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Abstract. Emerging patterns (EPs) are itemsets whose supports
change significantly from one class to another. It has been shown that
they are very powerful distinguishable features and they are very use-
ful for constructing accurate classifiers. Previous EP mining approaches
often produce a large number of EPs, which makes it very difficult to
choose interesting ones manually. Usually, a post-processing filter step
is applied for selecting interesting EPs based on some interestingness
measures.
In this paper, we first generalize the interestingness measures for EPs,
including the minimum support, the minimum growth rate, the subset
relationship between EPs and the correlation based on common statis-
tical measures such as chi-squared value. We then develop an efficient
algorithm for mining only those interesting EPs, where the chi-squared
test is used as heuristic to prune the search space. The experimental
results show that our algorithm maintains efficiency even at low supports
on data that is large, dense and has high dimensionality. They also show
that the heuristic is admissible, because only unimportant EPs with low
supports are ignored. Our work based on EPs for classification confirms
that the discovered interesting EPs are excellent candidates for building
accurate classifiers.

Keywords: Emerging patterns, measures of interestingness, classifica-
tion, data mining

1 Introduction

Classification is an important data mining problem. Given a training database
of records, each tagged with a class label, the goal of classification is to build a
concise model that can be used to predict the class label of future, unlabelled
records. Many classification models have been proposed in the literature [14].
Recently a new type of knowledge patterns, called emerging patterns (EPs),
was proposed by Dong and Li [4] for discovering distinctions inherently present
between different classes of data. EPs are defined as multivariate features (i.e.,
itemsets) whose supports (or frequencies) change significantly from one class to
another. The concept of emerging patterns is very suitable for serving as a classi-
fication model. By aggregating the differentiating power of EPs, the constructed
classification systems [5,10,11,6,7] are usually more accurate than other exist-
ing state-of-the-art classifiers. The idea of emerging patterns is also applied in
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bioinformatics successfully, from the discovery of gene structure features to the
classification of gene expression profiles [12,9].

A major difficulty involved in the use of EP is how to efficiently mine those
EPs which are useful for classification, because it has been recognised that an
EP mining algorithm can generate a large number of EPs, most of which are
actually of no interest for modelling or classification purpose. Being able to mine
only useful EPs is important, since it can save mining of many unnecessary EPs
and identifying interesting ones from a huge number of EPs.

What makes emerging patterns interesting? The measures of interestingness
are divided into objective measures - those that depend only on the structure of a
pattern and the underlying data used in the discovery process, and the subjective
measures - those that also depend on the class of users who examine the pattern
[15]. We define interestingness of an EP in objective terms. An EP is interesting,
if it (1) has minimum support; (2) has minimum growth rate; (3) has larger
growth rate than its subset; (4) highly correlated according to common statistical
measures such as chi-square value. The first condition ensures an EP is not noise
by imposing a minimum coverage on the training dataset; the second requires
an EP has sharp discriminating power; the third regards those “minimal” EPs
as interesting, because if any subset of an EP has larger growth rate, the EP
itself is not so useful for classification; generally speaking, the last states that
an EP is interesting, if the distribution (namely, the supports in two contrasting
classes) of its subset is significantly different from that of the EP itself, where
the difference is measured by the χ2-test [2]. Experiments show that the set of
interesting EPs is orders of magnitude smaller than the set of general EPs. In
the case that a user wants to use EPs for classification, the subjective measure
of EPs can be defined as their usefulness. To evaluate objective interesting EPs
against the subjective measure, we have built classifiers using those EPs. High
accuracy on benchmark datasets from the UCI Machine Learning Repository [3]
shows that mining EPs using our method can result in high quality EPs with
the most differentiating power.

The task of mining EPs is very difficult for large, dense and high-dimensional
datasets, because the number of patterns present in the datasets may be expo-
nential in the worst case. What is worse, the Apriori anti-monotone property,
which is very effective for pruning search space, does not apply to emerging pat-
tern mining. It is because if a pattern with k items is not an EP, its super-pattern
with (k + 1) or more items may or may not be an EP.

Recently, the merits of a pattern growth method such as FP-growth [8],
have been recognized in the frequent pattern mining. We can use FP-growth to
mine EPs: we first find frequent itemsets in one data class for a given support
threshold, and then check the support of these itemsets against the other class.
Itemsets satisfying the four interestingness measures are interesting EPs. There
are several difficulties with this approach: (1) a very large number of frequent
patterns will be generated when the support is low; (2) a lot of frequent patterns
in one class turn out not to be EPs since they are also frequent in the other class;
(3) it selects interesting EPs as post-analysis.
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To overcome these difficulties, we propose Interesting Emerging Pattern
Miner (iEPMiner) for efficiently extracting only the interesting emerging pat-
terns. iEPMiner uses a tree structure to store the raw data. It recursively parti-
tions the database into sub-database according to the patterns found and search
for local patterns to assemble longer global one. iEPMiner operates directly on
the data contained in the tree, i.e., no new nodes are inserted into the original
tree and no nodes are removed from it during the mining process. The major
operations of mining are counting and link adjusting, which are usually inexpen-
sive.

The problem of mining EPs can be seen as to search through the power set
of the set of all items for itemsets that are EPs. With low minimum settings
on support and growth rate, the candidate interesting EPs embedded in a high-
dimensional database are often too numerous to check efficiently. We push the
interestingness measures into the pattern growth to reduce the search space. We
also use the χ2-test as heuristic to further prune the search space. The heuristic
is admissible because (1) it greatly improves the efficiency of mining; (2) only
EPs with the lowest supports are lost. Experiments show that iEPMiner achieves
high efficiency on large high-dimensional database with low support and growth
rate, and successfully mines the top 90% interesting EPs.

1.1 Related Work

Dong and Li [4] introduced the concept of emerging patterns and they also
proposed the notion of borders as a means for concisely describing emerging
patterns. They formalised the notion of set intervals, defined as collections S
of sets that are interval closed - if X and Z are in S and Y is a set such that
X ⊆ Y ⊆ Z, then Y is in S. The collection of emerging patterns discovered from
different classes of data, which is typically very large, can be represented by bor-
ders, defined as the pair of the sets of the minimal itemsets and of the maximal
ones, which are usually much smaller. A suite of algorithms, which manipulates
only borders of two collections, were proposed for mining emerging patterns.
However, they depend on border finding algorithms such as Max-Miner [1]. In
fact, the task of mining maximal frequent patterns is very difficult, especially
when the minimum support is low (e.g. 5% or even 0.1%). For example, for
the UCI Connect-4 dataset, the Max-Miner, one of the most efficient previously
known algorithm for finding maximal frequent itemsets, needs more than three
hours when minimum support is 10%. Furthermore, the process of extracting
the embodied EPs with supports and growth rates from the borders and select-
ing the interesting one is very time-consuming. In contrast, our algorithm mine
interesting EPs directly from the raw data.

ConsEPMiner [16] mines EPs satisfying several constraints including growth-
rate improvement constraint. It follows an Apriori level-wise, candidate
generation-and-test approach. It is still not efficient when the minimum sup-
port is low. For the UCI Connect-4 dataset, ConsEPMiner needs about 6 hours
when support is 3%. In comparison, our algorithm can finish in less than 10
minutes, with little loss of interesting patterns.
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Recent work in [13] proposed to use “shadow patterns” to measure the inter-
estingness of minimal JEPs. Shadow patterns are those immediate subsets of a
minimal JEP. If the growth rates of these shadow patterns are on average around
small numbers like 1 or 2, compared with the infinite growth rate of the JEP, it
is regarded as adversely interesting, because the JEP is “unexpected” and the
conflict may reveal some new insights into the correlation of the features. Their
interestingness measure is a specific case of our correlation measure, since the
level of adversity can be detected by χ2-test. They do post-analysis of mined
JEPs, while we push the interestingness measures into the mining process.

2 Interesting Measures of Emerging Patterns

Suppose a data object obj = (a1, a2 · · · an) follows the schema (A1, A2 · · ·An),
where A1, A2 · · ·An are called attributes. Attributes can be categorical or con-
tinuous. For a categorical attributes, all the possible values are mapped to a set
of consecutive positive integers. For a continuous attributes, its value range is
discretized into intervals, and the intervals are also mapped to consecutive pos-
itive integers. By doing so, a raw set of data objects is encoded into the binary
transaction database. We call each (attribute, integer-value) pair an item.

Let I denote the set of all items in the encoding dataset D. A set X of
items is also called an itemset, which is defined as a subset of I. We say any
instance S contains an itemset X, if X ⊆ S. The support of an itemset X in
a dataset D, suppD(X), is countD(X)/|D|, where countD(X) is the number of
instances in D containing X. Assume two data classes D1 and D2, the growth
rate of an itemset X in favour of D2 is defined as GrowthRate(X) = GR(X) =
suppD2(X)/suppD1(X) (where GR(X) = 0, if suppD2(X) = suppD1(X) = 0;
GR(X) = ∞, if suppD2(X) > 0 and suppD1(X) = 0). An Emerging Pattern Y
favouring D2 is an itemset whose growth rate from D1 to D2 is at least ρ(ρ > 1).
The support of Y in D2, denoted as supp(Y ), is called the support of the EP.

2.1 Interesting Emerging Patterns

We formally define the objective interestingness of an EP. An EP, X, is inter-
esting, if

1. supp(X) ≥ ξ, where ξ is a minimum support threshold;
2. GR(X) ≥ ρ, where ρ is a minimum growth rate threshold;
3. ∀Y ⊂ X, GR(Y ) < GR(X).
4. |X| = 1 or |X| > 1 ∧ (∀Y ⊂ X ∧ |Y | = |X| − 1 ∧ chi(X, Y ) ≥ η), where

η = 3.84 is a minimum chi-value threshold and chi(X, Y ) is computed using
the following contingency table [2].

X Y
∑

row
D1 countD1(X) countD1(Y ) countD1(X) + countD1(Y )
D2 countD2(X) countD2(Y ) countD2(X) + countD2(Y )∑

column countD1+D2(X) countD1+D2(Y ) countD1+D2(X) + countD1+D2(Y )



Efficiently Mining Interesting Emerging Patterns 193

The first condition ensures an EP has minimum coverage on the training dataset;
the second requires an EP has sharp discriminating power; the third explores
the subset relationship of EPs, i.e., interesting EPs are not “subsumed” by their
subsets; the last states that for any immediate subset of an interesting EP with
length more than 1, its support distribution in both classes are significantly
different from that of the EP itself. One can use other statistical measures such
as the entropy gain, the gini index and the correlation coefficient in place of chi-
square value. The bigger the value, the more confident we are to say that their
distributions are different. We choose 3.84 as the minimum chi-value threshold,
since it gives us 95% confidence, which is enough in many real life applications.
If a length-k EP’s distribution is significantly different from that of any of its
length-(k−1) subsets, it shows that adding one item from length-(k−1) subsets
makes its behaviour on two classes quite different. It also means that those items
which make up of the EP, are highly correlated.

We give an example to see how contingency tests are performed in the pro-
cess of mining. Let X = {a, b, c}, Y = {a, b}. Suppose |D1| = |D2| = 100 and
countD1(Y ) = 80, countD2(Y ) = 60, countD1(X) = 60, countD2(X) = 35,
then we have the following observed contingency table (left). For each pair
(i, j) ∈ {D1, D2} × {X, Y }, we calculate the expectation under the assumption
of independence:

Eij =
countD1+D2(j) × (counti(X) + counti(Y ))

countD1+D2(X) + countD1+D2(Y )
.

The results are shown in the following expected contingency table (right).

The observed contingency table The expected contingency table
Y X

∑
row

D1 80 60 140
D2 85 35 120∑

column 165 95 260

Y X
∑

row
D1 89 51 140
D2 76 44 120∑

column 165 95 260

The chi-square value is the normalised deviation of observation from expectation;
namely,

chi(X, Y ) =
∑

i∈{D1,D2}

∑

j∈{X,Y }

(Oij − Eij)2

Eij
.

From the above two tables, the computed χ2 value is 5.405. Since χ2 ≥ 5.02 (at
97.5% significance level), we say that the distributions of X and Y are different
with a confidence of 97.5%, which is higher than the minimum of 95%.

2.2 Chi-Squared Pruning Heuristic

Our tree based algorithm mines EPs in a pattern growth manner. How do we
push the interestingness measures into mining? It is straightforward to push
the measure 1 and 2 into the pattern growth (see next section for details). But
it is hard to push the measure 3 and 4, because we may not have “seen” all
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the subsets of the current pattern. A heuristic is proposed to prune as early as
possible the search space, i.e., those patterns which are very likely turn out not
to satisfy condition 3 or 4. The heuristic is based on the following lemma.

Lemma 1. Let X, Y, Z be itemsets. Y = X ∪ {i}, Z = Y ∪ {j}, S = X ∪ {j},
where i and j are items. If chi(X, Y ) < η, P ({i}|X)P ({j}|X) = P ({i, j}|X),
and η = 3.84, then we have chi(S, Z) < η with least 95% confidence.

Proof. Since η = 3.84, chi(X, Y ) < η ⇐⇒ chi(X, X ∪ {i}) < 3.84. We say i is
independent from X with at least 95% confidence. So we have P (X ∪ {i}) ≈
P (X)P ({i}). P ({i}|X)P ({j}|X) = P ({i, j}|X) ⇐⇒
P ({i} ∪ X)

P (X)
∗ P ({j} ∪ X)

P (X)
=

P ({i, j} ∪ X)
P (X)

=⇒ P ({i}) ∗ P ({j} ∪ X)
P (X)

≈ P ({i, j} ∪ X)
P (X)

.

So P (X∪{i, j}) ≈ P (X∪{j})P ({i}), which means i is independent from X∪{j}.
Thus, we have chi(X ∪ {j}, X ∪ {j, i}) < 3.84 with at least 95% confidence.

The lemma has an assumption: P ({i}|X)P ({j}|X) = P ({i, j}|X). Although
it is not true for all the cases in real datasets, experiments show that for most
cases we have P ({i}|X)P ({j}|X) ≈ P ({i, j}|X), which is good enough for min-
ing interesting EPs. When chi(X, Y ) < η = 3.84, from the lemma, Z definitely
will not be interesting since it does not satisfy condition 4. Our mining method
can stop growing Y immediately to avoid searching and generating unnecessary
candidate patterns.

The χ2-test (chi() function) can be used as an effective heuristic for pruning
search space. By pruning long patterns as soon as possible, we usually obtain a
relatively small set of EPs. One pass over the set of EPs can select the interesting
EPs according to the four interestingness measures. In contrast, if iEPMiner does
not use the heuristic, it needs to search a huge space, which produces a lot of
uninteresting patterns first and discards them later. Experiments show that the
χ2-test heuristic makes iEPMiner more efficient by an order of magnitude. We
also investigate what patterns the heuristic search may lose. Detailed analysis
over many datasets from the UCI Machine Learning Repository and high accu-
racy of the classifiers based on our mined interesting EPs confirm that it loses
only unimportant EPs. So the χ2-test pruning heuristic is admissible, although
it is non-monotone.

3 Mining Interesting Emerging Patterns

3.1 Pattern Tree

Without loss of generality, we use lexicographic order as a partial order on the
set of all items, denoted as ≺.

Definition 1. A Pattern Tree (P-tree) is a tree structure defined below.

1. It consists of one root, a set of item prefix subtrees as the children of the
root, and a header table.
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2. Each node in the item prefix subtrees consists of four fields: item-name,
countD1 , countD2 and node-link, where item-name registers which item this
node represents, countD1 registers the number of transactions in D1 repre-
sented by the portion of the path reaching this node, countD2 registers such
number in D2, and node-link links to the next node in the P-tree carrying
the same item or null if there is none.

3. Each entry in the header table consists of three fields: (1) item-name; (2)
head of node-link, which points to the first node in the P-tree carrying the
item; (3) totalD1 ,the sum of all countD1 in the item’s corresponding node-
link; (4) totalD2 ,the sum of all countD2 in such node-link.

4. The tree is ordered: if a node M is the parent of a node N , and item i and
j appear in M and N respectively, then i ≺ j.

Note that nodes with the same item-name are linked in sequence via node-
link, which facilitates tree traversal. Unlike the FP-tree [8], the P-tree is only
traversable top-down (from root to leaves), i.e., there is no pointer from child to
parent nodes. The construction of the P-tree can be found in [6]. The P-tree of
the example dataset from Figure 1 is shown in Figure 2.

D1 D2

a c d e a b
a c e

b e a b c d
b c d e d e

Fig. 1. A dataset
containing 2 classes
as an example
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0

b 0 2
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c 1 0

1 0d
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Fig. 2. The P-tree of the example dataset
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Fig. 3. A complete set enumeration tree over I, with items lexically ordered

3.2 Using P-Tree to Mine Interesting Emerging Patterns

We show the ideas of mining by using the tree shown in Figure 2. Let ξ = 1 be a
minimum support threshold, and ρ = 2 a minimum growth rate threshold. Let
us examine the mining process based on the constructed tree shown in Figure 2.
Basically, we have to calculate the supports in both D1 and D2 for the power set
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of I = {a, b, c, d, e} and then check each itemset against the four interestingness
measures. We use the set enumeration tree shown in Figure 3 as the conceptual
framework to explore the itemset space. The itemsets are “generated” in the
specific order: first visit the node, then visit the right and left subtree. Namely,
the itemsets are considered in the following order:

– {e}
– {d}, {d, e}
– {c}, {c, e}, {c, d}, {c, d, e}
– {b}, {b, e}, {b, d}, {b, d, e}, {b, c}, {b, c, e}, {b, c, d}, {b, c, d, e}
– {a}, {a, e}, {a, d}, {a, d, e}, {a, c}, {a, c, e}, {a, c, d}, {a, c, d, e}, {a, b},

{a, b, e}, {a, b, d}, {a, b, d, e}, {a, b, c}, {a, b, c, e}, {a, b, c, d}, {a, b, c, d, e}
For e, we get its counts in both classes from the head table, denoted as [e:3; 2]

(the two numbers after “:” indicate the supports in D1 and D2, respectively).
{e} is not an EP since its growth rate 1.5 < ρ.

For d, we have [d:2; 2]. {d} is not an EP. We try to grow {d} via concatenation
of e with it. e’s counts in both classes change from [e:3; 2] to [e:2; 1], when only
those e co-occurring with d are counted. This can be done by going through d’s
node-links and visit those d’s subtrees. We simply refer the process to recounting
e under {d}, which is frequently used in the following. Note that the other two
e are not counted since they are not in such subtrees. Then we get [d:2; 2, e:2; 1],
where {d, e} is an EP of growth rate 2.

1 d 0 1

e 0 10 1e

b
c

d

e

1

12

0

item count1 count2 

Header table head of
node-links

2a 2

2 2
2 2

2
e 1 0

c

0

b 0 2

c 0 1

d 0 11

root

c 1 0

1 0d

e

b 2 0a 2 2

0

e 1 0

d 1 0

c 1

Fig. 4. The P-tree after adjusting the node-links and counts of d and e under c

For c, we have [c:2; 2]. {c} is not an EP. Now we have e and d to concate-
nate with c. The P-tree after the node-links and counts of e and d are adjusted
is shown in Figure 4. We try e first. After recounting e under {c}, we obtain
[c:2; 2, e:2; 1], where {c, e} is an EP of growth rate 2. We then try d. After re-
counting d under {c}, we obtain [c4:2; 2, d:2; 1], where {c, d} is an EP of growth
rate 2. Because {c, d} has supports in D1 and D2 quite different from {c}, it may
produce interesting patterns to further grow {c, d} by adding e. After recounting
e under {c,d}1, we obtain [c:2; 2, d:2; 1, e:2; 0], where {c, d, e} is an EP of infinite
1 Since only those d under c are linked by its node-links, it is easy to go through d’s

node-links looking for e.
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growth rate. Usually, an EP with infinite growth rate is called a JEP(Jumping
EP).

For b, we have [b:2; 2]. {b} is not an EP. Now we have e, d and c to concatenate
with b. We try e first. After recounting e under {b}, we obtain [b:2; 2, e:2; 0],
where {b, e} is a JEP. We try d next. After recounting d under {b}, we obtain
[b:2; 2, d:1; 1]. Because the support distributions of {b, d} and {b} are the same,
it is very unlikely that we can get interesting EPs by further growing {b, d}.
In fact, {b, d, e} with support counts 1 and 0 in D1 and D2, is not interesting
since its subset {b, e} is also a JEP. It can be seen that our chi-squared heuristic
effectively prunes a lot of uninteresting patterns from consideration. We then try
c. After recounting c under {b}, we obtain [b:2; 2, c:1; 1]. For the same reason, we
do not further grow {b, c}.

For a, we have [a:2; 2]. {a} is not an EP. Now we have e, d, c and b to
concatenate with a. We try e first. After recounting e under {a}, we obtain
[a:2; 2, e:1; 0], where {a, e} is a JEP. We try d next. After recounting d under
{a}, we obtain [a:2; 2, d:1; 1]. For the above reason, we do not further grow {a, d}.
We then try c. After recounting c under {a}, we obtain [a:2; 2, c:1; 1]. Again we
do not further grow {a, c}. Lastly, we try b. After recounting b under {a}, we
obtain [a:2; 2, b:0; 2], where {a, b} is a JEP. We do not further grow a JEP, since
supersets of a JEP is not interesting.

Fig. 5. iEP-Miner pseudo-code

3.3 iEP-Miner

The high-level description of iEP-Miner is given in Figure 5. The main procedure
iEP-Miner takes the root of the P-tree as input and performs the mining solely
in the P-tree. The procedure mine-subtree() is called recursively. It always tries
to grow the current pattern β by adding a new item. The function is-iEP()
checks whether an itemset satisfies the interestingness measure 1, 2 and 4. The
chi-squared pruning heuristic, the test “chi(γ, β) ≥ η”, is used to prune a huge
number of patterns which are definitely uninteresting. The set of the generated
candidate interesting EPs is relatively small, and one pass over the set can filter
out those which does not satisfies the interestingness measure 3. The final set is
our defined interesting EPs.
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4 Performance Study

We now report a performance evaluation of iEP-Miner. We carried out experi-
ments on many datasets from the UCI Machine Learning Repository, and all of
them exhibited significant improvement in performance. For lack of space, we
only present the results on the following large, high-dimensional datasets.

Dataset Records Avg. Record Width No. of Binary items
adult 45,225 15 154
connect-42 61,108 43 128
mushroom 8124 23 121

All experiments were conducted on a Dell PowerEdge 2500 (Dual P3 1GHz
CPU, 2G RAM) running Solaris 8/x86, shared by many users of the University
of Melbourne.
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Fig. 6. Scalability with support threshold

The interestingness of emerging patterns is determined by three parameters,
where ξ is a minimum support threshold, ρ is a minimum growth rate threshold
and η is a minimum chi-square value threshold. The scalability of iEP-Miner
with support threshold is shown in Figure 6.

Table 1. The effectiveness of the chi-squared pruning heuristic

# of EP searched adult connect4 mushroom
without heuristic 6,977,123 16,525,078 4,373,265
with heuristic 191,765 369,443 89,624
Ratio 36.4 44.7 48.8

To show the effectiveness of the chi-squared pruning heuristic, we investigate
how many candidate EPs we need to “look at” before interesting EPs are gen-
erated. The results are shown in Table 1. It can be seen that a huge amount
of search space is pruned because our heuristic stops early growing many un-
promising branches.
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Table 2. Comparison between general EPs and interesting EPs

ADULT (ξ = 0%, ρ = 10000, maximum length = 11)
0-1% 1-2% 2-3% 3-4% 4-5% 5-6% 6-8% 8-100% 0-100%

all EPs 10,490,845 4,366 963 255 126 51 16 0 10,496,622
all iEPs 10,072 92 20 9 6 3 4 0 10,206
mined iEPs 9,239 83 19 9 6 3 4 0 9,363
Ratio 1,041.6 47.5 48.2 28.3 21 17 4 1 1,028.5
missing iEPs 8.3% 9.8% 5% 0 0 0 0 0 8.3%

CONNECT-4 (ξ = 1%, ρ = 2, maximum length = 10)
1-2% 2-4% 4-6% 6-10% 10-40% 40-100% 0-100%

all EPs 13,837,899 5,938,079 1,372,383 729,788 242,461 0 22,120,610
all iEPs 2,064 2,130 747 487 407 0 5,835
mined iEPs 1,940 1,993 712 487 407 0 5,539
Ratio 6704.4 2787.8 1837.2 1498.5 595.7 1 3791
missing iEPs 6% 6.4% 4.7% 0 0 0 5.1%

MUSHROOM (ξ = 0%, ρ = 10000, maximum length = 6)
0-2% 2-4% 4-7% 7-10% 10-30% 30-70% 70-100% 0-100%

all EPs 8,113,592 312,120 123,256 18,861 44,480 2,015 0 8,614,333
all iEPs 1,032 546 360 175 416 72 0 2,606
mined iEPs 1,002 536 360 175 416 72 0 2,526
Ratio 7862 571.6 342.4 107.8 106.9 30 1 3312
missing iEPs 2.9% 1.8% 0 0 0 0 0 3.1%

In order to have some ideas of what proportion of EPs are interesting, we
compare the set of “all EPs”(satisfying the support and growth rate threshold
only, and their maximum length is no more than the maximum length of all
interesting EPs), “all iEPs”(satisfying the four interestingness measures) and
“mined iEPs”(satisfying the four interestingness measures, but not complete due
to the heuristic) in terms of their distributions in support intervals. The results
are shown in Table 2. The ratio is the number of “all EPs” in the specified
interval divided by that of “all iEPs”. The last row gives the percent of missing
iEPs over “all iEPs” due to heuristic searching. We highlight some interesting
points:

– The set of all interesting EPs is 1000-3000 times smaller than the set of all
general EPs.

– The ratios decreases from left to right, which means that our interestingness
measures eliminate a large number of EPs with low supports, while tend to
keep EPs with higher supports. This is desirable and reasonable, since EPs
with higher supports are definitely more preferable for classification given
the same growth rate. On the other hand, an EPs with high support does not
necessarily mean that it is useful, since its subset may have higher support.

– We stress that the set of our mined interesting EPs is very close to the set
of true interesting EPs: they are exactly the same at high support; only at
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very low support, some interesting EPs are ignored. The chi-squared pruning
heuristic is very effective since the top 90% interesting EPs are discovered
by our algorithm.

5 Conclusions

In this paper, we have proposed four objective interestingness measures for EPs
and developed an efficient algorithm, iEPMiner, for mining only the interesting
EPs based on a tree data structure. The chi-squared pruning heuristic is used
to mine EPs by growing only promising branches. This achieved considerable
performance gains: the heuristic makes iEPMiner orders of magnitude faster.
Although it gives up the completeness of interesting EPs, the heuristic always
discovers the top 90% interesting EPs, which are sufficient to build high accurate
classifiers in many real life applications.
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