGD, NOMAD, and GraphChi.

As stated in [23], the convergence speed of SGD methods varies
according to the choice of stepsize, and each proposed method uses
a different stepsize. FPSGD uses a constant stepsize while NO-
MAD dynamically adjusts the stepsize, ηt, as follows.

ηt =
η0

1 + β · t1.5 (6)

where t is the number of SGD updates that were performed on a
particular user-item pair (i, j); η0 is an initial stepsize; and β is
a decaying factor. In GraphChi, stepsize is adjusted by ηt = β ·
ηt−1. For fair evaluation, we use a constant stepsize for all the
four methods, i.e., the three competitors and MLGF-MF. The use
of dynamical stepsize such as that of Equation 6 may improve the
convergence speed of the methods, but its effects are common for
all methods.

For fair evaluation, we also disable SSE instruction set, which
reduces the CPU time by concurrently performing floating point
multiplication and addition; NOMAD and GraphChi do not support
the technique. In addition, all experiments are performed using
single precision arithmetic because FPSGD uses single precision
arithmetic.

Experimental environment: All experiments are conducted in a
machine equipped by Intel Core i7 4700@3.4GHz (8 cores), 24GB
RAM, and Ubuntu 14.04 trusty. By default, the page size is set to
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(a) NetFlix (b) Yahoo! Music (c) NetFlixfreq

Figure 5: Comparison on convergence speed in shared-memory device for varying datasets: NetFlix, Yahoo! Music, and NetFlixfreq .
X-axis: Elapsed time (sec.); Y-axis: RMSE.

(a) NetFlix, RevuAhn (b) Yahoo! Music, RevuAhn (c) HugeWiki, RevuAhn

Figure 6: Comparison on convergence speed in block-storage device for varying datasets: NetFlix, Yahoo! Music, and HugeWiki.
X-axis: Elapsed time (sec.); Y-axis: RMSE.

Name RevuAhn S850PRO
Volume 2 TB 128 GB
Interface PCI-E SATA3
Sequential Read (MB/s) 1442 511.8
512k Random Read (MB/s) 733.3 365.9
4k Random Read (MB/s) 22.86 37.11
4k Random Read with
Queue depth 32 (MB/s)

342.7 401.3

Table 2: I/O performance of block-storage devices (SSD disks)

be 1 MByte, but we also report the performance of MLGF-MF for
varying sizes of pages from 512 KByte to 4 MByte in Section 5.2.5.

We use two block-storage devices (SSD disks), i.e., RevuAhn
Drive X (denoted as RevuAhn) and Samsung SSD 850 PRO 128GB
(denoted as S850PRO). I/O performances of two devices are com-
pared in Table 2.

5.2 Evaluation results

5.2.1 Comparison on convergence speed for shared-
memory environment

We evaluate the performance of MLGF-MF in shared-memory
environment by comparing its convergence speed with that of FPSGD
and NOMAD. Figure 5 shows the RMSE change of each method on
three datasets, NetFlix, Yahoo! Music, and NetFlixfreq . HugeWiki
dataset is excluded here due to the lack of memory. The lower
RMSE for the same execution time is the better performance or
faster convergence.

For NetFlix and Yahoo! Music, NOMAD shows the slowest
convergence, and MLGF-MF and FPSGD show comparable per-
formance. NOMAD suffers from the memory discontinuity caused
by non-consecutive access on column indices. For NetFlixfreq (a
skewed dataset), as we expected, the convergence speed of FPSGD
and NOMAD becomes noticeably slow compared to that of MLGF-

Figure 7: RMSE of methods for NetFlixfreq

MF. For example, RMSE of NOMAD for NetFlixfreq around 20
sec. is 1.25 while it slightly overs 1.05 for NetFlix dataset. Simi-
larly, RMSE of FPSGD around 20 sec. is around 1.1 - 1.15 while
it is under 1 in NetFlix. On the other hand, RMSE of MLGF-MF
around 20 sec. is close to 1 for NetFlixfreq , which is similar to that
for NetFlix.

RMSE of FPSGD and NOMAD at convergence is higher than
that of MLGF-MF for a skewed matrix. Figure 7 shows that RM-
SEs of FPSGD and NOMAD do not reach to 0.919 which is the
state-of-the-art RMSE for NetFlix dataset [25].

We also tried FPSGD with various grid settings. For example,
even with 64-by-64 grid having 4,096 cells, FPSGD does not reach
to 0.919 of RMSE, while MLGF-MF having around 1,400 regions
reaches to 0.919 within 150 seconds. From this evaluation, we ob-
serve that increasing the granularity of grid does not improve the
convergence quality for a skewed dataset.

These results show that MLGF-MF achieves better convergence
quality at faster speed than other methods when the matrix is skewed.

5.2.2 Comparison on convergence speed for block-
storage environment

We evaluate the performance of MLGF-MF for block-storage de-
vice. Figure 6 shows the RMSE change of two methods, MLGF-
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(a) Without SSE instruction

(b) With SSE instruction

Figure 8: Comparison on the conver-
gence speed of MLGF-MF for Yahoo!
Music dataset on shared-memory, Re-
vuAhn, S850PRO.

(a) Varying thread size, NetFlix, shared-
memory

(b) Varying data size, Synthetic dataset, Re-
vuAhn

Figure 9: Investigation on scalability of
MLGF-MF.

(a) Convergence speed, NetFlix, RevuAhn

(b) Storage utility, NetFlix

Figure 10: Performance sensitivity of
MLGF-MF for varying page size.

MF and GraphChi, for various datasets on RevuAhn. For all datasets,
MLGF-MF significantly outperforms GraphChi. For example, for
NetFlix dataset, to achieve 0.95 of RMSE, MLGF-MF takes around
40 seconds while GraphChi requires more than 140 seconds to
achieve the same level of RMSE. For larger datasets, Yahoo! Mu-
sic and HugeWiki, the results are similar. MLGF-MF shows much
faster convergence speed than GraphChi.

We also evaluate them for another slower block-storage device
S850PRO. For all the datasets, the evaluation results are similar to
those on RevuAhn, and thus we report the results in our website
due to the page limitation.

These results show that MLGF-MF demonstrates much faster
convergence speed than the state-of-the-art SGD algorithm for block-
storage environment.

5.2.3 Performance bottleneck of MLGF-MF
We investigate the performance bottleneck of MLGF-MF using

Yahoo! Music dataset. Figure 8 shows the convergence speeds
of MLGF-MF on shared memory, on RevuAhn, and on S850PRO.
We observe that the performance difference among them is very
marginal, because (1) the asynchronous I/O offsets the I/O cost of
SSD disks, and (2) the CPU cost linearly increases as the dimen-
sionality k of latent matrices U and V increases; As shown in the
updating rules (Equation 4 and 5), the required number of floating
computation depends on the size of dimensionality of ui and vj .

We repeat the experiments with SSE instruction set. Figure 8(b)
reports the convergence speeds of three different settings with SSE
instruction set. By using SSE instruction set, the CPU cost is re-
duced, and the CPU computation is not a bottleneck for S850PRO.
However, MLGF-MF on RevuAhn still shows almost the same re-
sult as MLGF-MF on shared-memory.

These experiments show that the performance barrier of MLGF-
MF by the I/O cost is not very high because the I/O cost is offset
by the asynchronous I/O, and depending on the k value, CPU cost
could be higher than I/O cost.

5.2.4 Evaluation on scalability of MLGF-MF
We investigate the scalability of MLGF-MF with respect to the

size of threads. Specifically, we evaluate the speedup factor (the
time using single threads / the time using multiple threads) on Net-
Flix dataset, and compare it to that of FPSGD. Both MLGF-MF and
FPSGD show ideal speed up until using four threads (Figure 9(a)),
however, the both slows down after four threads.

We also evaluate the scalability of MLGF-MF with respect to the
size of dataset. For evaluation, we generate a synthetic dataset by
following the synthetic dataset generation procedure in DSGD [5].
Specifically, we fix the size of column (i.e., the number of items)
to one million, and increase the number of users from 20 millions
to 100 millions with the interval of 20 million. Accordingly, the
number of non-zero entries in the matrix increases from 2 billions
to 10 billions with the interval of 2 billions. As a result, we generate
5 datasets having the 20 million - 100 million of users, and the
size of synthesized matrix is 54G - 274G byte in raw text format.
For these datasets, the time for factorizing matrices by MLGF-MF
increases in linear scale and does not explode (Figure 9(b)).

5.2.5 Effect of page size
In block-storage environment, according to the page size, the

performance may vary. We investigate the performance of MLGF-
MF for various sizes of pages. Figure 10(a) shows that the perfor-
mance change due to the change of page size is very marginal.

Though there is a slight difference on the performance, it is mainly
due to the storage utility. For example, in NetFlix, MLGF-MF with
4MByte page size shows the best performance. It is mainly because
the storage utility is the best for 4 MByte page size (Figure 10(b)).
On the contrary, the storage utility for 512K is the worst, thus the
convergence speed is slower than that of 4 MByte. However, the
difference is very marginal.

These results show that the convergence speed and storage uti-
lization of MLGF-MF is not sensitive with respect to page size.
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6. CONCLUSION
This paper proposes a fast and robust parallel SGD algorithm for

matrix factorization, called MLGF-MF, which is robust to skewed
matrices, and runs efficiently for both shared-memory and block-
storage (e.g., SSD disks) environments. Existing parallel or dis-
tributed SGD algorithms produce too much I/O cost and produce
unreliable results when the matrix is skewed. To reduce the I/O
cost and produce robust results, MLGF-MF 1) exploits MLGF, a
multi-dimensional index complementing the grid structure, and 2)
adopts the asynchronous I/O which fully utilizes the CPU resources
and block-storage devices. From our extensive evaluations, we
conclude that MLGF-MF significantly outperforms (or converges
faster than) the state-of-the-art SGD algorithms in both shared-
memory and block-storage environments, and it is more robust to
skewed matrices or achieves higher quality of convergence at faster
speed.
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