
Online Outlier Exploration Over Large Datasets

Lei Cao†, Mingrui Wei †, Di Yang ‡, Elke A. Rundensteiner†
†Worcester Polytechnic Institute Worcester, MA 01609, USA

‡Oracle Corporation Nashua, NH 03062, USA
lcao|netwrm01|rundenst@cs.wpi.edu,di.yang@oracle.com

ABSTRACT

Traditional outlier detection systems process each individual outlier
detection request instantiated with a particular parameter setting
one at a time. This is not only prohibitively time-consuming for
large datasets, but also tedious for analysts as they explore the data
to hone in on the appropriate parameter setting and desired results.

In this work, we present the first online outlier exploration plat-
form, called ONION, that enables analysts to effectively explore
anomalies even in large datasets. First, ONION features an innova-
tive interactive anomaly exploration model that offers an “outlier-
centric panorama” into big datasets along with rich classes of ex-
ploration operations. Second, to achieve this model ONION em-
ploys an online processing framework composed of a one time of-
fline preprocessing phase followed by an online exploration phase
that enables users to interactively explore the data. The preprocess-
ing phase compresses raw big data into a knowledge-rich ONION
abstraction that encodes critical interrelationships of outlier candi-
dates so to support subsequent interactive outlier exploration. For
the interactive exploration phase, our ONION framework provides
several processing strategies that efficiently support the outlier ex-
ploration operations. Our user study with real data confirms the ef-
fectiveness of ONION in recognizing “true” outliers. Furthermore
as demonstrated by our extensive experiments with large datasets,
ONION supports all exploration operations within milliseconds re-
sponse time.

Categories and Subject Descriptors

H.2 [Information Systems]: Database Management

Keywords

Outlier; Online Exploration; Parameter Setting

1. INTRODUCTION
This big data era provides tremendous opportunities for extract-

ing insights from big datasets via advanced analytics. Among these
data analytical tasks, understanding “abnormalities” in the data is
one of the fundamental services essential for applications ranging

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

KDD’15, August 10-13, 2015, Sydney, NSW, Australia.

c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783387.

from credit fraud prevention, climate change analysis, to finan-
cial strategy planning. They all rely on effective outlier detection
techniques to discover suspicious card usage and potential iden-
tity theft, to forecast disastrous weather phenomena, and to predict
market changes and trade opportunities, respectively [7].

In this context, we focus on one well-established abnormality
definition [13] called “distance-based outlier”, that effectively cap-
tures “outliers” [7, 16] − data points behaving significantly differ-
ently from others in a dataset.

Limitations of Traditional One-At-A-Time Query Approach.

Traditional outlier detection systems require the analyst to select a
fixed set of parameter values, most notably a distance threshold r
and a count threshold k [13], and then to submit this instantiated
request to attempt to detect outliers of interest. This request is then
executed from scratch as a one time query to compute the outliers
from the target dataset that match that specification. This one-at-a-
time query approach suffers from severe limitations.

First, similar to many other data analytical tasks, a good input
parameter setting (in this case a pair of appropriate values for k and
r parameters) is the key for the analysts to gain insight in data and
identify the “true” outliers. However using the current systems, to
achieve this the analyst has to continuously re-submit individual re-
quests with different parameter settings in a trial-and-error fashion
and interactively analyze the respective results. This is extremely
ineffective and would be a taxing process for the analysts because
of the infinite number of possible parameter settings.

Second, although optimization strategies for executing such re-
quests have been proposed [1, 4, 11, 5], mining outliers accord-
ing to a particular parameter setting from scratch on large data still
tends to take hours as confirmed in our experiments (Sec. 4.3.1).
This is clearly not matching the stringent response time of seconds
or so required by interactive systems − thus risks losing the atten-
tion of the analysts during the process.

Worst yet, if the system only supports such one-at-a-time queries,
each individual query would independently generate an outlier set
as answers. However without establishing an explicit connection
among these “isolated outlier views”, it is challenging for the ana-
lyst to compare and contrast the outlier sets produced by the differ-
ent queries over time − especially when working with a big dataset
and in turn a large outlier base.

Furthermore important insights, such as how stable the outlier
status of each point is, how the detected outlier set migrates across
different parameter settings, or what the relationship among differ-
ent outlier points is (for example, whether some points are “stronger”
outliers than others), might be missed during this tedious yet ex-
pensive exploration process. This information is critical for the
analysts to interpret the characteristics of the outliers hidden in the

89

dataset. In short, this one-at-a-time approach is neither effective
nor efficient for online interactive analytics.

Proposed Solution. We propose a novel online outlier exploration
platform, called ONION, that addresses these problems.

ONION Model. ONION offers users an innovative “outlier-
centric panorama” into the outliers present within the raw dataset
by establishing an interactive anomaly exploration model. The ONION
model is composed of a comprehensive knowledge base supported
by powerful outlier exploration operations.

First, the ONION knowledge base explicitly models the distri-
bution of the outliers with respect to their associated parameter set-
tings by abstracting the k, r parameters and the points p of a dataset
D into a three dimensional space called ONION space (in short O-

Space). Further higher level abstractions (P-Space and D-Space)
including the stability of the parameter settings in recognizing out-
liers and the hierarchial domination relationships in abnormality
among the outlier candidates independent of any particular param-
eter setting are extracted and modeled.

Second, rich classes of outlier exploration operations beyond the
traditional concept of outlier detection are proposed that not only
allow the analysts to understand how parameter changes would im-
pact the captured outliers, but also offer analysts a “parameter-free”
approach to identify outliers based on their domain knowledge. To-
gether these operations provide a powerful yet flexible methodol-
ogy for analysts to explore and interpret the outliers within a large
dataset with respect to an infinite parameter space. This enables
them to quickly approach the true outliers even in a completely un-
known dataset with zero knowledge about the appropriate parame-
ter settings.

ONION Framework. We develop a novel outlier exploration
framework that implements this ONION model. The ONION frame-
work consists of two components, namely offline one-time ONION
knowledge base construction and subsequent interactive outlier ex-
ploration. The offline component constructs the ONION knowl-
edge base, while leveraging this knowledge base the interactive
component achieves true sense making by supporting the outlier
exploration operations with real time responsiveness.

Our offline component rests upon the key observation that given
any outlier candidate oci in a dataset D there exists a small set of
data points in D whose distances to oci delimit the entire parameter
space P composed of all possible parameter settings into two seg-
ments, so called space delimiter. The parameter settings that fall
into the same segment classify pi to be the same outlier status. By
collecting the space delimiters of all outlier candidates utilizing a
quadratic complexity algorithm and leveraging their relative posi-
tions we successfully represent the key components of outlier ana-
lytics, namely the distribution characteristics of outliers, the prop-
erty of parameter space, and the linkage between outliers and input
parameter settings into a compact hierarchical structure.

This structure is proven to be sufficient yet necessary to support
all outlier exploration operations, while being compact enough to
be stored in the main memory of a standard configuration PC even
for a big dataset. Therefore the DISK I/O costs, confirmed to be
the dominating costs of outlier detection, are completely avoided
by our interactive explorer. In particular by leveraging the relative
abnormality of the outlier candidates and the relative strictness of
the parameter stable regions in recognizing outliers, we are able to
answer all outlier exploration operations in logarithmic time on the
cardinality of the outlier candidates.

Our user study with real GMTI data [9] confirms the effective-
ness of our ONION platform in quickly honing in on the appropri-
ate parameter settings and in turn approaching the “true” outliers.
Furthermore ONION consistently outperforms its state-of-the-art

competitors at least five orders of magnitude in the processing times
for the traditional outlier detection queries in a rich diversity of
scenarios tested with big real geolocation datasets. Better yet, it
supports a rich set of outlier exploration operations not previously
supported − all in milliseconds response time.

Contributions. The contributions of this work include:
1) We propose the first interactive outlier analytics platform that

enables analysts to pinpoint appropriate parameter settings and ex-
plore outliers in a systematic way.

2) We establish for the analysts an “outlier-centric panorama”
into big datasets by integrating the input data and parameter space
into a comprehensive multi-space ONION knowledge base.

3) We design logarithmic-complexity algorithms for the process-
ing of each outlier exploration operations with realtime responsive-
ness by leveraging the compact ONION knowledge base.

4) We confirm the superiority of ONION compared to the tradi-
tional mining platform in effectiveness of recognizing true outliers
by conducting a user study with real GMTI dataset.

5) Our experimental performance study demonstrates that ONION
is at least five orders of magnitude faster than its state-of-the-art
competitors for traditional outlier detection queries.

2. ONION MODEL
We propose the online outlier exploration model or in short ONION

for modeling and exploring the characteristics of distance-based
outliers in a dataset D. We first introduce the concept of distance-
based outlier proposed in [13]. We use the term data point or point
to refer to a multi-dimensional tuple. Let D be a set with n points
p1, p2, p3, ... pn. The function d(pi , pj) denotes the distance be-
tween data points pi and pj in D.

Definition 1. Distance-Based Outlier. Given a dataset D, a

range threshold r (r ≥ 0) and a count threshold k (k ≥ 1), a point

pi ∈ D is an outlier if fewer than k points pj exist in D whose

distance to pi d(pi , pj) is no larger than r.

Fig. 1 sketches a high-level view of the ONION model. It is
composed of the multi-space abstraction capturing the key charac-
teristics and interrelationships of outliers and a rich set of outlier

exploration operations.

�������

	������
������

�����

���
������

�����

���
������

Figure 1: ONION Model

2.1 Multi-Space Abstraction
Our multi-space abstraction is composed of three interlinked spaces

that we will now define below.
ONION Space. ONION space or in short O-Space is a three-
dimensional space that models the distribution of the outliers with
respect to their associated parameter settings.

Definition 2. O-Space denoted as O
S (Dimk ,Dimr , Dimd)

is a three-dimensional space with the possible settings of parame-

ters r, k and data points p in dataset D being its three dimensions.

The dimension Dimk ranges over the values that the parameter

k can take in the universe of natural number Uk : [kmin , kmax],
where kmin and kmax are the user-specified lower and upper bounds

90

Figure 2: ONION Space

of the k values. Similarly the dimension Dimr corresponds to the

domain of real numbers Ur : [rmin , rmax] with rmin and rmax the

lower and upper bounds of the values of parameter r. Lastly the

dimension Dimd represents all points p ∈ D randomly organized

into a linear order. Each point is assigned a position in [1,| D |].

Each coordinate (ki , ri , pi) ∈ O
S maps to a boolean value v ∈

{0,1} indicating whether point pi is an outlier with respect to pa-

rameter values ki and ri.

In this O-Space any combination of k and r values on the dimen-
sions Dimk and Dimr forms a parameter setting psi denoted by
psi(ki , ri). Conceptually O-Space encodes the outlier status of all
points in D with respect to all possible parameter settings.

Since dimension Dimd represents all data points in dataset D,
Dimd corresponds to a discrete domain of positions. In other
words the three-dimensional O-Space can be thought as a sequence
of two dimensional slices as shown in Fig. 2. Each slice models
the outlier status distribution with respect to all possible parameter
settings for one particular point pi in dataset D.

Based on this O-Space, we further design two additional higher

level abstractions called parameter space and data space respec-
tively as shown below.

��
�

��
�

��
�

��
�

��
�

��
�

��
��

��
��

��
�	

��
�

��
��

��
��

�
�

�

�

�

�

�

����	�
 ����	�

�
��	�

�
	

�

��

��
	

��
�

Figure 3: P-Space & D-Space

Parameter Space. Parameter space or in short P-Space is based on
the observation that despite the infinite number of possible param-
eter settings, a large range of continuous parameter settings often
generate the same set of outliers.

Definition 3. P-Space P = P1

⋃
P2 ...

⋃
Pm, such that:

(1) given any two parameter setting subsets Pi and Pj of P (1 ≤
i, j ≤ m), Pi

⋂
Pj = ∅;

(2) given any two parameter settings psj and psl in the same Pi

(1 ≤ i ≤ m), psj and psl generate the same set of outliers.

In other words P-Space divides the two-dimensional space formed
by the set of all possible values on the Dimk , Dimr axes into a set
of disjoint regions. Within each region no matter how the parame-
ter settings are adjusted, the set of outliers generated from dataset
D remains unchanged. Each such region is called a stable region.

P-Space, partitioning the infinite number of parameter settings
into finite number of stable regions, explicitly reveals the influence
of the parameter setting adjustment. This offers the analysts an
opportunity to determine the appropriate parameter settings using a
systematic methodology instead of a random trial and error process.
Data Space. Data space or in short D-Space leverages the key
abnormality properties demonstrated in the points of dataset D,
namely outlier candidacy and domination relationship.

Outlier Candidacy. Despite the infinite cardinality of P-Space
P, given a point pi in dataset D, its outlier status might be constant
with respect to all parameter settings in P. In other words, some
points are guaranteed to be outliers in the entire P-Space so called
const outliers, while some other points are guaranteed to be per-
manent inliers through the entire P-Space so called const inliers. In
our O-Space these points would thus correspond to a slice that is all
1’s for constant outlier or all 0’s for constant inlier. For example,
as shown in Fig. 2 p1 is a const inlier, while p3 is a const outlier.

Any point pi in D, that is neither a const outlier nor const inlier,
is called an outlier candidate oc with respect to P, meaning pi has
opportunity to be classified as outlier for at least some of the pa-
rameter setting psi in P. In O-Space, an outlier candidate would
have at least one cell in its corresponding slice that is 0 (white) and
one that is 1 (black). In Fig. 2 p2 is an outlier candidate.

In practice as confirmed by our experiments (Sec. 4.2), outlier
candidates tend to be a strict minority among all points in D. This
important outlier candidacy observation allows us to significantly
reduce the number of data points to be maintained in D-Space. By
this, ONION can concentrate the resource utilization on strictly
serving these minority outlier candidates, rather than on comput-
ing and recording neighborhoods for the general and much larger
data population when exploring outliers. Therefore ONION is able
to efficiently explore outliers over even big datasets.

Domination Relationship. In dataset D some outlier candidates
demonstrate a much stronger abnormality than others independent
of any particular parameter setting in P. In other words, some data
points dominate others in abnormality as defined below.

Definition 4. Given a P-Space P, outlier candidate oci in dataset

D dominates ocj if for all parameter settings in P ocj is guaranteed

to be outlier when oci is classified as outlier.

By Def. 4 if outlier candidate oci dominates ocj , we say that the
abnormality of oci is stronger than ocj .

Revealing the domination relationships among outlier candidates
ONION offers the analysts an opportunity to better understand sev-
eral characteristics of the detected outliers from sensitivity to sta-
bility. Without such understanding the detected outliers might only
be some abstract points indistinguishable from each other for the
analysts instead of some true unique abnormal phenomena.

Now we are ready to define our data space or in short D-Space.

Definition 5. D-Space D = D1

⋃
D2 ...

⋃
Dm, such that:

(1) ∀ oci ∈ D, oci is an outlier candidate;

(2) given any two outlier candidate subsets Di and Dj of D

(1 ≤ i , j ≤ m), Di

⋂
Dj = ∅.

(3) the outlier candidates in the same group Di are sorted into a

linear structure. Given two points ocj and ocl with j, l representing

their positions in Di, ocj dominates ocl if j < l .

In general, leveraging the outlier candidacy and domination re-
lationship properties, D-Space partitions all outlier candidates into
multiple disjoint groups. Within each group the domination rela-
tionship holds among all members of the group, so called domina-

tion group. Furthermore the outlier candidates falling in the same

91

domination group are ordered based on the strongness of their ab-
normality. For example, in Fig. 3, D-Space D contains three sub-
spaces D1, D2, and D3. In D1 candidates oc1 to oc6 are ordered by
the domination relationship. That is, oc1 dominates other members
in D1. oc2 is dominated by oc1, but dominates oc3 to oc6.
Linkage between P-Space and D-Space. Furthermore as shown
in Fig. 3, our ONION model explicitly establishes linkages be-
tween P-Space and D-Space, or in short PD-linkage.

Definition 6. PD-Linkage. Given a stable region Pi in P-Space

P and a domination group Dj in D-Space D, there exists a link

l(i , j) connecting Pi to an outlier candidate oct ∈ Dj such that:

(1) ∀ parameter setting psi in Pi, oct is classified as outlier;

(2) ∀ parameter setting psi in Pi, oct−1 is classified as inlier.

By the domination relationship definition in Def. 4, if oct is
an outlier with respect to psi, then any outlier candidates listed
behind oct in Dj (oct+1, oct+2, ...) are guaranteed to be out-
liers. Therefore the PD-Linkage explicitly connects the stable re-
gions with their generated outliers. In Fig. 3, stable region P1 is
linked to oc1 of D1, oc8 of D2, and oc14 of D3. Based on the
links we immediately get the outlier set O1 generated by P1, that is
{oc1 , ..., oc6 , oc8 , ..., oc11 , oc14 , oc15}.

Overall the multi-space abstraction explicitly models the dis-
tribution of the outliers over all parameter settings, the relation-
ships among the parameter settings, the stability and uniqueness of
the outlier candidates. It establishes an innovative “outlier-centric
panorama” into the outliers within dataset D.

2.2 ONION Operations
Based on the multi-space abstraction we further envision a rich

classes of outlier exploration operations that allow users to explore
and interpret outliers as well as pinpoint appropriate parameters.

Definition 7. Comparative Outlier Analytics (CO). Given an

outlier set Oin as input, we report set of outliers OD from dataset

D, such that:

(1) ∀ point pi ∈ Oin, pi ∈ OD; and

(3) ∀ point pi ∈ OD − Oin, if any pj ∈ Oin is classified as

outlier with respect to one psl ∈ P, pi is guaranteed to be classified

as outlier by psl.

Leveraging the domination relationship in D-Space, CO oper-
ation returns all outliers dominated by the outliers specified in the
input set Oin. CO offers users a “parameter-free” approach to iden-
tify outliers based on their domain knowledge about the dataset.
More specifically this CO operation helps analysts to identify out-
liers in a dataset based on sampling some typical outliers.

Definition 8. Outlier-Centric Parameter Space Exploration (PSE).

Given an outlier set Oin and a δ (−1 < δ < 1) as input, report all

parameter settings psj ∈ P-Space P, such that:

(1) if δ ≥ 0, psj identifies an outlier set Oj ⊆ Oin where | Oj |
= (1 - δ) | Oin |;

(2) if δ ≤ 0, psj identifies an outlier set Oj ⊇ Oin where | Oj |
= (1 - δ) | Oin |.

PSE leverages the stable region property of P-Space and allows
analysts to conveniently evaluate the stability of a given outlier set
Oin. This is one important indicator of how significant the ob-
served abnormal phenomena is. For example, if we set the δ as
0, PSE will return all the parameter settings that are guaranteed to
generate the outliers identical to Oin, namely a stable region of P.
The scope of the returned parameter settings (the size of the stable
region) represents how stable the outlier set is across P-Space.

Furthermore PSE provides a tool for analysts to examine how
changes in parameter settings may impact the resulting outliers.
PSE achieves this, for example, by allowing the analysts to apply
PSE to ask for the parameter settings that would return around (1
- δ)% of Oin as the results and then compare them against the pa-
rameter settings that generate Oin.

Definition 9. Outlier Detection (OD). Given a dataset D and a

parameter setting psi as input, outlier detection returns:

(1) all outliers pj ∈ D with respect to psi if psi ∈ P-Space P; or

(2) all points pj ∈ D that are classified as outliers with respect

to any parameter setting ∈ P if psi = NULL.

As shown in Def. 9 unlike the traditional distance-based outlier
definition, OD leverages the outlier candidacy observation of D-
Space to allow the input parameter set as NULL. This will return
all points that are guaranteed to be outliers with respect to the entire
P-Space, that is, the constant outliers.
Use Case. Those operations in combination provide a powerful
tool for analysts to quickly approach the parameter settings appro-
priate for her application. For example, when facing a new dataset
recording stock market transactions, an analyst may not have any
experience to be able to appropriately determine values for param-
eters k and r. However, given her domain expertise, she may be
aware that certain records are abnormal (outliers). Then a CO op-
eration can be applied to help her identify all outliers satisfying her
intuition. If the analyst finds the volume of the outliers O returned
by the CO request too overwhelming, then she could apply PSE
to ask for the parameter settings that would return, for example,
around 60% of O as the result by setting δ as 0.4. Eventually the
OD operation is applied to catch the true outliers to her interest.

Note that the above running example we gave here is just one of
many combinative usages of our proposed operations. Those op-
erations can be used individually or in other combinations to serve
the ever changing outlier analysis demands.

3. ONION FRAMEWORK
To achieve the ONION model we designed the novel ONION

framework. As shown in Fig. 4 ONION framework consists of
two phases (a) offline multi-space abstraction construction and (b)
online exploration operation processing using the corresponding
ONION spaces.

O-Space Construction
Algorithm

O-Space

D-Space
Construction
Algorithm

P-Space
Construction
Algorithm

D-Space P-Space

O-Space P-Space D-Space

OD
O-Space
PSE
O-Space
CO
O-Space

PSE
P-Space
CO
P-Space

PSE
D-Space
CO
D-Space

OD
P-Space

OD
D-Space

Offline ONION Spaces Construction Online Outlier Exploration

Figure 4: ONION Framework

3.1 O-Space

3.1.1 Offline O-Space Construction

As shown in Fig. 2, the three-dimensional O-Space can be de-
composed into a set of two dimensional slices. Each slice corre-

92

sponds to the outlier status of one point pi in dataset D with re-
spect to all parameter settings psi in the two-dimensional space P
formed by the dimensions Dimk and Dimr . Therefore O-Space
can be established by modeling the outlier status distribution in P
for each point pi in dataset D, called O-Space(pi).

The key insight here is that given a point pi in dataset D, it is
not necessary to establish O-Space(pi) by evaluating pi for each
possible psi in P . In fact the outlier status of pi with respect to any
psi in P can be correctly determined by collecting only a small
amount of meta information.

We first introduce our k-distance observation. Generally speak-
ing given a set of outlier detection requests with the same param-
eter value k for Dimk, but random values for Dimr , the outlier
status of any point pi for any of those requests can be determined
by checking the distance of pi towards one single point in D. This
observation is formally defined in Lemma 1.

Lemma 1. Given a set of parameter settings Pk ⊂ P , where ∀
two parameter settings psx(kx, rx), psy(ky, ry)∈Pk, kx = ky = k ,

then the outlier status of pi with respect to any psx in Pk is deter-

mined by the distance between pi and its kth-nearest neighbor pj
denoted as Dk

pi
.

Proof. Given any parameter setting psx (k , rx) ∈ Pk, if Dk
pi

> rx,
then by the definition of the kth-nearest neighbor, there are at most
k-1 other points pj ∈ D whose distance towards pi is not larger than
rx. In other words, pi has at most k-1 neighbors. By Def. 1, pi is
an outlier. On the other hand, if Dk

pi
≤ rx, then there are at least

k points pj with d(pi , pj) ≤ rx, namely pj are all neighbors of pi.
pi is then classified as an inlier by Def. 1. Therefore ∀ psx (k , rx)
∈ Pk, the outlier status of pi can be correctly determined by com-
paring rx against Dk

pi
. Lemma 1 is proven. �

Now we are ready to introduce the space delimiter insight as the
foundation for building O-Space.

Lemma 2. Given a dataset D and parameter setting space P ,

∀ pi ∈ D the distance set DS(pi) = {Dkx
pi
|kmin ≤ kx ≤ kmax} is

sufficient to determine the outlier status of pi with respect to any

parameter setting ps ∈ P .

Proof. P = Pkmin
∪Pkmin+1

∪Pkmin+2
...∪Pkj

...∪Pkmax−1

∪ Pkmax , where Pkj
is composed by any psx(kx, rx) ∈ P with

kx = kj (kmin ≤ kj ≤ kmax). Therefore given any ps ∈ P ps is
guaranteed to be covered by some Pkj

. By Lemma 1, ∀ps ∈ Pkj

the status of pi can be determined by examining D
kj
pi . Since D

kj
pi

∈ DS(pi), therefore DS(pi) is sufficient to determine the status of
pi with respect to any ps ∈ P . Lemma 2 is proven.�

As shown in Fig. 5 this distance set DS(pi) delimits P into two
segments. The parameter settings in different segments will clas-
sify pi to different outlier status. Therefore DS(pi) is called space

delimiter of pi. The set of space delimiters { DS(pi) |pi ∈ D}
effectively represents the three dimensional O-Space.

Furthermore the space delimiter structure also provides us an ap-
proach to quickly discover constant inliers and constant outliers.

Lemma 3. A point pi is a const inlier if Dkmax
pi

≤ rmin.

Proof. If the distance to pi’s kmaxth nearest neighbor is ≤ rmin,
then pi has at least kmax neighbors or more even under most re-
stricted neighbor criteria, namely Dimr = rmin. Then pi is an
inlier for ps(kmax ,rmin) that is the most restricted parameter setting
in P in terms of recognizing outlier. If pi is not an outlier in the
most restricted setting, then of course it cannot be outlier in any
part of P . Therefore pi is a const inlier. �

�
���

�
���

�
���

�
���

�

�������

	
����

Figure 5: Space Delimiter

Lemma 4. A point pi is a const outlier if Dkmin
pi

> rmax.

Lemma 4 can be proven in the similar way of proving Lemma 3.
Due to space limitation, the proof is omitted.

Naturally any point that is not a const outlier nor a const inlier, is
an outlier candidate oc. Among all points only for oc it is necessary
to maintain its space delimiter.

Therefore constructing O-Space has two tasks, namely: (1) dis-
covering all ocs and (2) collecting the space delimiter DS(oc) for
each oc. Intuitively this can be done by first collecting DS(pi) for
each point pi, then locating the constant inliers and outliers by ap-
plying Lemmas 3 and 4. Collecting DS(pi) is straightforward. We
can acquire the k nearest neighbors (kNN) of pi by applying any
kNN algorithm with k set as kmax . Since we only care for the range
kmin to kmax, we then discard the kmin−1 nearest neighbors.

However to discover const inliers it is not necessary to acquire
the actual kmax nearest neighbors. Once pi acquires kmax neigh-
bors whose distance to pi is not larger than rmin , pi is guaranteed
to be const inlier. Then the kNN search can be terminated imme-
diately. Since const inliers are typically the majority of the dataset,
this optimization significantly speeds up the preprocessing process.
Space Complexity. The O-Space data structure is composed of a
set of arrays. Each of the arrays contains (kmax − kmin + 1) float
values (distance) corresponding to the space delimiter of one outlier
candidate. Therefore the space complexity is linear in the number
of outlier candidates | OC |. More precisely it is O(| OC | (kmax−
kmin + 1)).

As confirmed by our experiments (Fig. 9, Sec. 4.3.1), only a
small fraction of points is classified as outlier candidates. Most
of the points are recognized as const inliers. Therefore L is much
smaller than the actual cardinality n of the input dataset. Hence the
O-Space structure is found to be rather compact and in fact small
enough to be accommodated in the main memory of a standard PC
even when handling a fairly large dataset in order of 10GB.
Time Complexity. The time complexity of constructing O-Space
is O(n2) because of the potential KNN search on each point. Here
n represents the cardinality of the input dataset D. Furthermore it is
worth to emphasize that in fact the cost of building O-Space is sim-
ilar to the cost of answering one single outlier detection request as
confirmed in our experiments (Figures 7, 8, Sec. 4.2.1). In ONION,
the expensive exact KNN search is only conducted on outlier can-
didates. This significantly speeds up the construction of O-Space.

3.1.2 Online Outlier Exploration

O-Space is sufficient to support all three classes of outlier ex-
ploration operations. In particular by intelligently maintaining the
space delimiter information of each outlier candidate, we are able

93

to drive down the time complexity of supporting online outlier de-
tection (OD) operation from quadratic to linear.

Outlier Detection (OD). For each outlier candidate oc we main-
tain its space delimiter DS in an array structure by the order of its
kminth neighbor at the head and the kmaxth neighbor at the end.
Then for any parameter ps ∈ P , the outlier status of oc can be im-
mediately determined by applying the following examination rule.

Definition 10. Given an outlier candidate oc and its DS struc-

ture, ∀ parameter setting ps(kx , rx) in P , oc is an outlier if DS[kx−
kmin] > rx . Otherwise pi is an inlier.

Therefore to answer OD we only need to perform one scan on the
outlier candidate set OC and sequentially apply the examination
rule in Def. 10 on each oc. Hence the time complexity is linear to
the cardinality of OC.

Outlier-Centric Parameter Space Exploration (PSE). Given
an outlier set Oin, the parameter settings that recognize Oin as
outliers is the intersection of a set of parameter space segments Si

with respect to each point pi in Oin. All parameter settings in Si

with respect to pi will classify pi as outlier. By Lemma 2 this can
be done by checking and comparing the space delimiters DS of all
points in Oin. The time complexity is O(| Oin |(kmax - kmin)).

Comparative Outlier Analytics (CO). Similar to PSE, given
an outlier set Oin, CO can be answered by checking the parameter
space segment Si with respect to each outlier candidate oci in OC

- Oin. Point oci is dominated by all points oj in Oin if Si ⊇ Sj for
all ocj . The time complexity is O(| OC |(kmax - kmin)).

3.2 P-Space

3.2.1 Offline P-Space Construction

To construct the P-Space we first introduce the concept of k-

domination between two outlier candidates.

Definition 11. Given two outlier candidates oci and ocj and

a k value of Dimk ∈ [kmin , kmax], if Dk
oci

� Dk
ocj

, then oci k-

dominates ocj .

The following monotonic property holds if the k-domination re-
lationship holds between oci and ocj .

Lemma 5. Given two outlier candidates oci and ocj with oci
k-dominating ocj , then for any parameter setting ps(k , rx) ∈ P
(rmin ≤ rx ≤ rmax), if oci is classified as outlier by ps, then ocj is

guaranteed to be outlier with respect to ps.

Proof. If oci is an outlier with respect to ps(k , rx), D
k
oci

> rx .

Since Dk
ocj

≥ Dk
oci

by the k-domination definition in Def. 11,

Dk
ocj

> rx . Therefore ocj is an outlier with respect to ps. �

In other words, if one parameter setting ps(k , rx) classifies pi as
an outlier, then any point k-dominated by pi is guaranteed to also
be an outlier. On the other hand, if one parameter setting classifies
pi as an inlier, then any point that k-dominates pi is also guaranteed
to be an inlier as well.

It is straightforward to prove that the k-domination relationship
also satisfies the transitive property.

Lemma 6. Given three candidates och, oci, and ocj , if och k-

dominates oci and oci k-dominates ocj , then och k-dominates ocj .

The above properties of the k-domination relationship now en-
able us to divide the infinite parameter setting space P into a finite
number of stable parameter regions.

Lemma 7. Given the outlier candidate set OC⊂ dataset D and

Pki
⊂ P , where | OC | = n and Pki

is composed by any param-

eter setting ps in P sharing the same Dimk value ki, then Pki

can be divided into n+1 stable regions P
j

ki
, where Dimr of P1

ki
∈

[rmin ,D
ki
oc1

), Dimr of P2
ki

∈ [Dki
oc1

,Dki
oc2

), ..., Dimr of P
j+1

ki
∈

[Dki
ocj

,Dki
ocj+1

) ,...., Dimr of Pn+1

ki
∈ [Dki

ocn , rmax] (Dki
oc1

< Dki
oc2

,

..., < Dki
ocj

< Dki
ocj+1

, ..., < Dki
ocn). The identical set of outliers are

guaranteed to be generated for all ps ∈ P
j

ki
.

Proof. ∀ ps(ki , rx) ∈ P
j

ki
, since Dki

ocj−1
≤ rx < Dki

ocj
, ps(kj , rx)

will classify ocj−1 as inlier, while ocj would be classified as out-
lier. Since Dki

ocj−2
< Dki

ocj−1
and Dki

ocj
< Dki

ocj+1
, we get ocj−2

k-dominates ocj−1 and ocj dominates ocj+1. Based on the mono-
tonic property of k-domination, ocj−2 will also be classified as an
inlier, while ocj+1 remains as outlier. Furthermore by the transitive
property of k-domination, ∀ ps(ki , rx)∈Pj+1

ki
, oc1 , oc2 , ..., ocj−2 ,

ocj−1 are guaranteed to be inliers, while ocj , ocj+1 , ..., ocn are
guaranteed to be outliers. Therefore the identical set of outliers will
be generated for any ps ∈ P

j+1

ki
. Lemma 7 has thus been proven.�

�
���

�
���

�������	�
��

�

�����

�
���

�
���

�
�����

�
���	�

�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

Figure 6: Stable Region

Leveraging Lemma 7 we design an light-weight algorithm (Alg.
1) to build P-Space P. We first define the parameter node structure.

Definition 12. A parameter node, or in short pn, is a data struc-

ture composed of the following three elements:

-pn.obj: an outlier candidate oc in OC;

-pn.k: k parameter value (k ∈ [kmin , kmax]);
-pn.r. r parameter value, pn.r = Dpn.k

oc ;

By Def. 12, each outlier candidate oc in OC will be mapped to
m nodes, where m = kmax − kmin + 1 . Each of the nodes corre-
sponds to one element in the space delimiter DS of oc, that is Dki

oc

(kmin ≤ ki ≤ kmax). Then we organize the parameter nodes based
on pn.k into m array lists. Each array list called kthList contains
the nodes with the same pn.k value. Therefore each outlier candi-
date oc is represented by exactly one node pn in each kthList .

The key idea behind Alg. 1 is to sort the parameter nodes in each
kthList in ascending order based on their pn.r values. By this each
subspace Pki

(kmin ≤ ki ≤ kmax) of P is divided into multiple

stable regions P
j

ki
by Dki

oc in DS(oc) with respect to each oc in OC.

For example as shown in Fig. 6, P2
kmax

is a stable region of Pkmax

bounded by Dkmax
oc1

of oc1 and Dkmax
oc2

of oc2 ([Dkmax
oc1

,Dkmax
oc2

)). All
parameter settings in P

2
kmax

classify oc2, ..., oc5 as outliers.
P-Space then is represented by a hash map with pn.k as the key

and the corresponding kthList as value.

94

Algorithm 1 constructPSpace

1: P-Space = ∅;
2: for each k from kmin to kmax do

3: kthList = ∅;
4: for each oc ∈ ocs do

5: kthList.add(new pn(oc, oc.DS, k));
6: end for

7: kthList.sort();
8: P-Space.put(k, kthList);
9: end for

10: return P-Space;

3.2.2 Online Outlier Exploration

Outlier Detection (OD). Given a parameter setting psi(ki , ri)
to detect the outliers we only need to locate a particular param-
eter node pnmin in P-Space where pnmin .k = ki and pnmin .r =
min({pn.r | pn.r > ri}). Then the outliers for psi will be the
outlier candidates corresponding to the parameter nodes in the ki thList
of P-Space and listed behind pnmin .

Complexity Analysis. Since each array list is sorted by the pn.r
value, pnmin can be located in O(log(| OC |)) time using a binary
search style algorithm [8].

Outlier-Centric Parameter Space Exploration (PSE). Utiliz-
ing P-Space to support PSE operation is straightforward. We can
traverse through each kthList of P-Space to locate the stable re-
gions that return the outlier set Oin specified in the input. Given
one particular array list ki thList , we first locate the parameter node
pn1st of ocj corresponding to the first outlier in Oin. Then we
compare the outliers in Oin with the objects listed behind pn1st in
ki thList one by one. If all objects match, one stable region P

j

ki
:

[Dki
ocj−1

, Dki
ocj

) will be returned.
Complexity Analysis. The cost of supporting PSE relies on the

number of kthList and the outliers in Oin. Therefore the time
complexity is O(m | Oin |), where m = kmax − kmin + 1 .

Comparative Outlier Analytics (CO). Given an outlier set Oin,
CO operation can be answered by checking each outlier candidate
oci in OC - OCin. oci is dominated by all points oj in Oin if oci
is listed behind all oj in every kthList .

Complexity Analysis. The time complexity is O(m | OC |),
where m = kmax − kmin + 1 .

3.3 D-Space

3.3.1 Offline D-Space Construction

By Def. 5, to construct D-Space D, we have to divide all outlier
candidates oc into multiple domination groups Di. The domination
relationship holds among all ocs falling in the same group Di.

Next we introduce the domination rule in Lemma 8 to evalu-
ate whether the domination relationship holds between two outlier
candidates based on their space delimiters in O-Space.

Lemma 8. Given two outlier candidates oci and ocj , oci dom-

inates ocj if ∀ kl ∈ [kmin , kmax], D
kl
oci ≤ D

kl
ocj

Proof. By Def. 11, given one k ∈ [kmin , kmax], if Dk
oci

≤ Dk
ocj

,
then oci k-dominates. By Lemma 5 given any parameter setting
ps ∈ parameter subspace Pk ⊂ P , ocj is guaranteed to be outlier if

oci is classified as outlier by ps. Since D
kl
oci ≤D

kl
ocj holds for any kl

∈ [kmin , kmax], then oci kl-dominates ocj for any kl. Therefore if
oci is classified as an outlier by any parameter setting ps in P , then
ocj is guaranteed to be an outlier. By the definition of domination
relation in Def. 4, Lemma 8 is proven. �

As shown in Fig. 6, oc1 dominates oc2, because Dk
oc1

< Dk
oc2

for any k ∈ [kmin, kmax].
It is straightforward to prove that domination relationship satis-

fies the transitivity property.

Lemma 9. Given three outlier candidates och, oci, and ocj , if

och dominates oci and oci dominates ocj , then och dominates ocj .

Next we propose a graph-based solution that successfully con-
structs D-Space. First we construct an undirected graph based on
the domination relationships among all outlier candidates.

Definition 13. Domination Graph. The domination graph of

the outlier candidate set OC is a graph G(V, E), such that (1) a

node vi exists in V to represent a point oci in OC, and (2) an edge

eij = (vi, vj) exists in E if domination relationship does not hold

between oci and ocj ∈ OC corresponding to nodes vi and vj in V .

This domination graph G(V, E) tends to be a sparse graph, be-
cause the domination relationship tends to hold among most points
in OC. This is the case because the distance of oci towards its kNN
usually does not dramatically change. If Dki

oci
is smaller than Dki

ocj
,

then D
ki+1
oci also tends to be smaller than D

ki+1
ocj .

Given a domination graph G, a completely disjointed graph with
zero edge can always be derived by removing some nodes and the
corresponding edges. This indicates by removing a small number
of points corresponding to these nodes, we can get a subset of OC

such that the domination relationship holds among all points in it. If
we could determine the minimal number of nodes whose removal
will completely isolate the remaining nodes, then we could build
the largest domination group out of OC. We now note that the
problem of finding the minimal number of nodes to remove so that
no edge remains in G can be mapped to the minimum vertex cover
problem − a classical NP-complete problem.

Clearly any minimum vertex cover algorithm can be applied here.
Then D-Space can be built by recursively applying the minimum
vertex cover algorithm on the removed nodes as shown in Alg. 2.
The domination group built in each iteration is guaranteed to be the
largest at that round. Therefore this process concurrently also min-
imizes the number of the domination groups. Since the domination
graph tends to be a sparse graph, the number of the domination
groups generated is small. As confirmed in our experiments, usu-
ally two or three trees are sufficient to cover all outlier candidates.

Algorithm 2 construct_DForest

Input: OC // outlier candidates
Output: domination_forest // constructed domination forest;
1: if (OC == ∅) then

2: return ∅;
3: else

4: domination_tree = ∅;
5: removed = minVertexCover(OC);
6: OC = OC - removed;
7: domination_tree = buildDtree(OC);
8: return domination_forest + domination_tree +

Construct_DForest(removed);
9: end if

Given a domination group Di a domination tree treei can be con-
structed by sorting the outlier candidates in the ascending order
based on the distance to their kth nearest neighbors, where k can be
any element in [kmin , kmax]. In this domination tree, each oc will
dominate the points listed behind it, while it in turn will be domi-
nated by the points listed in front of it by the transitive property of

95

the domination relationship. Therefore D-Space is represented by
a domination forest composed of multiple domination trees.

Furthermore domination forest also incorporates the stable re-

gion concept of P-Space along its linkage to D-Space.

Lemma 10. Given two adjacent points oci and oci+1 in dom-

ination tree treel , any parameter setting psx (kx, rx) with kmin ≤
kx ≤ kmax and Dkx

oci
≤ rx < Dkx

oci+1
will classify the same set of

points ocj in treel as outliers, where j > i.

Proof. Since Dkx
oci

≤ rx < Dkx
oci+1

, by Lemma 1 psx will classify
oci+1 as outlier and oci as inlier. Since oci+1 dominates ocj , all
ocjs are outliers. Any other point och in treel will be classified as
inlier because och dominates inlier oci . Lemma 10 is proven.�

As shown in Fig. 6, the parameter settings bounded by lines of
oc1 and oc2 generate the same set of outliers: oc2, ..., oc5.

3.3.2 Online Outlier Exploration

The domination forest can efficiently support all classes of out-
lier exploration operations.

Comparative Outlier Analytics (CO). CO can be supported by
locating the first point p1st in each domination tree dominated by
the weakest outlier oi in the outlier input set Oin using a binary
search style algorithm. Then all points listed behind p1st in each of
the domination trees are guaranteed to be outliers.

Outlier Detection (OD). Similar to CO, OD can be supported
by applying the binary search style algorithm on each domination
tree to locate the first outlier candidate classified as outlier by the
input parameter setting psi.

The time complexity of processing CO and OD is O(log | tree1 |
+ log | tree2 | +...+ log | treen |). It relies on the size of each tree
and the number of the trees.

Outlier-Centric Parameter Space Exploration (PSE). By Lemma
10, the parameters that generate the same outliers Oin can be lo-
cated by examining the strongest outlier oc in O

i
in and the first

point in front of oc in each domination tree treei. Here O
i
in =

Oin ∩ treei. The intersection of the parameters returned from
each tree will be the final result of PSE. The time complexity is
O(n+ | Oin |), where n is the number of the trees.

In summary the time complexity of the online phase relies on the
size of each tree and the number of the trees. It is easy to see that
the smaller the number of the trees is, the lower the costs will be.

As for the size of each tree, suppose two forests ft1 and ft2
composed of the same number of trees are derived from outlier
candidate set OC. For forest ft1, | ft1 .tree1 |
 | ft1 .tree2 | ...

 | ft1 .treen |, while for forest ft2, | ft2 .tree1 | ≈ | ft2 .tree2 |
... ≈ | ft2 .treen |. Then the cost of the binary search amounts to
binary(ft1) < binary(ft2). For example suppose OC contains
2m points. ft1 consists of two trees including the largest possible
tree | ft1 .tree1 | = 2m − 1 and the smallest tree | ft1 .tree2 | =
1, while | ft2 .tree2 |=| ft2 .tree2 |= 2m−1 . Then binary(ft1) =
log(2m − 1) + 1 < m +1, while binary(ft2) = 2log(2m−1) =
2(m-1). Obviously when m is reasonably large, binary(ft1) is far
smaller than binary(ft2). Therefore instead of making each tree
equal size, the ideal forest construction algorithm should produce
the largest possible trees out of OC.

As shown in Sec. 3.3.1 our graph-based D-Space construction
algorithm (Alg. 2) not only minimizes the number of trees created,
but also maximizes the size of the trees in the forest. Therefore it
effectively optimizes the performance of outlier exploration.

4. EXPERIMENTAL EVALUATION
Environment. All experiments ran on a Linux Server with 8 GB

memory 2.6GHz Quad-Core CPU using Java 1.6.0 64bit runtime.

Real Datasets. We utilize the GMTI (Ground Moving Target In-
dicator) dataset [9] to conduct user study. GMTI contains around
10,000 records regarding the information of soldiers, vehicles, and
helicopters deployed in a certain region. The outliers are detected
based on targets’ latitude and longitude. We use the outliers manu-
ally labeled by the experts familiar with the data as ground truth.

We also use the geolocation data from OpenStreetMap
(http://download.geofabrik.de/) to evaluate the performance of ONION
when handling large dataset. It contains the geolocation informa-
tion of 50 million buildings (10G) over Australia and Oceania, such
as houses, cafes, stations, etc.. A location on the map is considered
to be outlier based on their distances to other locations.

Methodology. We evaluate the processing time and scalability
of both our offline preprocessing and online mining algorithms by
varying the sizes of the dataset D, parameter space P , and the num-
ber of mining requests. We compare against the state-of-the-art
DOLPHIN [1] in a rich variety of representative use cases.

In particular at the offline phase, we evaluate the processing time
of constructing O-Space that builds the foundation of ONION in
comparison to the index construction cost of DOLPHIN. At the
online phase, the performance of our online algorithms associated
with O-Space, P-Space, and D-Space respectively is evaluated and
contrasted for all three outlier exploration types, namely outlier
detection (OD), outlier-centric parameter space exploration (PSE),
and comparative outlier analytics (CO). The algorithms associated
with each ONION abstraction are named in the format of “opera-
tion type” + “_” + “Abstraction type”. For example the algorithm
supporting OD operation on O-Space is named as “OD_OSpace”.
Furthermore we also compare our ONION against DOLPHIN on
the processing time of traditional outlier detection query − the only
exploration type that Dolphin supports.

4.1 User Study
We conduct a user study to evaluate the effectiveness of ONION

in recognizing outliers contrasting against the traditional one-at-
a-time query approach (TRAD) that only supports outlier detection
operation. Since TRAD takes hours to process a large dataset (10G)
as confirmed in Sec. 4.3.1, it is not acceptable for interactive an-
alytics. Therefore in this study we adopt the relative small dataset
(GMTI) − a clear bias to TRAD.

We invited 50 users from both WPI and Yantai University, China.
The users are divided into two groups. Each group only evaluates
one system. Each user is allowed to continuously submit mining
requests supported by the target system until the generated results
meet the precision and recall requirement (0.9,0.9) set by us. In
each round the precision and recall are automatically calculated and
feedbacked to the users. In any case the study will terminate after
15 minutes. Users are provided a distribution plot of GMTI dataset
that assists them to initialize the parameter setting. For each user,
we count the number of trials (the submitted mining requests) on
each exploration operation. Then the trial number is averaged on
the users belonging to the same group.

System Success Rate Overall OD CO PSE

ONION 1 5.6 1.8 2.6 1.2

TRAD 0.36 16.2 16.2 − −

Table 1: Statistics

As shown in Table 1, only 36% of the TRAD users are able to
eventually meet the precision and recall requirement in 15 minutes,
while all users using ONION succeed. In average TRAD takes
users 16.2 trials to meet the requirement, while the ONION users
only need 5.6. In particular in average the ONION users submit

96

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1e7 2e7 3e7 4e7 5e7

T
i
m
e

I
n

S
e
c
o
n
d

Dataset Size

Single Detection
O-Space Construction

DOLPHIN

Figure 7: O-Space Con-

struction: Varying Data Size

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10 12 14 16 18 20

T
i
m
e

I
n

S
e
c
o
n
d

k

Single Detection
O-Space Construction

Figure 8: O-Space Con-

struction: Varying k

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e9

1e10

1e7 2e7 3e7 4e7 5e7

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

Dataset Size

OD_OSpace
OD_PSpace
OD_DSpace
OD_DOLPHIN

Figure 9: OD: Varying

Dataset Size

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e9

1e10

10000 20000 30000 40000 50000

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

Number of Queries

OD_OSpace
OD_PSpace
OD_DSpace
OD_DOLPHIN

Figure 10: OD: Varying

Number Of Requests

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

2 4 6 8 10

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

k

PSE_OSpace
PSE_PSpace
PSE_DSpace

Figure 11: PSE: Varying pa-

rameter space size

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e7 2e7 3e7 4e7 5e7

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

Dataset Size

PSE_OSpace
PSE_PSpace
PSE_DSpace

Figure 12: PSE: Varying

Dataset Size

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

1e7 2e7 3e7 4e7 5e7

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

Dataset Size

CO_OSpace
CO_PSpace
CO_DSpace

Figure 13: CO: Varying

Dataset Size

1e1

1e2

1e3

1e4

1e5

1e6

1e7

1e8

10 15 20 25 30

T
i
m
e

I
n

S
e
c
o
n
d
[
l
o
g

s
c
a
l
e
]

Input Outlier Set Size

CO_OSpace
CO_PSpace
CO_DSpace

Figure 14: CO: Varying in-

put outlier set size

CO operation 1.8 times, PSE operation 2.6 times, and the tradi-
tional outlier detection (OD) 1.2 times. This confirms that our new
outlier exploration operations indeed save users significantly effort
on pinpointing appropriate parameter settings.

4.2 Offline Preprocessing

4.2.1 O-Space Construction

We first focus on the processing time of constructing O-Space
(construct_OSpace) from raw data by varying the parameter space
size, as well as the dataset size. The costs of one time outlier detec-
tion without employing any index is used as the baseline to evaluate
the extra overhead introduced by constructing O-Space.

Varying dataset size. Fig. 7 illustrates the results when dataset
size increases from 10 million up to 50 million. We vary the dataset
size by including more and more buildings belonging to different
regions in Australia. The parameter space is fixed with kmax as
10 and rmax as 4000. Clearly constructing O-Space has ignorable
overhead compared to the cost of one time outlier detection when
parameter setting ps specified as (kmax ,rmin). Both our O-Space
construction process and one time detection process need to detect
up to kmax neighbors within rmin radius for each point pi. The ad-
ditional overhead of O-Space construction is introduced by having
to track and maintain all possible outlier candidates with respect to
the entire parameter space. However as shown in Fig. 7 such over-
head is small (around 10%). Furthermore constructing O-Space is
significantly faster than constructing DOLPHIN index.

Varying parameter space P . Dolphin is excluded from this
case because it does not have the parameter space concept. The
influence of varying range of k is evaluated. Fig. 8 represents the
results when varying kmax from 10 to 20, while holding rmax at
4000m and dataset size at 50 million. The overhead is still around
10% for the same reason explained above. As kmax increases, the
cost of O-Space construction grows in the trend similar to one time
outlier detection. Varying the range of r shows the similar influ-
ence. Due to space constraint, the results are not included.

4.3 Online Outlier Exploration

4.3.1 Online Outlier Detection

We evaluating the processing time of online outlier detection by
varying the size of the datasets and the number of the requests.

Varying dataset size. Fig. 9 shows the advantage of ONION for
outlier detection. We ran 10,000 requests with randomly chosen
parameter settings from the entire parameter space and show the
total processing time. P-Space and D-Space methods show very
similar performance. Therefore their lines in Fig. 9 are overlapped.
In average each request can be processed in milliseconds. Both
consistently outperform DOLPHIN 5 orders of magnitude. Fur-
thermore for D-Space and P-Space the detection cost grows only
logarithmically in the size of outlier candidates that are the strict
minority of the whole dataset (fewer than 10%), while DOLPHIN
grows linearly. Therefore, ONION scales to large dataset.

Varying number of request. We increase the number of OD
requests from 10,000 up to 50,000, while holding dataset size con-
stant at 50 million. The total detection time is measured. Fig. 10
shows that our algorithms scale linearly in the number of requests.
Again P-Space and D-Space algorithms are at least 5 orders of mag-
nitude faster than DOLPHIN. Even our linear complexity O-Space
method is 3 order of magnitude faster than DOLPHIN in average.

4.3.2 Outlier-Centric Parameter Space Exploration

We evaluate the performance of processing PSE request not sup-
ported by DOLPHIN. Each chart shows the accumulated process-
ing time for 10,000 requests.

Varying parameter space size. Fig. 11 measures the influence
to the processing time of PSE when varying the size of the pa-
rameter space. This is achieved by increasing kmax from 2 to 10.
For P-Space and D-Space the cost of supporting PSE relies on the
number of domination trees and the parameter node lists. There-
fore, the cost of P-Space and D-Space is not sensitive to the change
of kmax . On the other hand O-Space method has to check all outlier
candidates. Since the number of outlier candidates grows as kmax

increases, the cost of O-Space method will also increase lineally.
Varying dataset size: outlier set as input. Fig. 12 demon-

strates the performance of our PSE algorithms. That is, given a
PSE request, we use a set of randomly selected outlier candidates
as input. The size of the datasets is varied from 10 million up to
50 million. Similar to the experiment that uses parameter settings
as input, P-Space and D-Space methods significantly outperform
O-Space method 3 orders of magnitude.

4.3.3 Comparative Outlier Analytics

Next we evaluate the performance of supporting CO operation.

97

Varying dataset size. Fig. 13 illustrates the processing time
of supporting CO operation by varying dataset sizes. We use a
randomly selected outlier set as input. The operation returns all
outlier candidates that are dominated by the input outliers. D-Space
supports CO operation by only looking at each domination tree in
the domination forest once, while the number of the domination
tree is small (at most 3 when the dataset contains all 50 millions
buildings). On the other hand, O-Space method has to scan all
candidates, while P-Space method has to search the parameter node
lists for every possible k value. Therefore D-Space method is about
1 order of magnitude faster than P-Space method, and about 3 to 4
orders of magnitude faster than O-Space method.

Varying size of input outlier set. In Fig. 14 we vary the size
of the input outlier set from 10 to 30, while keeping the sizes of
dataset and parameter space stable. For each method we only need
to check the weakest outlier of the input outlier set. Since the cost
of determining the weakest outlier is negligible, all our three meth-
ods are not sensitive to the size of the input outlier set.

5. RELATED WORK
Outlier Detection. Outlier detection has been the focus of much

research in the statistics literature for over a century [12, 3]. The
most common approach is to assume that all points follow a dis-
tribution with known distribution parameters (e.g., mean and vari-
ance). The points that do not properly fit the model are considered
to be outliers. However, such approaches suffer from the serious
limitation that the data distribution and underlying parameters must
either be explicitly known apriori or be easily inferred.

Approaches that do not rely on data distributions have also been
proposed. In [10, 15, 18] all points that are not a core part of any
cluster are classified as outliers. In other words the outliers are in
this case the by-products of data clustering. However we note here
that a point that is not a member of any cluster is not necessarily
abnormal. This is so because the goal of clustering is to group
together points that are extremely similar to one another. Therefore
such approaches lack strong notion of what constitutes an outlier.

To address this limitation, the notion of an outlier based on den-
sity (of neighborhood) or based on distance (of neighbors) has been
defined. Density-based approaches [6, 17] assign an outlier score to
any given point by measuring the density relative to its local neigh-
borhood restricted by a pre-defined threshold. Therefore density-
based outliers, regarded as “local outliers”, are able to identify out-
liers often missed by other methods. However it has been observed
that such methods do not scale well to large datasets [14].

Furthermore explicit distance-based approaches, based on the
well known nearest-neighbor principle, were first proposed by Ng
and Knorr [13]. They employ a well-defined distance metric to
detect outliers, that is, the greater is the distance of the point to
its neighbors, the more likely it is an outlier. The basic algorithm
for such distance-based definition, the nested loop (NL) algorithm,
calculates the distance between each pair of points and then set as
outliers those that are far from most points. The NL algorithm has
quadratic complexity with respect to the number of points. Thus it
is not suitable for truly large datasets.

As a result, extensive effort has been focusing on identifying
practical sub-quadratic algorithms [1, 4, 11, 5]. Several optimiza-
tion principles have been proposed such as the use of compact data
structures [11], of lightweight outlier detection oriented indices [1],
and of pruning and randomization [4]. In particular by indexing the
possible neighbors of each point pi in dataset D based on their dis-
tances to pi, [1] is able to approximate whether pi is an outlier
in the time complexity near linear to the cardinality of D. How-
ever, while these methods offer improved performance compared

to statistical or clustering based approaches, they still suffer from
unacceptable response times such that hours or even days for online
queries. Furthermore none of these works tackles the important and
hard problem of choosing proper parameter setting from the infinite
number of possible options. Our work not only successfully satis-
fies the real time responsiveness requirement, but also saves users
the significant effort otherwise spent on parameter tuning.

Parameter Space Exploration in Clustering. In [2] the OP-

TICS algorithm creates an augmented ordering of the dataset to
represent the clustering structure corresponding to a set of param-
eter settings. However, the producing of outliers as by-products of
clustering has already been shown to be not effective in capturing
abnormal phenomena [16]. Furthermore the ordering information
is only effective in representing the clusterings with respect to a
small range of parameter settings, that is the parameters with only
the neighbor range threshold variable. Our work instead supports
a full range of possible parameter settings composed of both range
and neighbor count thresholds.

6. CONCLUSION
Interactive outlier exploration over large dataset is an extremely

important yet difficult task. Our novel ONION framework achieves
this by bridging the data space and parameter space. By extracting
the outlier candidates along with their interrelationships and ab-
stracting them into successive more powerful structures, ONION is
able to effectively discover outliers with real time responsiveness.

7. REFERENCES
[1] F. Angiulli and F. Fassetti. Dolphin: An efficient algorithm for mining

distance-based outliers in very large datasets. TKDD, 3(1), 2009.

[2] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. OPTICS: ordering
points to identify the clustering structure. In SIGMOD 1999, Proceedings ACM

SIGMOD International Conference on Management of Data, June 1-3, 1999,

Philadelphia, Pennsylvania, USA., pages 49–60, 1999.

[3] V. Barnet and T. Lewis. Outliers in statistical data. International Journal of

Forecasting, 12(1):175–176, 1996.

[4] S. Bay and M. Schwabacher. Mining distance-based outliers in near linear time
with randomization and a simple pruning rule. In KDD, pages 29–38, 2003.

[5] K. Bhaduri, B. L. Matthews, and C. Giannella. Algorithms for speeding up
distance-based outlier detection. In Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San

Diego, CA, USA, August 21-24, 2011, pages 859–867, 2011.

[6] M. M. Breunig and et al. Lof: Identifying density-based local outliers. In
SIGMOD Conference, pages 93–104, 2000.

[7] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection. ACM Computing

Surveys, 41(3):1–58, 2009.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms (3. ed.). MIT Press, 2009.

[9] Entzminger and et al. Jointstars and gmti: past, present and future. Aerospace

and Electronic Systems, IEEE Transactions, 35(2):748 –761, Apr. 1999.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In KDD, pages
226–231, 1996.

[11] A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based
outliers in high-dimensional datasets. Data Min. Knowl. Discov.,
16(3):349–364, 2008.

[12] D. M. Hawkins. Identification of Outliers. Springer, 1980.

[13] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in
large datasets. In VLDB, pages 392–403, 1998.

[14] H.-P. Kriegel, P. Kröger, and A. Zimek. Outlier detection techniques. In In

Tutorial of the 13th PAKDD, 2009.

[15] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In VLDB, pages 144–155, 1994.

[16] G. H. Orair, C. H. C. Teixeira, Y. Wang, W. M. Jr., and S. Parthasarathy.
Distance-based outlier detection: Consolidation and renewed bearing. PVLDB,
3(2):1469–1480, 2010.

[17] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. LOCI: fast
outlier detection using the local correlation integral. In Proceedings of the 19th

International Conference on Data Engineering, March 5-8, 2003, Bangalore,

India, pages 315–326, 2003.

[18] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In SIGMOD, pages 103–114, 1996.

98

