
FOIL: A Midterm ReportJ. R. Quinlan and R. M. Cameron-JonesBasser Department of Computer ScienceUniversity of SydneySydney Australia 2006quinlan@cs.su.oz.au, mcj@cs.su.oz.auAbstract: FOIL is a learning system that constructs Horn clauseprograms from examples. This paper summarises the development ofFOIL from 1989 up to early 1993 and evaluates its e�ectiveness on anon-trivial sequence of learning tasks taken from a Prolog programmingtext. Although many of these tasks are handled reasonably well, theexperiment highlights some weaknesses of the current implementation.Areas for further research are identi�ed.1. IntroductionThe principal di�erences between zeroth-order and �rst-order supervised learn-ing systems are the form of the training data and the way that a learned theoryis expressed. Data for zeroth-order learning programs such as ASSISTANT[Cestnik, Kononenko and Bratko, 1986], CART [Breiman, Friedman, Olshen andStone, 1984], CN2 [Clark and Niblett, 1987] and C4.5 [Quinlan, 1992] comprisepreclassi�ed cases, each described by its values for a �xed collection of attributes.These systems develop theories, in the form of decision trees or productionrules, that relate a case's class to its attribute values. In contrast, the inputto �rst-order learners (usually) contains ground assertions about a number ofmulti-argument predicates or relations and the learned theory consists of a logicprogram, restricted to Horn clauses or something similar, that predicts when avector of arguments will satisfy a designated predicate.Early �rst-order learning systems such as MIS [Shapiro, 1983] and MARVIN[Sammut and Banerji, 1986] were based on the notion of �rst-order proof. Apartial theory was modi�ed when it was insu�cient to prove a known fact orable to (mis)prove a known �ction. The dependence on �nding proofs meantthat systems like these were relatively slow, most of the time being consumedin theorem-proving mode, so that they were able to analyse only small trainingsets. Later systems such as FOIL [Quinlan, 1990, 1991] and GOLEM [Muggletonand Feng, 1990] abandoned proof-based algorithms for more e�cient methods;GOLEM uses Plotkin's relative least general generalisation to form clauses whileFOIL uses a divide-and-cover strategy adapted from zeroth-order learning. These



approaches have proved to be more e�cient and robust, enabling larger train-ing sets to be analysed to learn more complex programs. Later systems suchas CHAM [Kijsirikul, Numao and Shimura, 1991], FOCL [Pazzani, Brunk andSilverstein, 1991; Pazzani and Kibler, 1992] ILE [Rouveirol, 1991] and FORTE[Richards and Mooney, 1991] often contain elements of both proof-based andempirical approaches.This paper examines FOIL, summarising its development over the last four years.After outlining its key features, we describe an experiment designed to evaluateits program-writing ability, using problems that human Prolog students areexpected to be able to master. Not surprisingly, FOIL has di�culty with someof the problems. We discuss FOIL's shortcomings and what they tell us aboutthe research that will be needed to extend it into a useful logic programmingtool.2. FOILIn a nutshell, FOIL is a system for learning function-free Horn clause de�nitionsof a relation in terms of itself and other relations. The program is actuallyslightly more 
exible since it can learn several relations in sequence, allowsnegated literals in the de�nitions (using standard Prolog semantics), and canemploy certain constants in the de�nitions it produces.FOIL's input consists of information about the relations, one of which (the targetrelation) is to be de�ned by a Horn clause program. For each relation it is givena set of tuples of constants that belong to the relation. For the target relationit might also be given tuples that are known not to belong to the relation;alternatively, the closed world assumptionmay be invoked to state that no tuples,other than those speci�ed, belong to the target relation. Tuples known to be inthe target relation will be referred to as � tuples and those not in the relation as	 tuples. The learning task is then to �nd a set of clauses for the target relationthat accounts for all the � tuples while not covering any of the 	 tuples.The basic approach used by FOIL is an AQ-like covering algorithm [Michalski,Mozeti�c, Hong and Lavra�c, 1986]. It starts with a training set containing all �and 	 tuples, constructs a function-free Horn clause to `explain' some of the �tuples, removes the covered � tuples from the training set, and continues withthe search for the next clause. When clauses covering all the � tuples have beenfound, they are reviewed to eliminate any redundant clauses and reordered sothat any recursive clauses come after the non-recursive base cases.Perfect de�nitions that exactly match the data are not always possible, particu-larly in real-world situations where incorrect values and missing tuples are to beexpected. To get around this problem, FOIL uses encoding-length heuristics to



limit the complexity of clauses and programs. The �nal clauses may cover most(rather than all) of the � tuples while covering few (rather than none) of the 	tuples. See [Quinlan, 1990] for details.2.1 Finding a ClauseFOIL starts with the left-hand side of the clause and specialises it by addingliterals to the right-hand side, stopping when no 	 tuples are covered by theclause or when encoding-length heuristics indicate that the clause is too complex.As new variables are introduced by the added literals, the size of the tuples inthe training set increases so that each tuple represents a possible binding for allvariables that appear in the partially-developed clause.If the target relation R has k arguments, the process of �nding one clause forthe de�nition of R can be summarised as follows:� Initialise the clause toR(V1; V2; :::; Vk) and a local training set T to the � tuples not covered by any previousclause and all the 	 tuples.� While T contains 	 tuples and is not too complex:{ Find a literal L to add to the right-hand side of the clause.{ Form a new training set T 0:� for each tuple t in T , and� for each binding b of any new variables introduced by literal L,� if the tuple t:b (obtained by concatenating t and b) satis�esL, then add t:b to T 0 with the same label (� or 	) as t.{ Replace T by T 0.� Prune the clause by removing any unnecessary literals.Although FOIL incorporates a simple backup mechanism, the clause-buildingprocess is essentially a greedy search; once a literal is added to a clause, alter-native literals are usually not investigated.The key question is how to determine appropriate literals to append to thedeveloping clause. FOIL uses two criteria: a literal must either help to excludeunwanted 	 tuples from the training set, or must introduce new variables thatmay be needed for future literals. Literals of the �rst kind are called gainful



while determinate literals are included primarily because they introduce newvariables.2.2 Choosing Gainful LiteralsConsider the partially developed clauseR(V1; V2; :::; Vk) L1; L2; :::; Lm�1containing variables V1; V2; :::; Vx . Each tuple in the training set T looks likehc1; c2; :::; cxi for some constants fcjg, and represents a ground instance of thevariables in the clause. Now, consider what happens when a literal Lm of theform P (Vi1; Vi2 ; :::; Vip )is added to the right-hand side. If the literal contains one or more new variables,the arity of the new training set will increase; let x0 denote the number ofvariables in the new clause. Then, each tuple in the new training set T 0 willbe of the form hd1; d2; :::; dx0 i for constants fdjg, and will have the followingproperties:� hd1; d2; :::; dxi is a tuple in T , and� hdi1; di2 ; :::; dip i is in the relation P .That is, each tuple in T 0 is an extension of one of the tuples in T , and the groundinstance that it represents satis�es the literal. Every tuple in T thus gives riseto zero or more tuples in T 0 with the � or 	 label of a tuple in T 0 being copiedfrom its ancestor tuple in T .Let T+ denote the number of � tuples in T and T 0+ the number in T 0. Thee�ect of adding a literal Lm can be assessed from an information perspective asfollows. The information conveyed by the knowledge that a tuple in T has label� is given by I(T ) = �log2(T+ = jT j)and similarly for I(T 0). If I(T 0) is less than I(T ) we have `gained' informationby adding the literal Lm to the clause; if s of the tuples in T have extensions inT 0, the total information gained about the � tuples in T isgain(Lm) = s� (I(T )� I(T 0)):



FOIL explores the space of possible literals that might be added to a clause ateach step, looking for the one with greatest positive gain.The form of the gain metric allows signi�cant pruning of the literal space, sothat FOIL can usually rule out large subspaces without having to examine anyliterals in them. If a potential literal contains new variables, it is possible tocompute the maximum gain that could be obtained by replacing some or all ofthem with existing variables. When the maximum gain is below that of someliteral already considered, the literals resulting from such replacements do notneed to be investigated.Another form of pruning involves literals that use the target relation itself. Sincewe do not want FOIL to produce non-executable programs that fail due to in�niterecursive looping, recursive de�nitions must be screened carefully. Recursiveliterals that could lead to problems are barred from consideration, as describedbelow.2.3 Determinate LiteralsSome clauses in reasonable de�nitions will inevitably contain literals with zerogain. Suppose, for instance, that all objects have a value for some propertyD, and the literal D(X;Y ) de�nes the value Y for object X. Since this literalrepresents a one-to-one mapping from X to Y , each tuple in T will give rise toexactly one tuple in T 0 and so the gain of the literal will always be zero. Wecould also imagine a literal P (X;Y ) that, for any value of X, supplied severalpossible values for Y . Such a literal might even have negative gain.If X is a previously de�ned variable and Y a new variable, there is an importantdi�erence between adding literals D(X;Y ) and P (X;Y ) to a clause; the �rstwill produce a new training set of exactly the same size, while the second mayexclude some � tuples or may cause the number of tuples in the training set togrow. This is the key insight underlying determinate literals, an idea inspiredby GOLEM's determinate terms [Muggleton and Feng, 1990]: the value of eachnew variable is forced or determined by the values of existing variables.More precisely, suppose that we have an incomplete clauseR(V1; V2; :::; Vk) L1; L2; :::; Lm�1with an associated training set T as before. A literal Lm is determinate withrespect to this partial clause if Lm contains one or more new variables and thereis exactly one extension of each � tuple in T , and no more than one extensionof each 	 tuple, that satis�es Lm: The idea is that, if Lm is added to the clause,no � tuple will be eliminated and the new training set T 0 will be no larger thanT .



FOIL notes determinate literals found while searching for gainful literals as above.The maximum possible gain is given by a literal that excludes all 	 tuples andno � tuples; in the notation used before, this gain is T+ � I(T ). Unless aliteral is found whose gain is close to (� 80% of) the maximum possible gain,FOIL adds all determinate literals to the clause and tries again. This mayseem rather extravagant, since it is unlikely that all these literals will be useful.However, FOIL incorporates clause-re�ningmechanisms that remove unnecessaryliterals as each clause is completed, so there is no ultimate penalty for this all-inapproach. Since no � tuples are eliminated and the training set does not grow,the only computational cost is associated with the introduction of new variablesand the corresponding increase in the space of subsequent possible literals. It isprecisely the enlargement of this space that the addition of determinate literalsis intended to achieve.There is a potential runaway situation in which determinate literals found atone cycle give rise to further determinate literals at the next ad in�nitum. Tocircumvent this problem, FOIL borrows another idea from GOLEM. The depthof a variable is determined by its �rst occurrence in the clause. All variables inthe left-hand side of the clause have depth 0; a variable that �rst occurs in someliteral has depth one greater than the greatest depth of any previously-occurringvariable in that literal. By placing an upper limit on the depth of any variableintroduced by a determinate literal, we rule out inde�nite runaway. This limitdoes reduce the class of learnable programs. However, the stringent requirementthat a determinate literal must be uniquely satis�ed by all � tuples means thatthis runaway situation is unlikely and FOIL's default depth limit of 5 is rarelyreached.2.4 Further Literal FormsWe are now moving into areas covered by recent extensions to FOIL. The �rstof these concerns the kinds of literals that can appear in the right-hand side ofa clause.Early versions of FOIL considered literals of the forms� P (W1;W2; :::;Wp), :P (W1;W2; :::;Wp)where P is a relation and theWi's are variables, at least one of which musthave occurred already in the clause; and� Vi = Vj , Vi 6= Vjthat compare the values of existing variables.Two further forms have now been added.In the �rst of these, certain constants can be identi�ed as theory constants that



can appear explicitly in a de�nition. Examples might include a constant []representing the null list in list-processing tasks, or the integers 0 and 1 in tasksthat involve the natural numbers. For such a theory constant c, FOIL will alsoconsider literals of the forms Vi = c; Vi 6= cwhere Vi is a variable of the appropriate type that appears earlier in the clause.This minor addition is equivalent to declaring a special relation is-c for each suchconstant c; in fact, the extension is implemented in this way.The second extension is more substantial. Relations encountered in the realworld are not limited to discrete information but commonly include numeric�elds as well. We could imagine simple relations such asatomic-weight(E,W)that provides the (numeric) atomic weight W of each element E, orquote(C,B,S)detailing the buy and sell prices for a commodity C. As a �rst step towards beingable to exploit numeric information like this, FOIL now includes literal typesVi > k; Vi � k; Vi > Vj ; Vi � Vjthat allow an existing variable Vi with numeric values to be compared against athreshold k found by FOIL or against another variable Vj of the same type. Suchan extension falls a long way short of Prolog facilities that allow a continuousvalue for Vi to be computed in the clause; however, it does permit bound numericvalues to be used in conditions on the right-hand side of a clause.2.5 Managing RecursionRecursive theories are expressive and hence powerful, so that the ability to learnrecursive programs is one of the principal advantages of �rst-order systems likeGOLEM and FOIL. The increase in expressiveness, however, is counterbalancedby the care that must be taken to avoid nonsensical recursion.As an illustration, consider the task of learning a program for multiplication ofnon-negative integers in terms of addition and decrement. We might have threerelations: mult(A,B,C) meaning C = A � Bplus(A,B,C) C = A + Bdec(A,B) B = A � 1.



A suitable de�nition for multiply ismult(A,B,C)  A=0, C=0mult(A,B,C)  dec(A,D), plus(B,E,C), mult(D,B,E)where the last clause captures the identityA� B = B + (A� 1)�B:This de�nition seems intuitively to be well-behaved in the sense that it willalways terminate. On the other hand, a simpler de�nitionmult(A,B,C)  mult(B,A,C)will clearly lead to an in�nite recursive loop. How does FOIL, which is biasedtowards �nding simpler de�nitions, eschew the latter in favour of the former?The short answer is that, as a clause is being developed, recursive literals mustsatisfy certain criteria for inclusion in the right-hand side. In particular, arecursive literal on the right-hand side must be judged to be less than the headof the clause in some ordering of literals.The earliest version of FOIL used a method based on discovering an orderingof the constants appearing in tuples. This method guaranteed that a singleclause could not lead to a recursive loop by calling itself directly. The orderdiscovery was removed in following releases, which relied on the user specifyingthe constants of each type in an appropriate order. Order discovery mechanismshave been reinstated in the most recent versions and the method of orderingrecursive literals has been generalised so that the guarantee now applies to setsof clauses for a single relation, not just to a single clause. The following is meantto give an informal sketch of the idea, with a complete discussion available in[Cameron-Jones and Quinlan, 1993].Returning to the multiply example above, we see that the clause for the generalcase mult(A,B,C)  dec(A,D), plus(B,E,C), mult(D,B,E)cannot lead to in�nite recursion since the literal dec(A,D) guarantees that D isalways less than A; mult(D,B,E) is thus less than mult(A,B,C) in an intuitiveordering of mult literals. FOIL assumes that some relations provided for a taskwill behave like dec in establishing an ordering of their arguments and attemptsto identify them. For every relation R and every pair of arguments A;B of Rthat are of the same type Q, FOIL asks:Are there orderings of the constants of type Q that are consistentwith the hypothesis that A < B?



When answers to all these questions have been determined, FOIL establishes asingle de�nitive ordering of the constants of type Q so that the number of suchinequalities is maximised.The now-�xed ordering of constants of each type allows us to determine rank-ings among pairs of variables in an incomplete clause. If such a clause con-tains variables V1; V2; :::; Vx and the training set consists of tuples of constantshda1; da2; :::; daxi, a = 1; 2; :::; jT j, then Vi < Vj if they belong to the same typeand dai always comes before daj in the constant ordering for that type.The inequalities among pairs of variables can be extended to an ordering ofliterals involving a predicate R and variables. In broad terms, if W1;W2; :::denote variables in V1; V2; :::; Vx , thenR(W1;W2; :::;Wk) < R(V1; V2; :::; Vk) ifW� < V�, orW� = V� and W� < V� , orW� = V� and W� = V� and W
 < V
 , or ...Here �, �, 
 etc. denote argument positions that, together with the ordering ofvariables in the clause, specify a particular ordering of the literals involving R.Suppose now that we have an incomplete de�nition for relation R that consistsof zero or more completed clauses and a partial clause. A recursive literalR(W1;W2; :::;Wk) can be added to the right-hand side of the developing clauseonly when there are values of �, � etc. as above so that� this literal is less than the left-hand side of the clause, and� the same is true for all recursive literals in the completed clauses.This may sound complex but its implementation is simple and e�cient. Therestriction on recursive literals in the right-hand side of clauses prevents in�niterecursive loops due to a de�nition of R calling itself directly, yet does not excludeeven complex recursive de�nitions such as that for Ackermann's function:Ack(A,B,C)  A=0, dec(C,B)Ack(A,B,C)  B=0, dec(A,D), Ack(D,E,C), dec(E,B)Ack(A,B,C)  dec(A,D), dec(B,E), Ack(A,E,F), Ack(D,F,C)In this case, the ordering of literals found by FOIL isAck(W1;W2;W3) < Ack(V1; V2; V3) ifW1 < V1, orW1 = V1 and W2 < V2.



In the de�nition above, dec(A,D) gives D<A in the second and third clauses,and dec(B,E) in the third clause gives E<B, so all recursive literals in theseclauses are less than the heads of the clauses. Consequently, this de�nition canbe guaranteed to terminate when invoked with ground instances of A and B.2.6 Improved De�nitionsPrograms like FOIL that depend on greedy search will occasionally follow unprof-itable paths leading to poor de�nitions or no de�nitions at all. FOIL's backupmechanism is designed to ameliorate the latter condition by restarting search atsaved backup points. The problem of poor de�nitions is much more di�cult tocircumvent.From its earliest version, FOIL has incorporated post-processing of de�nitionsin which unnecessary literals are excised from �nished clauses and redundantclauses are removed from complete de�nitions. When there are numerous super-
uous literals, clause pruning can consume a noticeable amount of time; a recentextension is a fast heuristic pruning method that reverts to the slow-but-surealgorithm in the event of failure.The most recent versions have two additional mechanisms for producing betterclauses. It sometimes happens that, when the possible literals to be added to aclause are being considered, one literal L would complete the clause but anotherliteral of higher gain is selected instead. The search can meander along in thisway, leading eventually to a clause that is inferior to the one that would havebeen produced if L had been chosen. FOIL now remembers the best completeclause that could have been obtained by a di�erent choice of literal at any point.When the clause is complete, the system checks to see whether the rememberedclause is at least as good as the �nal clause and, if so, uses the remembered clauseinstead. This extension, which requires hardly any additional computation, isresponsible for much improved de�nitions in some tasks.We have also observed cases in which a non-recursive literal L, chosen to com-plete a clause, involves only variables that appear in the left-hand side of theclause. Such a literal could clearly have appeared at the beginning of the right-hand side. If the right-hand side contains literals other than L, they may havehad the e�ect of making the clause too speci�c. To circumvent this possibility,the clause is regrown starting with the single literal L on the right-hand side.The �nal polishing involves reordering the clauses. After all clauses making upa de�nition have been sifted as above to remove redundancies, all non-recursive\base case" clauses are moved to the front so that they appear before anyrecursive clauses.



3. An ExperimentMany evaluations of learning systems involve a limited amount of backgroundinformation { just that required for the task at hand { and sometimes care-fully chosen training examples as well. Such experiments can demonstrate thefeasibility of certain types of learning, but do not address the usefulness of thelearning system in practical applications, where there is usually a large amountof irrelevant information and where training examples come from a neutral,unbiased source.As a step towards a more pragmatic evaluation, we started with Ivan Bratko'swell-known text Prolog Programming for Arti�cial Intelligence [Bratko, 1986].Chapter 3 of this book introduces several programs for manipulating lists andincludes a set of student exercises. We conducted trials to see whether FOILcould learn the expository programs and exercises in the same order as theyappear in the book, omitting only the last two exercises that were quite di�erentfrom the others. (One of them, canget, deals with lists speci�c to the monkeyand bananas problem; the other, 
atten, uses structured lists.) A brief summaryof the problems attempted is:member(E,L) E is an element of list Lconc(L1,L2,L3) appending L1 to L2 gives list L3member1(E,L) as for member with conc availablelast(E,L) E is the last element of Llast1(E,L) ditto, but without using concdel(E,L1,L2) deleting an occurrence of E from L1 gives L2member2(E,L) as for member with del availableinsert(E,L1,L2) inserting E somewhere in L1 gives L2sublist(L1,L2) L1 is a sublist of L2permutation(L1,L2) L2 is a permutation of list L1even/oddlength(L) L has an even/odd number of elements (bothrelations to be de�ned)reverse(L1,L2) L2 is the reverse of list L1palindrome(L) list L is a palindromepalindrome1(L) as above, but not using reverseshift(L1,L2) rotating elements of L1 to the left gives L2translate(L1,L2) L2 is the results of translating L1 using anelement-to-element mappingsubset(S1,S2) S2 is a subset of set S1dividelist(L1,L2,L3) L2 contains the odd-numbered elements of L1,L3 contains the even-numbered elements of L1We included the additional relation components(L,H,T), meaning list L has headH and tail T, that corresponds to Prolog's built-in [HjT] notation for lists. Foreach program, all relations encountered previously were available as background



knowledge so that there were many irrelevant relations to confuse FOIL's search.We also attempted to assemble training examples in an unbiased manner. Thetrials were repeated for two universes, de�ned as� U3, the 40 lists containing up to three elements (where each element is inthe set f1,2,3g); and� U4, the 341 similar lists containing up to four elements from f1,2,3,4g.In a trial, FOIL was given all � tuples over the relevant universe for eachrelation. In U3, for example, the 142 � tuples for conc include h[ ]; [13]; [13]iand h[32]; [2]; [322]i but not h[322]; [13]; [32213]i since, in the last case, one of thelists contains more than three elements. Two relations in the book are de�nedover restricted subclasses of lists, sets in the case of subset and lists withoutrepetitions in the case of permutation. All other relations are de�ned over alllists. The 	 tuples for the relation being learned are generally the complementof the � tuples. However, for the second universe U4, some relations would thenhave an enormous number of such tuples { about 3413 � 40 million for conc { sowe used the FOIL option that selects a random sample of 	 tuples to keep themdown to about 90,000. The relations a�ected were conc and dividelist (wherewe used 0.2% of 	 tuples), del and insert (20%), translate (40%), and sublist,permutation, reverse and shift (80%).FOIL was allowed 1500 seconds on a DECstation 5000/240 for each problem. Asthe book had not introduced negation at this stage, negated literals were barredfrom de�nitions. All FOIL's other options had their default values, including thedefault memory limit of 100,000 tuples on any training set.The outcomes of this experiment are summarised in Table 3.1. In the resultcolumn, a p means that a correct de�nition was obtained (often, but not always,the same as the program in the book). The notation restricted indicates thatthe de�nition was correct for the universe over which the examples were de�ned,but would give incorrect results for lists of arbitrary length. A common problemwith the restricted de�nitions is an incorrect base case that relies on fortuitousproperties of the limited domain. For instance, the de�nition of reverse found inuniverse U3 wasreverse(A,B) A=B, conc(A,C,D), sublist(A,C)reverse(A,B) components(A,C,D), reverse(D,E), conc(F,D,A), conc(E,F,B)The second (recursive) clause is correct. However, the odd-looking base caseexploits the fact that all lists in U3 have length at most 3; if A is a sublist of Cand the result of conc'ing A to C has length at most 3, this ensures that A haslength 0 or 1. Of course, the �rst clause is correct for such short lists A.



Task Tuples Result Time� 	 (secs)member U3 75 45 p 0.1U4 880 484 p 0.9conc U3 142 63,858 p 28U4 1593 79,300 p 34member1 U3 75 45 p 1.7U4 880 484 p 1.7last U3 39 81 restricted 0.2U4 340 1024 p 2.7last1 U3 39 81 p 0.1U4 340 1024 p 1.9del U3 81 4719 p 422U4 1024 92,640 time limit > 1500insert U3 81 4719 p 2.1U4 1024 92,640 p 56member2 U3 75 45 p 0.1U4 880 484 p 0.9sublist U3 202 1398 p 1.8U4 2913 90,697 p 94permutation U3 52 204 p 1.6U4 749 3476 p 337even/oddlength U3 10/30 30/10 unsound mutual recursion 0.1U4 273/68 68/273 unsound mutual recursion 63reverse U3 40 1560 restricted 9.3U4 341 92,796 restricted 220palindrome U3 16 24 p 0.1U4 41 300 p 0.9palindrome1 U3 16 24 restricted 928U4 41 300 restricted 212shift U3 39 1561 p 4.2U4 340 92,787 p 253translate U3 40 3120 time limit > 1500U4 341 92,573 time limit > 1500subset U3 27 37 restricted 0.2U4 81 175 restricted 19dividelist U3 40 63,960 restricted 182U4 341 79,302 erroneous 901Table 3.1: results on learning programs



One de�nition produced by FOIL, dividelist in universe U4, was actually in error,even when only lists in the restricted universe are considered. FOIL relies on 	tuples to show up over-generalisations. For this task, the training set includedonly 0.2% of the 	 tuples, none of which happened to reveal that the clause wasdefective. This underlines the heuristic nature of any learning from incompleteinformation.Apart from running out of time, the other problem occurred in the task thatrequired de�nitions of both evenlength and oddlength. The de�nitions found forU3 wereevenlength(A) del(B,C,A), oddlength(C)oddlength(A) components(A,B,C), evenlength(C).Each de�nition is correct in itself but, together, they lead to recursive loopingsince C is longer than A in the de�nition of evenlength but shorter in oddlength.This highlights the �ne print in FOIL's guarantee of recursive soundness; anindividual de�nition will not lead to problems, but two de�nitions invoking eachother might.4. DiscussionThe results of this experiment can only be described as mixed. It is encouragingto see that FOIL can �nd correct de�nitions for many of the small programs,but less encouraging when we remember that students are expected to be ableto produce all of them as a matter of course.In particular, the fact that later de�nitions tend to be restricted (if they are foundat all) highlights FOIL's sensitivity to irrelevant information. For example, whenall the super
uous relations were removed, a correct de�nition of subsetsubset(A,B)  B=[]subset(A,B)  components(A,C,D), components(B,C,E), subset(D,E)subset(A,B)  components(A,C,D), subset(D,B)was found from U4 in only 0.5 seconds.Another cause for concern is that recursive de�nitions require near-completesets of � tuples. If we consider the simplest task, member in universe U3, it isinteresting to observe the e�ect of deleting a single � tuple without changingthe 	 tuples (corresponding to an item of missing information, but no mis-information). If the tuple is of the form hX;Y i where X is an element and Y isa list, then:



� There is no e�ect if Y is of length 3.� If Y is of length 1 or 2, at least one recursive continuation is a�ected.FOIL still �nds a correct de�nition but adds an extra clause to cover theapparent \special case".When 25% of the � tuples were deleted at random, the resulting de�nition wasstill \correct" but contained three super
uous clauses.The tasks in this experiment have the property that each can be de�ned by aHorn clause program without the use of negated literals. Even when negatedliterals are allowed, the de�nition language used by FOIL is too weak to capturesome ideas. As an illustration, the �rst-order expression(8x likes(x; y)) � happy(y)cannot be written as a Prolog de�nition without the use of a cut or the establish-ment of an ancillary concept. Similarly, a program to recognise sentences of thelanguage a�b�c� requires an extra concept such as sequence-of(Seq,Elt); a Prologprogrammer would see this immediately and de�ne the subsidiary predicate.FOIL cannot invent new relations of this kind, and can only apply negation toindividual literals. Consequently, there are some quite simple concepts for whichFOIL cannot �nd general de�nitions, no matter how many examples it is given.5. ConclusionAs the title of this paper suggests, FOIL is still under development. In its currentform it is an experimental vehicle for exploring ideas in learning, not a practicaltool for constructing substantial logic programs. In the same way, ID3 circa 1978was an experimental program that required a lot more work before a practicaltool, C4.5, was obtained.Several shortcomings of the system were mentioned in the previous section.Generalising slightly, we can identify the following features that will be requiredby any robust system for learning recursive logic programs:� Construction of new predicates: Logic programmers make frequent use ofpredicates that do not appear in the problem statement. This is sometimesrequired to express the program in Horn clause form, but more frequentlybecause ancillary predicates make the program simpler and more e�cient.FOIL has no facilities for inventing new predicates, but the promisingresearch of Muggleton and Buntine [1988], Kietz and Morik [1993] andothers suggests that such facilities may be able to be grafted on.



� Strategy for constructing programs: Human logic programmers are taughtto get the simplest base case �rst, then to develop the general recursivecase. This kind of strategic approach is missing from FOIL, which justattempts to bite o� as many � tuples as possible in each clause. Thissuper-greedy strategy can lead to problems of the kind illustrated by thereverse example. Instead of the simple base casereverse(A,B) A=[], B=[]FOIL greedily tries to extend this to include single-element lists, leadingto the restricted de�nition of section 3.� Selective use of relations: At the moment, any learning task can be madeharder for FOIL simply by including more and more irrelevant relations,thereby increasing the number of literals that must be examined at eachstep. We hypothesise that any practical system for learning logic programsmust employ a characterisation of each remembered relation, so that arelation is only considered when there is a prior reason to believe that itmay be of use.� Incomplete training sets: It seems unlikely that near-complete sets of �tuples will be available when constructing recursive de�nitions for relationsin the context of real-world problems. Practical training sets will be smalland, in problems involving synthesis of a novel theory, the given tuples willnot be helpfully selectedwith the form of the �nal de�nition in mind. WhileFOIL can currently learn non-recursive de�nitions from sparse trainingcases, it has di�culty with recursive theories under these conditions.� Extended treatment of numeric �elds: Not many �rst-order systems seemto have addressed the issue of using continuous-valued information. FOIL'suse of numeric �elds is limited to thresholding and comparisons of knownvalues rather than computing new values. Since many practical Prolog pro-grams involve computation, learning systems that are intended to generatethese programs must somehow come to grips with computational clauses.With the inclusion of theory constants and tests on numeric values, FOIL can nowexpress any theory derivable by zeroth-order learning systems such as C4.5. Wehave carried out some initial tests running FOIL on zeroth-order attribute-valuedata in which there is a single relation with one argument for each attribute.Since FOIL explores a strictly larger hypothesis space than these systems, it isnot surprising that FOIL is slower. It will be interesting to see whether theincreased search results in more accurate theories than those learned by zeroth-order systems.The current version of FOIL is always available by anonymous ftp from 129.78.8.1,�le name pub/foilN.sh for some integer N.
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